
Vacuity Detection in Temporal Model Checking

Orna Kupferman1 and Moshe Y. Vardi2�

1 Hebrew University, The institute of Computer Science
Jerusalem 91904, Israel
orna@cs.huji.ac.il

http://www.cs.huji.ac.il/∼orna
2 Rice University, Department of Computer Science

Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

http://www.cs.rice.edu/∼vardi

Abstract. One of the advantages of temporal-logic model-checking
tools is their ability to accompany a negative answer to the correctness
query by a counterexample to the satisfaction of the specification in the
system. On the other hand, when the answer to the correctness query
is positive, most model-checking tools provide no witness for the satis-
faction of the specification. In the last few years there has been growing
awareness to the importance of suspecting the system or the specifica-
tion of containing an error also in the case model checking succeeds. The
main justification of such suspects are possible errors in the modeling
of the system or of the specification. Many such errors can be detected
by further automatic reasoning about the system and the environment.
In particular, Beer et al. described a method for the detection of vac-
uous satisfaction of temporal logic specifications and the generation of
interesting witnesses for the satisfaction of specifications.
For example, verifying a system with respect to the specification ϕ =
AG(req → AF grant) (“every request is eventually followed by a grant”),
we say that ϕ is satisfied vacuously in systems in which requests are
never sent. An interesting witness for the satisfaction of ϕ is then a
computation that satisfies ϕ and contains a request. Beer et al. con-
sidered only specifications of a limited fragment of ACTL, and with a
restricted interpretation of vacuity. In this paper we present a general
method for detection of vacuity and generation of interesting witnesses
for specifications in CTL�. Our definition of vacuity is stronger, in the
sense that we check whether all the subformulas of the specification affect
its truth value in the system. In addition, we study the advantages and
disadvantages of alternative definitions of vacuity, study the problem of
generating linear witnesses and counterexamples for branching temporal
logic specifications, and analyze the complexity of the problem.

� Supported in part by the NSF grants CCR-9628400 and CCR-9700061, and by a
grant from the Intel Corporation.

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 82–98, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Vacuity Detection in Temporal Model Checking 83

1 Introduction

Temporal logics, which are modal logics geared towards the description of the
temporal ordering of events, have been adopted as a powerful tool for specifying
and verifying concurrent systems [Pnu81]. One of the most significant develop-
ments in this area is the discovery of algorithmic methods for verifying temporal-
logic properties of finite-state systems [CE81,CES86,LP85,QS81,VW86a]. This
derives its significance both from the fact that many synchronization and com-
munication protocols can be modeled as finite-state systems, as well as from the
great ease of use of fully algorithmic methods. In temporal-logic model check-
ing, we verify the correctness of a finite-state system with respect to a desired
behavior by checking whether a labeled state-transition graph that models the
system satisfies a temporal logic formula that specifies this behavior (for a survey,
see [CGL93]).

Beyond being fully-automatic, an additional attraction of model-checking
tools is their ability to accompany a negative answer to the correctness query
by a counterexample to the satisfaction of the specification in the system. Thus,
together with a negative answer, the model checker returns some erroneous exe-
cution of the system. These counterexamples are very important and they can be
essential in detecting subtle errors in complex designs [CGMZ95]. On the other
hand, when the answer to the correctness query is positive, most model-checking
tools provide no witness for the satisfaction of the specification in the system.
Since a positive answer means that the system is correct with respect to the
specification, this at first seems like a reasonable policy. In the last few years,
however, there has been growing awareness to the importance of suspecting the
system (or the specification) of containing an error also in the case model check-
ing succeeds. The main justification of such suspects are possible errors in the
modeling of the system or of the behavior.

Early work on “suspecting a positive answer” concerns the fact that temporal
logic formulas can suffer from antecedent failure [BB94]. For example, verifying
a system with respect to the specification ϕ = AG(req → AF grant) (“every
request is eventually followed by a grant”), one should distinguish between vac-
uous satisfaction of ϕ, which is immediate in systems in which requests are never
sent, and non-vacuous satisfaction, in which ϕ’s precondition is sometimes satis-
fied. Evidently, vacuous satisfaction suggests some unexpected properties of the
system, namely the absence of behaviors in which the precondition was expected
to be satisfied.

Several years of experience in practical formal verification have convinced the
verification group in IBM Haifa Research Laboratory that vacuity is a serious
problem [BBER97]. To quote from [BBER97]: “Our experience has shown that
typically 20% of specifications pass vacuously during the first formal-verification
runs of a new hardware design, and that vacuous passes always point to a real
problem in either the design or its specification or environment.” Often, it is
possible to detect vacuity easily, by checking the system with respect to hand-
written formulas that ensure the satisfaction of the preconditions in the specifi-
cation [BB94,PP95]. Formally, we say that a formula ϕ′ is a witness formula for

84 Orna Kupferman and Moshe Y. Vardi

the specification ϕ if a system M satisfies ϕ non-vacuously iff M satisfies both ϕ
and ϕ′.1. In the example above, it is not hard to see that a system satisfies ϕ
non-vacuously iff it also satisfies EF req. Sometimes, however, the generation of
witness formulas is not trivial, especially when we are interested in other types
of vacuity passes, more involved than antecedent failure.

These observations led Beer et al. to develop a method for automatic genera-
tion of witness formulas [BBER97]. Witness formulas are then used for two tasks.
First, for the original task of detecting vacuity, and second, for the generation of
an interesting witness for the satisfaction of the specification in the system. A
witness for the satisfaction of a specification in a system is a sub-system, usually
a computation, that satisfies the specification. A witness is interesting if it satis-
fies the specification non-vacuously. For example, a computation in which both
req and grant hold is an interesting witness for the satisfaction of ϕ above. An
interesting witness gives the user a confirmation that his specification models
correctly the desired behavior, and enables the user to study some nontrivial
executions of the system. In order to generate an interesting witness for the
specification ϕ, one only has to find a (not necessarily interesting) witness for
the conjunction ϕ ∧ ϕ′ of the specification and its witness formula. This can be
done using the counterexample mechanism of model-checking tools. Indeed, a
computation is a witness for ϕ ∧ ϕ′ iff it is a counterexample to ¬(ϕ ∧ ϕ′).

