N

N

Pharos, a Collaborative Infrastructure for Web
Knowledge Sharing

Vincent Bouthors, Olivier Dedieu

» To cite this version:

Vincent Bouthors, Olivier Dedieu. Pharos, a Collaborative Infrastructure for Web Knowledge Sharing.
[Research Report] RR-3679, INRIA. 1999. inria-00072992

HAL 1d: inria-00072992
https://inria.hal.science/inria-00072992
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072992
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Pharos, a Collaborative | nfrastructure for
Web Knowledge Sharing

Vincent Bouthors, Olivier Dedieu

No 3679
Mai 1999

THEME 1

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Pharos, a Collaborative Infrastructure for
Web Knowledge Sharing

Vincent Bouthors* , Olivier Dedieu!

Théme 1 — Réseaux et systémes
Projet SOR — http://www-sor.inria.fr/

Rapport de recherche n° 3679 — Mai 1999 — 20 pages

Abstract: Finding relevant information is one of the biggest problems that Web users
experience. This article describes Pharos, a new service that has been developped to help
groups of Web users share their knowledge about interesting documents. Pharos relies on
a collaborative infrastructure which allows user groups to index and evaluate documents on
specific topics. This information, possibly subjective, is synthesized to produce personal-
ized recommendations. Scalability is handled by distributing servers and replicating their
databases. Pharos has been implemented in Java and is currently being evaluated.

Key-words: Information retrieval, Community, Knowledge Sharing, Catalogues, Collab-
orative filtering, Digital library, Scalability.

(Résumé : tsup)

* Vincent.Bouthors@inria.fr
T 0livier.Dedieu@inria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : 01 39 63 55 11 - International : +33 1 39 63 55 11
Télécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30

Pharos, une infrastructure collaborative pour le partage
de connaissances sur le Web

Résumé : La recherche d’information sur le Web est un probléme auquel font face les
utilisateurs. Cet article décrit Pharos, un nouveau service développé pour aider les utilisa-
teurs du Web & partager la connaissance qu’ils en ont. Pharos repose sur une infrastructure
de collaboration qui permet & des groupes d’utilisateurs de cataloguer et d’évaluer des doc-
uments sur un sujet donné. Ces données, qui peuvent étre subjectives, sont synthétisées
afin de produire des recommandations personnalisées. Le passage a I’échelle du systéme est
assuré par la distribution des serveurs et la réplication de leur bases de données. Pharos a
été implémenté en Java et est actuellement en cours d’évaluation.

Mots-clé : Recherche d’information, Communautés d’intérét, Partage de connaissances,
Catalogues, Filtrage collaboratif, Bibliothéques électroniques, Passage & ’echelle.

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 3

1 Introduction

The World-Wide Web is the easiest way to disseminate information to the global commu-
nity. In December 1997, the estimated size of the indexable Web was 320 million pages [14].
Nevertheless, according to a recent surveys [12], about half of the users consider that it
is a big problem to find the information they are looking for. The Web infrastructure re-
lies on hypertext and does not provide a mechanism to quickly find a valuable document
on a precise subject. As a result, people search information in dedicated sites that index
the Web, or consult alternative communication channels such as news groups or mailing lists.

In January 1999, eight out of the ten most visited sites were search engines [17]. Search
engines index the content of the Web and provide a query interface on a Web site. Their
robots travel through hyperlinks to discover new documents. Each document found is then
indexed. Automatic indexing uses full-text algorithms to associate meaningful words in the
page to its URL. Therefore, most of the search engines can be queried on words only and
not on the concepts of the pages they index!. So, query formulation is a difficult exercise if
both noise and silence are to be avoided. Search engines using manual cataloging, such as
Yahoo!?, return more relevant responses, but the user must trust the expertise of the people
who select and organize information. Success of search engines is due to two main reasons:
(i) they are the easiest place to find information ; (ii) they have a relatively good coverage of
the Web [14, 24]. However, one major drawback of search engines is that they only give links.
The user must read and determine himself if the proposed documents are interesting or not.
This work is time consuming and must be done by all the users for a given search. Factoriz-
ing this repetitive effort would help people to find more quickly the most relevant documents.