While [BBER97] nicely set the basis for a methodology for detecting vacuity
in temporal-logic specifications, the particular method described in [BBER97]
is quite limited. The type of vacuity passes handled is indeed richer than an-
tecedent failure, yet it is still very restricted. Beer et al. consider the subset w-
ACTL of the universal fragment ACTL of CTL. The logic w-ACTL consists of
all ACTL formulas in which all the (Boolean or temporal) binary operators have
at least one operand that is a propositional formula. Many natural specifications
cannot be expressed in w-ACTL. Beyond specifications that contain existential
requirements, like AGEF grant (and thus cannot be expressed in ACTL), this
includes also universal specifications like AG(AXgrant ∨AX¬grant), which en-
sures that the granting event do not distinguish between “brothers” (different
successors of the same state) in the system, as we expect in systems with de-
layed updates (that is, when the reaction of the system to events occurs only
in the successors of the position in which the event has occurred). The syn-
tax of w-ACTL enables [BBER97] to associate with each specification, a single
subformula (called important subformula) and the vacuity of passes of the spec-
ifications is then checked only with respect to this subformula. For example, in
formulas like AG(req → AF grant), the algorithm in [BBER97] checks that req
eventually holds in some path, yet it ignores the cases where AF grant always
holds. While, as claimed in [BBER97], the latter case is less interesting, it can
still help in many scenarios. The restricted syntax of w-ACTL and the restriction
to important subformulas led to efficient algorithms for detection of vacuity and
generation of interesting witnesses.
1 The notion of a witness formula that we use here is dual to the one used in [BBER97].
There, a system M satisfies ϕ vacuously iff M satisfies both ϕ and its witness ϕ′.

Vacuity Detection in Temporal Model Checking 85

In this paper we present a general method for detection of vacuity and gen-
eration of interesting witnesses for specifications in CTL� (and hence also LTL).
Beyond the extension of the method in [BBER97] to highly expressive speci-
fication languages, our definition of vacuity is stronger, in the sense that we
check whether all the subformulas of the specification affect its truth value in
the system. In addition, we study the advantages and disadvantages of alter-
native definitions to vacuity, study the problem of generating linear witnesses
and counterexamples for branching temporal logic specifications, and analyze
the complexity of the problem.

From a computational point of view, we show that deciding whether a for-
mula ϕ passes vacuously in a system M can be checked in time O(CM (|ϕ|) · |ϕ|),
where CM (|ϕ|) is the complexity of the model-checking problem for M and ϕ.
Then, for ϕ in both LTL and CTL�, the problem of generating an interesting wit-
ness for ϕ in M (or deciding that no such witness exists) is PSPACE-complete.
Both algorithms can be implemented symbolically on top of model checking tools
like SMV and VIS. As explained in Section 4, part of the difficulty in generating
an interesting witness comes from the fact that we insist on linear witnesses.
When we consider worst-case complexity, the algorithm for generating inter-
esting witnesses in [BBER97] is more efficient than ours (even when applied to
w-ACTL formulas). Nevertheless, as explained in Section 4, for natural formulas,
the performance of the algorithms coincides.

2 Temporal Logic

The logic LTL is a linear temporal logic. Formulas of LTL are built from a set
AP of atomic proposition using the usual Boolean operators and the temporal
operators X (“next time”), U (“until”), and Ũ (“duality of until”). We present
here a positive normal form in which negation may be applied only to atomic
propositions. Given a set AP , an LTL formula is defined as follows:

– true, false, p, or ¬p, for p ∈ AP .
– ψ ∨ ϕ, ψ ∧ ϕ, Xψ, ψUϕ, or ψŨϕ, where ψ and ϕ are LTL formulas.

We define the semantics of LTL with respect to a computation
π = σ0, σ1, σ2, . . ., where for every j ≥ 0, we have that σj is a subset of AP ,
denoting the set of atomic propositions that hold in the j’th position of π. We
denote the suffix σj , σj+1, . . . of π by πj . We use π |= ψ to indicate that an LTL
formula ψ holds in the path π. The relation |= is inductively defined as follows:

– For all π, we have that π |= true and π 	|= false.
– For an atomic proposition p ∈ AP , we have π |= p iff p ∈ σ0 and π |= ¬p iff

p 	∈ σ0.
– π |= ψ ∨ ϕ iff π |= ψ or π |= ϕ.
– π |= ψ ∧ ϕ iff π |= ψ and π |= ϕ.
– π |= Xψ iff π1 |= ψ.
– π |= ψUϕ iff there exists k ≥ 0 such that πk |= ϕ and πi |= ψ for all

0 ≤ i < k.

86 Orna Kupferman and Moshe Y. Vardi

– π |= ψŨϕ iff for every k ≥ 0 for which πk 	|= ϕ, there exists 0 ≤ i < k such
that πi |= ψ.

We use the following abbreviations in writing formulas:

– Fϕ = trueUϕ (“eventually”).
– Gϕ = falseŨϕ (“always”).

The logic CTL� is a branching temporal logic. A path quantifier, E (“for
some path”) or A (“for all paths”), can prefix an assertion composed of an
arbitrary combination of linear time operators. There are two types of formulas
in CTL�: state formulas, whose satisfaction is related to a specific state, and
path formulas, whose satisfaction is related to a specific path. Formally, let AP
be a set of atomic proposition names. A CTL� state formula (again, in a positive
normal form) is either:

– true, false, p or ¬p, for p ∈ AP .
– ψ ∨ ϕ or ψ ∧ ϕ where ψ and ϕ are CTL� state formulas.
– Eψ or Aψ, where ψ is a CTL� path formula.

A CTL� path formula is either:

– A CTL� state formula.
– ψ ∨ ϕ, ψ ∧ ϕ, Xψ, ψUϕ, or ψŨϕ, where ψ and ϕ are CTL� path formulas.

The logic CTL� consists of the set of state formulas generated by the above
rules. The logic CTL is a restricted subset of CTL�. In CTL, the temporal
operators X , U , and Ũ must be immediately preceded by a path quantifier.
Formally, it is the subset of CTL� obtained by restricting the path formulas to
be Xψ, ψUϕ, or ψŨϕ, where ψ and ϕ are CTL state formulas.

We denote the length of a formula ϕ by |ϕ|. When we consider subformulas
of an LTL formula ψ, we refer to the syntactic subformulas of ψ, thus to path
formulas. On the other hand, when we consider subformulas of a CTL� formula
ψ, we refer to the state subformulas of ψ. Then, the closure cl(ψ) of an LTL
or a CTL� formula ψ is the set of all subformulas of ψ (including ψ but ex-
cluding true and false). For example, cl(pU(Xq)) = {pU(Xq), p,Xq, q}, and
cl(E(pU(AXq))) = {E(pU(AXq)), p, AXq, q}. It is easy to see that the size of
cl(ψ) is linear in the size of ψ. We use ϕ[ψ ← ξ] to denote the formula obtained
from ϕ by replacing its subformula ψ by the formula ξ.

We define the semantics of CTL� (and its sublanguage CTL) with respect
to systems. A system M = 〈AP,W,R,w0, L〉 consists of a set AP of atomic
propositions, a set W of states, a total transition relation R ⊆W ×W , an initial
state w0 ∈W , and a labeling function L : W → 2AP . A computation of a system
is a sequence of states, π = w0, w1, . . . such that for every i ≥ 0, we have that
〈wi, wi+1〉 ∈ R. We define the size |M |, of a system M as above as |W | + |R|.
We use w |= ϕ to indicate that a state formula ϕ holds at state w (assuming
an agreed fair module M). The relation |= is inductively defined as follows (the
relation π |= ψ for a path formula ψ is the same as for ψ in LTL).

Vacuity Detection in Temporal Model Checking 87

– For all w, we have that w |= true and w 	|= false.
– For an atomic proposition p ∈ AP , we have w |= p iff p ∈ L(w) and w |= ¬p

iff p 	∈ L(w).
– w |= ψ ∨ ϕ iff w |= ψ or w |= ϕ.
– w |= ψ ∧ ϕ iff w |= ψ and w |= ϕ.
– w |= Eψ iff there exists a computation π = w0, w1, . . . such that w0 = w and

π |= ψ.
– w |= Aψ iff for all computations π = w0, w1, . . . such that w0 = w, we have

π |= ψ.
– π |= ϕ for a computation π = w0, w1, . . . and a state formula ϕ iff w0 |= ϕ.

A system M satisfies a formula ϕ iff ϕ holds in the initial state of M . The
problem of determining whether M satisfies ϕ is the model-checking problem.
For a particular temporal logic, a system M , and an integer n, we use CM (n)
to denote the complexity of checking whether a formula of size n in the logic is
satisfied in M .

3 Satisfying a Formula Vacuously

Intuitively, a system M satisfies a formula ϕ vacuously if M satisfies ϕ yet
it does so in a non-interesting way, which is likely to point on some trouble
with either M or ϕ. For example, a system in which req never occurs satisfies
AG(req → AF grant) vacuously. In order to formalize this intuition, it is sug-
gested in [BBER97] to use the following definition of when a subformula of ϕ
affects its truth value in M .

Definition 1. [BBER97] The subformula ψ of ϕ does not affect the truth
value of ϕ in M (ψ does not affect ϕ in M , for short) if for every formula ξ, the
system M satisfies ϕ[ψ ← ξ] iff M satisfies ϕ.

Note that one can talk about a subformula ψ affecting ϕ in M or about an
occurrence of ψ affecting ϕ in M . As we shall see in Section 3.2, dealing with
occurrences is much easier than dealing with subformulas. In the sequel, we
assume for simplicity that all the subformulas of ϕ have single occurrences.
(Equivalently, we could change the definition to talk about when a particular
occurrence of ψ does not affect ϕ. All the results in the paper hold also for this
alternative.)

As stated, Definition 1 is not effective, since it requires evaluation
ϕ[ψ ← ξ] for all formulas ξ. To deal with this difficulty, [BBER97] considers
only a small class, called w-ACTL, of branching temporal logic formulas. In
Theorem 1 bellow, we show that instead of checking the replacement of ψ by
all formulas ξ, one can check only the replacement of ψ by the formulas true
and false. For that, we first partition the subformulas of ϕ according to their
polarity as follows. Every subformula ψ of ϕ may be either positive in ϕ, in the
case it is in the scope of an even number of negations, or negative in ϕ, in the
case it is in the scope of an odd number of negations (note that an antecedent

88 Orna Kupferman and Moshe Y. Vardi

of an implication is considered to be under negation)2. For a formula ϕ and a
subformula ψ of ϕ, let ϕ[ψ ← ⊥] denote the formula obtained from ϕ by replac-
ing ψ by false, in case ψ is positive in ϕ, and replacing ψ by true, in case ψ
is negative in ϕ. Dually, ϕ[ψ ← �] replaces a positive ψ by true and replaces
a negative ψ by false. We say that a Boolean or temporal operator f(ξ1) or
g(ξ1, ξ2) of temporal logic is positively monotonic if for every ξ1 and ξ2 we have
that f(ξ1)→ f(true) and g(ξ1, ξ2)→ g(true, ξ2)∧g(ξ1, true). Dually, the oper-
ator is negatively monotonic if for every ξ1 and ξ2 we have that f(ξ1)→ f(false)
and g(ξ1, ξ2) → g(false, ξ2) ∧ g(ξ1, false). Since all the operators in CTL� are
positively monotonic, except for ¬, which is negatively monotonic, the following
properties of positive and negative subformulas of ϕ can be easily proved by an
induction on the structure of ϕ.

Lemma 1. For a subformula ψ of ϕ and for every system M , if M |= ϕ[ψ ← ⊥],
then for every formula ξ, we have M |= ϕ[ψ ← ξ]. Also, if M 	|= ϕ[ψ ← �], then
for every formula ξ, we have M 	|= ϕ[ψ ← ξ].