Search engines do not provide evaluations about returned documents. People therefore
use alternative systems such as news groups and mailing lists. They ask for information,
and someone knowing relevant references can send their advice back to the group. Such
systems are highly dependent on the people who belong to the groups. The more expert
the group members are, the more valuable the information is. Frequently asked questions,
off-topic questions or bad responses generate noise that depreciates the group. The lack
of structure in the messages’ content makes automatic filtering difficult. Furthermore, this
requires experience, and new members cannot immediately estimate the expertise of existing
members. Because messages are not persistent, the benefit of one’s accumulated knowledge
cannot be given to new or external members. To address this last point, alternatives are
to build FAQs® [11], archives, links pages or thematic portals. But these solutions leave
unresolved the problem of their localization and are time consuming to maintain. There is
clearly a need to provide a system that integrates functionalities similar to search engines

1Some of search engines (e.g. ww.excite.com, www.infoseek.com or www.altavista.com) extend requests
to morphologic or lexicographic variations.

21'11:‘l:p ://www.yahoo.com/

3Frequently Asked Questions.

RR n~°3679

4 Vincent Bouthors , Olivier Dedieu

but which references valuable information such as that exchanged within groups of experts.

Pharos is a collaborative infrastructure which allows people to share their knowledge on
a specific topic. People finding a valuable document put an annotation in the appropriate
channel. An annotation is a structured datum referencing an URL. It is composed of values
such as a title, a rating (a subjective note), a free comment and a list of keywords. A channel
is a database of annotations dedicated to a specific topic (e.g. games, music, Java language,
Web technologies, and so on). People interact with Pharos by using a browser assistant.
The browser assistant is a personal proxy with a GUI* (see Figure 1). It observes the URLs
the user accesses, requests channel servers for annotations associated with each URL and
displays them. As a result, the user can quickly evaluate the interest of the document.
Pharos also helps to find rated information. Queries can be performed to extract annotated
documents matching some criteria (e.g. all the documents rated as “good” by “bob” and
categorized with the keyword “documentation:book” and “api:servlet”).

User Desktop
Browser Assistant

- et i Http Request = = Http Request
= EEEE—

e Http Response Http Response

Annotations Annotations
Request Response

Y

Channel
Server

Figure 1: Browser assistant interaction

As the amount of available annotations increases it becomes more difficult for users to
exploit them. To reduce noise, annotation syntheses are computed. The synthesis algorithm
gathers all available annotations about a given document into a recommendation. Since all
users do not necessarily agree about document ratings, recommendations are personalized
according to the users’ profiles.

4Graphic User Interface.

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 5

Pharos is based on a client/server architecture. For each page browsed, the browser
assistant requests annotations from the channel server and displays them. If members
are numerous this can dramatically increase the load on the server. If users are located
world wide the latency of annotation fetching can become unacceptable. To improve perfor-
mance, channels can be replicated close to users’ locations. This creates consistency issues
which Pharos addresses with an optimistic protocol, guaranteeing the eventual consistency
model [4, 25].

In Section 2, we detail the main concepts, the design of Pharos services and the rec-
ommendation algorithms. Section 3 presents the implementation of the browser assistant,
channel flexibility and the communication model. Section 4 describes the scalability issues
and how Pharos addresses them. Section 5 presents a survey of related work. Finally, in
Section 6, we present our future work and conclusions.

2 Services Design

The Pharos system is made of two components: the browser assistant and the channel
server (see Figure 1). The assistant works with any Web browser and provides a user
interface to publish an annotation, to display annotations and recommendations on the
documents visited by the browser, to search documents matching some criteria, and to
perform administrative tasks for channels. A channel may be replicated at multiple locations.
This section describes what an annotation is, how recommendations are computed, and how
channels are managed.

2.1 Annotations
2.1.1 Annotation structure

An annotation is a structured datum, published by someone on a channel, to describe a Web
document. The user publishes annotations explicitly. There is no “spying” on user behavior
nor keeping trace of what has been visited. We believe strongly that it is absolutely neces-
sary, for a collaborative recommendation system, to respect the privacy of users, in order to
gain user acceptance.

An important characteristic of an annotation is that it is structured. This data structure
depends on the channel class. A basic class, named BasicChannel, is provided for general
purpose. A BasicChannel annotation contains a title which is by default the document’s
title, a rating which is the user’s appreciation of the document, some keywords which are
chosen in an extensible hierarchical list, and a comment which is a free textual note.

The rating is a float value ranging from -1 to +1. However, from the user-interface point
of view, the rating is a discrete value displayed as an icon or a text defined by the channel

RR n~°3679

6 Vincent Bouthors , Olivier Dedieu

administrator.