Lemma 1 implies that true and false are two “extreme” replacements for ψ
in ϕ; thus instead of checking agreement on the satisfaction of ϕ with all re-
placements ξ, one may only consider these two extreme replacements. Theorem 1
below formalizes this intuition.

Theorem 1. For every formula ϕ, a subformula ψ of ϕ, and a system M , the
following are equivalent:

(1) ψ does not affect ϕ in M .
(2) M satisfies ϕ[ψ ← true] iff M satisfies ϕ[ψ ← false].

Proof. Assume first that ψ does not affect ϕ in M . Then, in particular, M |=
ϕ[ψ ← true] iff M |= ϕ, and M |= ϕ[ψ ← false] iff M |= ϕ. It follows that
M |= ϕ[ψ ← true] iff M |= ϕ[ψ ← false]. For the other direction, assume
that M satisfies ϕ[ψ ← true] iff M satisfies ϕ[ψ ← false]. Consider first the
case ψ is positive in ϕ. We distinguish between two cases. First, if M satisfies
ϕ[ψ ← false], then, as ψ is positive in ϕ, it follows from Lemma 1 that for every
formula ξ, we have M |= ϕ[ψ ← ξ], and in particular M |= ϕ. Thus, ψ does
not affect ϕ in M . Now, if M does not satisfy ϕ[ψ ← false], we have that M
does not satisfy ϕ[ψ ← true] either. Then, as ψ is positive in ϕ, it follows from
Lemma 1 that for every formula ξ, we have M 	|= ϕ[ψ ← ξ], and in particular
M 	|= ϕ. Thus, ψ does not affect ϕ in M . The case ψ is negative in ϕ is dual.

We can now define formally the notion of vacuous satisfaction:
2 If we assume that the formula ϕ is given in a positive normal form, all the subformulas
of ϕ, except maybe some propositions, are positive in ϕ. Since an assertion ¬p, for a
proposition p, does not affect ϕ in M iff p does not affect ϕ in M , we can regard such
assertions as atomic propositions, thus assume that all subformulas are positive in ϕ.
In this section, however, we consider also formulas that are not in positive normal
form, thus we refer to both positive and negative subformulas.

Vacuity Detection in Temporal Model Checking 89

Definition 2. [BBER97] A system M satisfies a formula ϕ vacuously iff
M |= ϕ and there is some subformula ψ of ϕ such that ψ does not affect ϕ
in M .

Theorem 1 reduces the problem of vacuity detection to the problem of model
checking ofM with respect to the formulas ϕ[ψ ← true] and ϕ[ψ ← false] for all
subformulas ψ of ϕ. In fact, by Lemma 1, whenever M satisfies ϕ, it also satisfies
ϕ[ψ ← �] for all subformulas ψ of ϕ. Accordingly, M satisfies ϕ vacuously if
M |= ϕ and there is some subformula ψ of ϕ such that M satisfies ϕ[ψ ← ⊥].
Since the number of subformulas of ϕ is bounded by |ϕ|, it follows that vacuity
detection involves model checking of M with respect to at most |ϕ| formulas, all
smaller than ϕ. Hence the following theorem.

Theorem 2. The problem of checking whether a system M satisfies a formula ϕ
vacuously can be solved in time O(CM (|ϕ|) · |ϕ|).

3.1 Alternative Definitions

In Definition 1, we require that for every ξ, the replacement of ψ by ξ does not
affect the value of ϕ in M . One can also think about an alternative definition
in which ψ does not affect ϕ in M if M satisfies ϕ iff for every formula ξ, we
have that M satisfies ϕ[ψ ← ξ]. This alternative definition seems equivalent to
Definition 1. Nevertheless, as we show below, the definitions are not equivalent
and only Definition 1 agrees with our intuitive understanding of affecting a truth
value. To see this, consider a system M that has a single state with a self loop,
in which p does not hold. Let ϕ = ψ = p. By the definition above, the formula ψ
does not affect ϕ in M . Indeed, both sides of the iff condition in that definition
do not hold: M does not satisfy p, and there is a formula ξ (ξ = false) such
that M does not satisfy p[p ← ξ]. Nevertheless, our intuition is that p does
affect the truth value of p in M . This agrees with Definition 1. Indeed, there is
a formula ξ (ξ = true) such that M |= p[p← ξ] yet M 	|= p.

Note that the definition of when a system satisfies a formula vacuously is
insensitive to the difference between the two definitions. Indeed, when M |= ϕ,
both definitions require M to satisfy ϕ[ψ ← ξ] for all ξ.

While Definition 1 cares about the satisfaction of ϕ in the initial state of M ,
and thus corresponds to local model checking, global model-checking algorithms
calculate the set of all states that satisfy ϕ. Accordingly, if we useM(ψ) to denote
the set of states in M that satisfy ψ, one could also consider the alternative
definition where ψ does not affect ϕ in M if for every formula ξ, M(ϕ[ψ ←
ξ]) = M(ϕ). The problem of this definition is that the replacement of ψ in ξ
may change the set of states that satisfy ϕ in some non-interesting way, say with
respect to non-reachable states. For example, consider a system M with one
reachable state s with a self-loop, labeled {q}, and one non-reachable state s′

with a self-loop, labeled ∅. The state s satisfies both ϕ = AG(p → q) and AGq.
Thus, p does not affect ϕ inM according to Definition 1. On the other hand, while
M(ϕ) = {s, s′}, we have that M(AGq) = {s}. Thus, p affects ϕ in M according

90 Orna Kupferman and Moshe Y. Vardi

to the global definition above. Since s′ is not reachable, the fact that s′ satisfies ϕ
vacuously is not of real interest, thus we believe that the fact Definition 1 ignores
such vacuous satisfaction meets our goals. It is easy, however, to extend all the
results in the paper to handle also global vacuity. In particular, the corresponding
variant of Lemma 1, namely M(ϕ[ψ ← false]) ⊆ M(ϕ) ⊆ M(ϕ[ψ ← true]) is
valid for all ψ, thus global vacuous satisfaction of ϕ in M (and there are in fact
several possible definitions here as well), can be detected in time O(CM (|ϕ|)·|ϕ|).

3.2 Occurrences vs. Subformulas

Recall that one can talk about a subformula ψ affecting ϕ in M or about an
occurrence of ψ affecting ϕ in M . As we now show, the latter choice is compu-
tationally easier. Caring about whether a particular occurrence of ψ affects the
value of ϕ in M , we assumed, for technical convenience, that all subformulas
occur only once. Given ψ, ϕ, and M , Theorem 1 then suggests a simple solution
for the problem of deciding whether ψ affects ϕ in M . Formally, the problem can
be solved in time O(CM (|ϕ|)). In particular, when ϕ is in CTL, the problem can
be solved in time linear in M and ϕ [CES86]. When ψ has several occurrences,
Theorem 1 is no longer valid. This is because different occurrences of ψ may
have different polarities. We now show that in this case the problem of deciding
whether ψ affects ϕ in M is most likely harder.

We say that ψ affects ϕ in M iff it is not the case that ψ does not affect ϕ
in M . Thus, ψ affects ϕ in M iff there is a formula ξ such that either M |=
ϕ[ψ ← ξ] and M 	|= ϕ, or M 	|= ϕ[ψ ← ξ] and M |= ϕ.

Theorem 3. For ϕ in CTL, a subformula ψ of ϕ with multiple occurrences,
and a system M , the problem of deciding whether ψ does not affect ϕ in M is
co-NP-complete.

Proof. We show that the complementary problem, of deciding whether ψ af-
fects ϕ in M is NP-complete. To prove membership in NP, we first claim that
if there is a formula ξ such that M does not agree on the satisfaction of ϕ
and of ϕ[ψ ← ξ], then there also exists such a formula ξ′ of length |M |. Mem-
bership in NP then follows from fact that we can guess the formula ξ′ above
and check whether M |= ϕ iff M |= ϕ[ψ ← ξ′]. To prove hardness in NP, we
do a reduction from SAT. Given n ≥ 0, we define the Kripke structure Kn =
〈{q, r}, {0, . . . , n+ 1}, R, 0, L〉, where R = {〈0, 1〉, 〈1, 2〉, . . . , 〈n, n+ 1〉,
〈n+ 1, n+ 1〉}, and L maps all states i ∈ {0, . . . , n − 1} ∪ {n + 1} to ∅ and
maps the state n to {r}. Thus, Kn is a chain of n+ 2 states none of which sat-
isfies q, and only the state before the last one satisfies r. Giving a propositional
formula θ over p0, . . . , pn−1, let ψ be the CTL formula obtained from θ by replac-
ing each occurrence of pi by (EX)iq. Then, let ϕ = ψ∧ (EX)nq. For example, if
θ = (p0∨p1)∧(¬p1∨p2), then ϕ = (q∨EXq)∧(¬EXq∨EXEXq)∧EXEXEXq.
Since no state of Kn satisfies q, the structure Kn does not satisfy ϕ. On the
other hand, since, no matter what θ is, the only requirement that ϕ induces
on the state n is to satisfy q, it is easy to see that there is a formula ξ such

Vacuity Detection in Temporal Model Checking 91

that Kn |= ϕ[q ← ξ] iff θ is satisfiable: the formula ξ is induced by a satisfying
assignment for θ and it holds at state i iff i = n or pi is assigned true in the
satisfying assignment. Using the fact that n is the only state in which r holds,
we can indeed “translate” each assignment to a corresponding ξ. In the exam-
ple above, an assignment that assigns true to p0 and p2 induces the formula
ξ = r ∨ EX(r ∨ EXEXr). It follows that q affects ϕ in Kn iff θ is satisfiable.

4 Interesting Witnesses

When a good model-checking tool decides that a system M does not satisfy a
required property ϕ, it returns a counterexample to the satisfaction of ϕ, namely,
some erroneous execution of to detect problems in M or in ϕ. Most model-
checking tools, however, provide no witness for the satisfaction of ϕ in M . Such
a witness may be very helpful too, in particular when it describes an execution
in which the formula is satisfied in an interesting way. In this section we discuss
the generation of interesting witnesses to the satisfaction of LTL and CTL�

formulas.

Definition 3. [BBER97] Consider a system M and a formula ϕ such that
M |= ϕ. A path π of M is an interesting witness for ϕ in M if π satisfies ϕ
non-vacuously.

The generation of an interesting witness involves two difficulties. The first
is present in the case ϕ is a branching temporal logic formula and it involves
the generation of a linear (rather than a branching) witness. This difficulty is
analogous to the difficulty of constructing a linear counterexample in a system
that violates a branching temporal logic formula. The second difficulty is present
also when ϕ is a linear temporal logic formula and it involves the fact that all
the subformulas of ϕ should affect the satisfaction of ϕ in the witness. Note
that even when M satisfies ϕ non-vacuously, it may be that some paths of M
satisfy ϕ vacuously. For example, a structure that satisfies AG(req → AF grant)
non-vacuously may contain a path in which req never holds. Moreover, it may
be that M satisfies ϕ non-vacuously, all the paths of M satisfy ϕ as well, yet no
path of M is an interesting witness for ϕ. As an example, consider the formula
above and a structure with two paths, one path that never satisfies req and a
second path that always satisfies grant . To see another weakness of the definition
of an interesting witness, consider the LTL formula ϕ = G(req1 → F grant1) ∧
G(req2 → grant2). While a system M may satisfy ϕ non-vacuously and contain
interesting witnesses for both G(req1 → F grant1) and G(req2 → grant2), the
system M may not contain an interesting witness for ϕ, as both req1 and req2 are
required to hold in such a witness. This difficulty arises since ϕ is a conjunction
of two specifications, and it can be avoided by separating conjunctions to their
conjuncts.

We start with the first difficulty. We say that a branching temporal logic
formula ϕ is linearly witnessable if for every system M , if M |= ϕ then M has
a path π such that π |= ϕ. The following lemma follows immediately from the
definition.