An annotation may contain multiple keywords. The keyword hierarchy may be viewed as
a simple thesaurus. This thesaurus helps the community to share a common, tree-structured
vocabulary when annotating documents. This avoids having keywords that are semantically
similar but lexically different (e.g. browser versus navigator). The thesaurus simplifies
searching by keywords and gives a global view of the channel topic organization. Keyword
hierarchy may be modified only by authorized users.

BasicChannel can be subclassed to satisfy specific needs. In scientific communities, users
would appreciate the ability to handle bibliographical data and to be able to import/export
data in the BibTeX [19] format. In the digital library there is a need to support meta-data as
defined in the Dublin Core [23, 13]. Another important point is the life-time of annotations.
It appears important to leave the user to decide, at creation time, when an annotation will
become obsolete. All these examples show the need to be able to extend BasicChannel to
add new attributes.

2.1.2 Functionalities

While browsing the Web, annotations associated with visited documents are shown. This
information is displayed in the browser assistant. The list of authors that have added anno-
tations is displayed. When selecting a specific author, his annotation is shown. Additionally,
recommendations are presented as if they were annotations published by pseudo users. There
is one such pseudo user for each recommendation algorithm. The algorithms available in
the BasicChannel class are described in Section 2.2.

The user queries recommendations by filling in a form, indicating a list of criteria. This
is a database querying facility, with regular expression search on titles, comments and URLs.
Results are not displayed in the browser assistant but in the browser itself. This makes it
straightforward for the user to navigate in the recommended documents (see figure 2).

Another way to consult annotations is very similar to bookmarks or favorites provided in
Netscape or Internet Explorer. The annotations are visible in a tree having the same struc-
ture as the keywords hierarchy. The leaves of this tree are the recommendations themselves.
This user interface has been provided to give regular users an interface similar to the one
for bookmarks/favorites in the browser.

Web access exists also, providing another way to consult annotations and recommenda-

tions through two levels of queries: advanced and simple. The first one is similar to the
assistant querying. The second one provides access through a hypertext paradigm.

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 7

Channel selection Last visited URLs User Interface of the selected channel: Query mode
| / ’-ITluxylteta—S | / / ‘Netscape: Pluxy: Pharos / WebTech ‘ |
(Settings | Phires| / File Edi/ View Go Communicator Help |
@ w * Page’s title] \mems{kaup Mew&Cool Meteaster Java Resources (Weblools and SOR)
. Thy /XML web Page — Home Page &
e Gisited pages B ._;/snnkmarks & Location: [letp //pluscy /Pharos /WebTech /searchrhe ginDateassendDate=sscores /|
té @ http/www.o open.orafcoverss I ﬁack Forward Reload Home Search Hetscape Print Securty Giop
© Education 2 tEpe// e, . T
Eelecy tandards © XML (g to keywords indeys

1-Erequently asked guestions about the Extensible Markup Language Trdrdramu

i
2 annotations |5 mars 1995 ~ 7 avr, 1389]: Olivter (Excellent), ub (Gooc)

2 B Koala xML ressources TTY M
R e L e resonnsns Blonpamecasiod b oot fne chibith

Begi End: Date: e N
| ﬂyr J I [7 aur. 1338 - 7 aur. 1935]; olivier (excellent], ub {Excellent), mouf (Questionable)

7/ S = Extensibte arkup Language G

The Extensible Markup lanuuauﬁ tRML \S adata format for structured document interchange on the eb, (Olvier)
RegExp:|

R0,
Search in:[J URL [Title [y Comment

LA Gy O ——

4. The SGML/XML web Page - Home Page T XML Sait already cited

nicolas 2
i 5. hittp://: ml.com/ B xML aszines
Olivier hm com/ -
simon mars 1333]: Olivier {Questionable)

Terms search mode: ") AND @ OR EMMMM?XML
Crtes 2 perror

& 1 Tools =] N aotation (24 oes 1oas) ub LQu:slmnab\:)
Standards 7
= | 7.3eb Review - Drag-n-Droy ASP B XML 112052025, 4THL KITE, Lauss S already cited
CIHTTP 7
CIHTML 7 2 %eena:another alph gy
CISGML o Heensis o gen nfor editing valid ¥ML documents derived from any walid DTD. (clivier
| iy C ech/HEEh:
o XML 7 1 annotat Questionable)
& cal 7 —
9 Cookles | 5.5tyle web Review B ML ATTP 055 already cited
I PHP |
[serviets 7
I ¥RML , Standards * XML * RDF (go to keywords index)
cess
9 JavaScript 1. RDF for XML : another alphaworks technoloqy 27 Ro)
3 PiCs & Jawa IMpIE I ERtation Of the RDF Specrication for creatmg Eechnologies that search fo dsta and describe,
itagorize,rate, ad athertse manilat the 0. o1
TP uwialphatlorksibm comtec

aram
S anotation 11 mars 19531 Gllulr (ierestng)