92 Orna Kupferman and Moshe Y. Vardi

Lemma 2. All formulas of the universal fragment ACTL� of CTL� are linearly
witnessable, and so are all CTL� formulas with a single existential path quanti-
fier.

It follows from Lemma 2 that if a formula has no existential path quantifiers,
or has a single path quantifier, then it is linearly witnessable. This syntactic
condition is a sufficient but not a necessary one. For example, the CTL formula
EXEFp is linearly witnessable, and so is the less natural formula EXp∨EX¬p.
The latter example suggests that testing a formula for being linearly witnessable
is at least as hard as the validity problem.

Theorem 4. Given a CTL formula ϕ, deciding whether ϕ is linearly witnessable
is in 2EXPTIME and is EXPTIME-hard.

Proof. We start with the upper bound. We first claim that if there is a system M
such that M |= ϕ yet M has no path π such that π |= ϕ, then there also exists
such an M with branching degree bounded by |ϕ|. The proof of the claim is
similar to the proof of the bounded-degree property for CTL [Eme90]. Give ϕ,
let Aϕ be a nondeterministic Büchi tree automaton that accepts exactly all
trees of branching degree at most |ϕ| that satisfy ϕ [VW86b], and let A′

ϕ be
nondeterministic Büchi word automaton that accepts exactly all words (i.e., trees
of branching degree 1) that satisfy ϕ [VW94]. We expand A′

ϕ to a Büchi tree
automaton A′′

ϕ that accepts a tree iff the tree has a path accepted by A′
ϕ (in each

state, A′′
ϕ guesses a direction in which it follows A′

ϕ). We prove that ϕ is linearly
witnessable iff L(Aϕ) ⊆ L(A′′

ϕ). Since the containment problem L(A) ⊆ L(A′)
for Büchi tree automata can be solved in time that is polynomial in the size
of A and exponential in the size of A′ [EJ88,MS95], the 2EXPTIME upper
bound follows. Assume first that ϕ is linearly witnessable, and let T be a tree
in L(Aϕ). Then, T contains a path π such that π satisfies ϕ, implying that
π is accepted by A′

ϕ. Then, however, by the definition of A′′
ϕ, we have that T

is also in L(A′′
ϕ). Assume now that ϕ is not linearly witnessable. then, by the

bounded-degree property above, there is a system, and therefore also a tree T
of branching degree at most |ϕ| such that T |= ϕ yet no path of T satisfies ϕ.
Hence, while the tree T is in L(Aϕ), it is not accepted by A′′

ϕ, implying that
L(Aϕ) is not contained in L(A′′

ϕ).
For an EXPTIME lower bound, we do a reduction from the satisfiability

problem for CTL. Consider a formula ϕ over a set of atomic propositions that
does not contain p and q. We prove that ϕ is not satisfiable iff ψ = ϕ∧EXp∧EXq
is linearly witnessable. Clearly, if ϕ is not satisfiable, then so is ψ, which is there-
fore linearly witnessable. For the second direction, assume that ϕ is satisfiable,
and consider a system M that satisfies ϕ. We define a system M ′ as follows. If
the initial state of M has two or more successors, we label one of its successors
by p and we label a different successor by q. If the initial state of M has only
one successor, we duplicate it, and then proceed as above. It is easy to see that
while M ′ satisfies ψ, no path of M ′ satisfies ψ, thus ψ is not linearly witnessable.

The gap between the upper and lower bounds in Theorem 4 is similar to
gaps in related problems such as the complexity of determining whether a CTL�

Vacuity Detection in Temporal Model Checking 93

formula has an equivalent LTL formula (a 2EXPTIME upper bound and an EX-
PTIME lower bound [KV98b]), the complexity of determining whether an LTL
formula has an equivalent alternation-free µ-calculus formula (an EXPSPACE
upper bound and a PSPACE lower bound [KV98a]), and several more problems.
Essentially, in all the problems above we check the equivalence between a set of
trees that satisfy Aϕ, for an LTL formula ϕ, and a set of trees that is defined
directly by some branching-time formalism. The best known translation of Aϕ
to a tree automaton involves a doubly-exponential blow up. This is because the
nondeterministic automaton for ϕ, whose size is exponential in |ϕ|, needs to be
determinized before its expansion into a tree automaton, or, alternatively (as
in the proof above), the nondeterministic tree automaton for E¬ϕ needs to be
complemented. The doubly-exponential size of the tree automaton then leads
to EXPSPACE and 2EXPTIME upper bounds. On the other hand, typical EX-
PSPACE and 2EXPTIME lower-bound proofs for temporal logic [VS85,KV95]
require the use of temporal logic formulas that do not fit into the restricted syn-
tax that is present in the problems above (e.g., formulas of the form Aϕd → ϕ
for some CTL� formula ϕ).

The generation of interesting witnesses in [BBER97] goes through a search
for a counterexample for a “witnessing formula”. This generation succeeds only
for witnesses formulas for which a linear counterexample exists. It is claimed
in [BBER97] that almost all interesting CTL formulas indeed have linear coun-
terexamples. We say that a branching temporal logic formula is linearly coun-
terable iff for every system M , if M 	|= ϕ then M has a path π such that π 	|= ϕ.
The following theorem, which characterizes linearly counterable formulas, follows
immediately from the definitions of linearly witnessable and linearly counterable.

Theorem 5. For a branching temporal logic formula ϕ, we have that ϕ is lin-
early counterable iff ¬ϕ is linearly witnessable.

Note that a formula ϕ may be both linearly witnessable and linearly coun-
terable (in which case ¬ϕ is both linearly witnessable and linearly counterable
as well). The formulas AGp and EFq, for example, fall in this category. In fact,
by Lemma 2, all formulas with at most one universal and one existential path
quantifiers are both linearly witnessable and linearly counterable.

In the context of model checking, however, a particular system M is given,
and while ϕ may not be linearly witnessable, it may still have a linear witness
in M . We say that ϕ is linearly witnessable in M if M |= ϕ implies that M has a
path π such that π |= ϕ. In order to check whether ϕ is linearly witnessable inM ,
we first need the following notation. For a branching temporal logic formula ϕ in
a positive normal form, let ϕd be the LTL formula obtained from ϕ by eliminating
its path quantifiers. For example, (AGEFp)d = GFp. By [CD88], ϕ has an
equivalent LTL formula iff ϕ is equivalent to Aϕd.

Theorem 6. For a branching temporal logic formula ϕ and a system M , we
have that M 	|= Aϕd iff M has a path π such that π 	|= ϕ.

Proof. Assume first that M 	|= Aϕd. Then, M has a path π such that π 	|= ϕd.
Since the branching degree of π is 1, the path π does not satisfy ϕ either. For the

94 Orna Kupferman and Moshe Y. Vardi

other direction, assume that M has a path π such that
π 	|= ϕ. Since the branching degree of π is 1, the path π does not satisfy ϕd either.
Hence, M 	|= Aϕd.

Theorem 7. For a CTL� formula ϕ and a system M , deciding whether ϕ is
linearly witnessable in M is PSPACE-complete.

Proof. Replacing the formula ϕ in Theorem 6 by the formula ¬ϕ, we get that
M 	|= A(¬ϕ)d iff M has a path π such that π |= ϕ. It follows that ϕ is linearly
witnessable in M iff M |= ϕ → Eϕd. Membership in PSPACE then follows
from CTL� model-checking complexity [EL87]. Given a system M and an ACTL
formula ϕ, it is shown in [KV98b] that the model-checking problemM |=Aϕd→ϕ
is PSPACE-complete. Equivalently, given a system M and an ECTL formula ϕ,
the model-checking problem M |= ϕ → Eϕd is PSPACE-complete. Since ϕ is
linearly witnessable in M iff M |= ϕ → Eϕd, hardness in PSPACE follows (in
fact, already for ϕ in ECTL).

In practice, we are interested in generating a linear witness (and thus in the
question of linear witnessability) only in systems M that satisfy ϕ. Note that
the proof of Theorem 7 shows that deciding whether ϕ is linearly witnessable
in M is PSPACE-complete already for M as above.

We now study the second difficulty: finding an interesting linear witness.
Recall that the generation of interesting witnesses in [BBER97] goes through
a search for a counterexample for a witnessing formula. The definition of the
witnessing formula in [BBER97] crucially depends on the restricted syntax of w-
ACTL. Below we generate a witnessing formula for general branching or linear
temporal logic formulas. Given a formula ϕ (in either LTL or CTL�), we define

witness(ϕ) = ϕ ∧
∧

ψ∈cl(ϕ)

¬ϕ[ψ ← ⊥].

Note that the length of witness(ϕ) is quadratic in |ϕ|. Intuitively, a path π
satisfies witness(ϕ) if π satisfies ϕ and in addition, π does not satisfy the formula
ϕ[ψ ← ⊥] for all the subformulas ψ of ϕ. Thus, all subformulas of ϕ affect its
value in π.

Theorem 8. For a formula ϕ and a system M , a counter example for
¬witness(ϕ) in M is an interesting witness for ϕ in M .

Proof. Let π be a counterexample for ¬witness(ϕ) in M . Then, π satisfies
witness(ϕ). As such, π satisfies ϕ, yet for all subformulas ψ of ϕ, the path π
does not satisfy the formula ϕ[ψ ← ⊥]. It follows that all subformulas ψ of ϕ
affect ϕ in π, hence π satisfies ϕ non-vacuously.

Theorem 9. For an LTL or a CTL� formula ϕ and a system M , an interesting
witness for ϕ in M can be generated in polynomial space. Deciding whether such
a witness exists is PSPACE-complete.

Vacuity Detection in Temporal Model Checking 95

Proof. By Theorem 8, one can generate an interesting witness π for ϕ in M by
generating a counterexample for ¬witness(ϕ) in M . When ϕ is an LTL formula,
so is ¬witness(ϕ), and the generation of π can be done by generating a path in the
intersection of M and a Büchi word automaton for ¬witness(ϕ). Membership in
PSPACE then follows from the fact that the automaton for an LTL formula ξ is
of size exponential in ξ [VW94], and the generation of a path in the intersection
of the automaton with M can be done on-the-fly and nondeterministically in
space that is logarithmic in the sizes ofM and the automaton. When ϕ is a CTL�

formula, we know, as discussed in the proof of Theorem 6, that a counterexample
in M for A(¬witness(ϕ))d is also a counterexample for ¬witness(ϕ) in M . Thus,
the generation can proceed as in the case of LTL formulas, replacing ¬witness(ϕ)
by (¬witness(ϕ))d. In both cases, the lower bound follows by a reduction from
LTL model checking [SC85].

The lower bound in Theorem 9 implies that the generation of interesting
witnesses may require, at the worst case, space that is polynomial in the length
of the specification, which in practice means that it may require time that is
exponential in the length of the specification. On the other hand, the method
in [BBER97] requires only linear time. The comparison of the two approaches
from a complexity-theoretic point of view is actually a special case of the tra-
ditional comparison between LTL and CTL model-checking complexity. Indeed,
while the generation in [BBER97] goes through the counterexample mechanism
for CTL formulas [CGMZ95], ours go through the counterexample mechanism
for LTL formulas, which uses an automata-theoretic reduction (exponential in
the worst case) to CTL counterexample generation [VW86a]. Our experience
with this comparison teaches us that, in practice, standard LTL model checkers
perform nicely on most formulas. In fact, for formulas that can be expressed in
both LTL and CTL, LTL model-checking tools often proceeds essentially as CTL
model-checking tools. Intuitively, both model checkers proceed according to the
semantics of the formula and are insensitive to the syntax in which the formula
is given (for a detailed analysis and comparison of the two verification paradigms
see [KV98b]). Experimental results of LTL and CTL model checking of common
specifications support our observation and show no advantage to the branching
paradigm [Cla97,BRS99]. In addition, once LTL model checking (or generation
of counterexamples) is reduced to detection of a fair computation in the product
of the system and the automaton for the negation of the specification, such a
detection can be performed using CTL model-checking tools, thus our method
can be implemented symbolically on top of model checkers such as SMV or VIS.