@ [N Research
3 Wfrastructures

2 Keala gL ressources 7 poy

oo B 0 T P P S e e e
@ Recommandation (by Title by Score oy b based acties, (0l 111
RELpi/ v e 17K i
- Term) by Auth@t () by Date 1 annotation [5 mars er (interesting) 7]
= I e

Figure 2: The assistant is on the left and the browser is displaying results of a query con-
cerning XML.

2.1.3 Document identification

An annotation is associated with a document. Annotations are stored in a channel server.
To identify the associated document, each annotation contains an URL. This raises problems
because an URL is a locator to access a document, not a name to identify a document: a
document can be updated, moved, mirrored, be temporarily unreachable, or definitively
destroyed. Moreover, there is probably a need for annotating not only documents but also
objects such as movies or CDs. A simple solution is to annotate a vendor page, but such a
page may not exist or there may be more than one such page. A correct solution would be
to rely on a naming service (possibly based on bar codes [16]).

2.2 Collaborative Recommendations

A recommendation is the synthesis of all the annotations on a single document. This section
describes how recommendations are computed in the BasicChannel. It is important to note
that computation of recommendations is made easier because annotations are structured

RR n°3679

8 Vincent Bouthors , Olivier Dedieu

data.

The important feature is that everybody gets a personalized recommendation. The
goal is to avoid, or at least to reduce, two problems: average effect and pollution. If the
recommendations were the same for everybody, it would correspond to an average advice.
Minority annotations would be diluted in the mass. On the other hand, in the task of
taking into account multiple advices, more weight tends to be given to some people, because
they are experts or because they share the same taste, depending on the subject. This is
what Pharos automates. The second problem is the sensitivity to advertisement pollution.
For instance, a vendor could inundate a channel of annotations from fake users praising
his product. A solution is to ignore these annotations by giving a null weight to all these
fake users. This may be done by other users explicitly. It is done automaticaly by Pharos
with the correlation algorithm (see next sections). These Solutions minimize the need for a
moderator.

2.2.1 Computing recommendation rating

The rating is a subjective value and plays an important role when computing recommenda-
tions. The function estimating the rating of the URL u for the member m, predicted Rating(m, u),
is defined by the following formula. Let’s call M (u) the set of members having added an
annotation for the URL u, weight(m,n) the weight or the confidence placed by member m
on member n in the range [—1, +1], rating(m,u) the rating of the URL » by the member
m in the range [-1,+1]:

> weight(m,n) x rating(n,u)
neM(u)

> | weight(m,n) |
neM(u)

predictedRating(m,u) = (1)

This function is a weighted average of ratings. If a member m places no confidence in
member n, that is if weight(m,n) = 0, the rating of member n is ignored when predicting
the rating for member m.

The BasicChannel provides two ways of defining the weight: explicitly, or automatically
by correlation. In the first case, the user edits the weight he uses for each of the other mem-
bers. By default all users have the same initial positive weight. This allows each user to
distinguish some people because they agree (positive weight) or disagree (negative weight)
with them, or don’t care about them (null weight).

2.2.2 Computing correlation between users

If there are too many users in a channel it would be tedious to attribute a weight for all
of them so the weight would remain the default positive value for most of them. In this

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 9

case the predicted rating would be equivalent to the average. To solve this problem, the
BasicChannel offers a second way to automatize the weight assignment. The correlation
algorithm determines users having similar profiles by comparing the annotations they have
added in the past. The weight weight(m,n) given by member m to member n is equal to
correlation(m,n), the correlation between the two users. This function takes values in the
range [—1,+1]: from —1 for systematic contradiction, up to +1 for systematic agreement.
Let’s call U(m,n) the set of URLs annotated by both members m and n.

> rating(m,u) x rating(n, u)
u€eU(m,n)

> rating(m,u)? x > rating(n, u)?
uweU(m,n) weU(m,n)

correlation(m,n) =

(2)

If the denominator is null the function has a default customizable value. One property
of this function is to not take into account rating equal to zero.