5 Discussion

We presented a general method for detection of vacuity and generation of in-
teresting witnesses for specifications in CTL�. The results in the paper can be
easily extended to handle systems with fairness conditions. A typical fairness
condition for a system M = 〈AP,W,R,w0, L〉 is a tuple 〈F1, . . . , Fk〉 of sub-
sets of W . Such a condition means that we restrict attention to computations

96 Orna Kupferman and Moshe Y. Vardi

that visit each Fi infinitely often [Fra86]. It is known that model-checking algo-
rithms extend to systems with such fairness conditions [CES86,VW86a]. Since
our method is based on the model-checking algorithm, it can therefore be easily
extended to handle fairness. Also, being based on the model-checking algorithm,
our method is fully automatic, and all the common heuristics for coping with the
state-explosion problem are applicable to it. As with model checking, the dis-
couraging complexity bounds for the problems discussed in the paper do rarely
appear in practice. An interesting open question is how to find interesting wit-
nesses of minimal length (cf. [CGMZ95]).

Vacuity check is only one approach to challenge the correctness of the veri-
fication process. We mention here two recent related approaches. An approach
that is closely related to vacuity is taken in the process of constraint valida-
tion in the verification tool FormalCheck [Kur98]. In order to validate a set of
constraints about the environment, the constraints are converted into specifica-
tions and are checked with respect to a model of the environment. Sometimes,
however, there is no model of the environment, and instead, FormalCheck pro-
ceeds with some heuristic sanity checks for constraint validation. This includes a
search for enabling conditions that are never enabled, and a replacement of all or
some of the constraints by false. A different approach is described in [KGG99],
where the authors extend the notion of coverage from testing to model checking.
Given a specification and its implementation, bisimulation is used in order to
check whether the specification covers the entire functionality performed by the
implementation. If the answer is negative, the specification is suspected for not
being sufficiently restrictive.

Acknowledgments

We thank Shoham Ben-David and Yaakov Crammer for helpful comments on a
previous version of this work.

References

BB94. D. Beaty and R. Bryant. Formally verifying a microprocessor using a sim-
ulation methodology. In Proc. 31st DAC, pp. 596–602. IEEE Computer
Society, 1994. 83

BBER97. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of
vacuity in ACTL formulas. In Proc. 9th CAV, LNCS 1254, pp. 279–290,
1997. 83, 84, 85, 87, 89, 91, 93, 94, 95

BRS99. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision prcedures for model
checking of linear time logic properties. In Proc. 11th CAV, LNCS, 1999.
95

CD88. E. M. Clarke and I. A. Draghicescu. Expressibility results for linear-time
and branching-time logics. In Proc. Workshop on Linear Time, Branching
Time, and Partial Order in Logics and Models for Concurrency, LNCS 354,
pp. 428–437, 1988. 93

Vacuity Detection in Temporal Model Checking 97

CE81. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on Logic
of Programs, LNCS 131, pp. 52–71, 1981. 83

CES86. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.
83, 90, 96

CGL93. E. M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state
concurrent systems. In Decade of Concurrency – Reflections and Perspec-
tives (Proceedings of REX School), LNCS 803, pp. 124–175, 1993. 83

CGMZ95. E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient gen-
eration of counterexamples and witnesses in symbolic model checking. In
Proc. 32nd DAC, pp. 427–432. IEEE Computer Society, 1995. 83, 95, 96

Cla97. E. Clarke. Private communication, 1997. 95
EJ88. E. A. Emerson and C. Jutla. The complexity of tree automata and logics

of programs. In Proc. 29th FOCS, pp. 368–377, White Plains, 1988. 92
EL87. E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time

logic strikes back. Science of Computer Programming, 8:275–306, 1987. 94
Eme90. E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Com-

puter Science, pp. 997–1072, 1990. 92
Fra86. N. Francez. Fairness. Texts and Monographs in Computer Science.

Springer-Verlag, 1986. 96
KGG99. S. Katz, D. Geist, and O. Grumberg. “Have I written enough properties ?”

a method of comparison between specification and implementation. In 10th
CHARME, LNCS, 1999. 96

Kur98. R. P. Kurshan. FormalCheck User’s Manual. Cadence Design, Inc., 1998.
96

KV95. O. Kupferman and M. Y. Vardi. On the complexity of branching modular
model checking. In Proc. 6th CONCUR, LNCS 962, pp. 408–422, 1995. 93

KV98a. O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: from
linear-time to branching-time. In Proc. 13th LICS, pp. 81–92, 1998. 93

KV98b. O. Kupferman and M. Y. Vardi. Relating linear and branching model check-
ing. In PROCOMET, pp. 304 – 326, 1998. Chapman & Hall. 93, 94, 95

LP85. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In Proc. 12th POPL, pp. 97–107,
1985. 83

MS95. D. E. Muller and P. E. Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of theorems of Ra-
bin, McNaughton and Safra. Theoretical Computer Science, 141:69–107,
1995. 92

Pnu81. A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45–60, 1981. 83

PP95. B. Plessier and C. Pixley. Formal verification of a commercial serial bus
interface. In Proc. of 14th Annual IEEE International Phoenix Conf. on
Computers and Communications, pp. 378–382, March 1995. 83

QS81. J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in Cesar. In Proc. 5th International Symp. on Programming, pp.
337–351, LNCS 137, 1981. 83

SC85. A. P. Sistla and E. M. Clarke. The complexity of propositional linear tem-
poral logic. Journal ACM, 32:733–749, 1985. 95

98 Orna Kupferman and Moshe Y. Vardi

VS85. M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for
modal logics of programs. In Proc 17th STOC, pp. 240–251, 1985. 93

VW86a. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1st LICS, pp. 322–331, 1986. 83, 95, 96

VW86b. M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. Journal of Computer and System Science, 32(2):182–221, April
1986. 92

VW94. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor-
mation and Computation, 115(1):1–37, November 1994. 92, 95

	Introduction
	Temporal Logic
	Satisfying a Formula Vacuously
	Alternative Definitions
	Occurrences vs. Subformulas

	Interesting Witnesses
	Discussion