Other very similar algorithms have been used in recommendation systems [20, 22]. An
original point of Pharos is to empower the user by allowing the algorithm to be explicitly
weighted. From a user interface perspective, everything works as if there were pseudo-users
named “weighted” and “correlated”. The pseudo-user “correlated” computes a prediction
defining weight(m,n) as being correlation(m,n). The pseudo-user “weighted” computes a
prediction using weight(m,n) explicitly given by the user. The pseudo-user “correlated” may
be given a weight indicating the confidence of member m in the “correlated” algorithm. This
way, the user has a complete and intuitive control over the way the “weighted” prediction is
computed. He rates the algorithm by giving a weight, as for any other user. This mechanism
provides a natural way to integrate other algorithms: they would simply be associated with
other pseudo-users.

2.2.3 Computing recommendation

We have discussed how rating is used to compute correlation between users and how it is
used to compute a predicted rating. We now describe how other attributes of the annota-
tions are treated. The rating still plays an important role.

The title and the comment of the recommendation are synthesized using a “best guess”
algorithm. When computing a recommendation for member m on URL u, a title is chosen
among members 1 S0 as to maximize the function:

pertinence(m,u,n) = weight(m,n) x rating(n,u) (3)

The rationale for this algorithm is to prefer information from a user both having been as-
signed a good confidence and having appreciated the recommended document.

RR n~°3679

10 Vincent Bouthors , Olivier Dedieu

The keywords are synthesized another way. A simple algorithm is to compute the union
of all sets of keywords associated by all users on the same URL. The drawback is that too
many keywords may be returned. A better algorithm is to compute a pertinence for each
keyword and to retain only those keywords exceeding a threshold.

2.3 Annotation Channels

A channel represents a community of users sharing the same interest (e.g. the Java language,
Web technologies or teaching). The number of users registered in a channel varies according
the community. A channel can be composed of a few users annotating documents on a very
in-depth topic or, at the opposite extreme, it can concern a more general topic intended for
mass consumption on a world-wide scale. The channel stores members’ annotations in a
database. It can extract annotations associated with a specific document, annotated docu-
ments matching some annotation criteria, and compute personalized recommendations.

Channels are autonomous entities. That is, instead of having one huge database for all
annotations of all topics, there are as many channels as there are topics. Pharos does not
require the channels to all be located in the same place. They can be distributed across the
network. This design choice increases system flexibility and performance for several reasons:

1. Channel access control policy can be customized according to each community. Some
channels can be public, not filtering member registration, allowing anyone to add
annotations and provide Web access to increase their accessibility. Others, can contain
private data and be restricted to authorized members.

2. Channel management is flexible. Creating a channel on a new topic is very simple
and only requires a machine to host the channel. Tricky operations such as halting a
channel for maintenance, exchanging updates for replicated channels, and merging or
splitting channels, do not have any impact on other channels.

3. Network traffic and server load is reduced. Channels can be located close to their
members and are only accessed by people interested in their topic.

4. Members can replicate on their machine some of the channels they have subscribed to.

5. Relevancy and performance of synthesis algorithms are improved. These algorithms
produce personalized recommendations according to users’ profiles. Channel separa-
tion increases topic locality for each profile. For instance, Alice and Bob can have
related profiles in the Java channel but opposite ones in the Music channel.

6. The annotation structure can be specialized for each channel to better fit with the
community’s requirements. For instance, a channel about distributed computing would
have a BibTeX [19] field to annotate research papers whereas ones about financial news
whould have a field specifying the duration of validity of the annotation.

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 11

Channels are located with an URL. Member creation and authentication is channel-
dependent. Some channels can allow unrestricted subscription with identification based on
the user name or email, whereas others require the channel’s administrator to register a new
member and use more secure authentication mechanisms. Once the user is logged into the
channel, he can perform the operations for which he is authorized: accessing annotations,
publishing an annotation, editing the keyword hierarchy, and administration.

Users can quickly create a new channel by instantiating and customizing a BasicChannel
(see section 2.1). BasicChannel is a generic channel which has an all-purpose annotation
structure (title, rating, comments, and a list of keywords). It permits searching, Web access
publishing, and provides a thesaurus manager. At channel creation time the thesaurus is
empty. Authorized members can add, delete, move or rename terms when needed. Finally,
if the basic channel does not fit exactly with the community requirement, Pharos provides
extensible framework which is able to receive any kind of channel. In this case, the commu-
nity must develop a new channel class or extend an existing one to match their specific needs.

3 Implementation

Pharos has been developped in Java [1] which provides useful features for building dynamic
and portable architectures. This section details the implementation of the channels and of
the browser assistant.

3.1 Channel Components

Channels are mainly composed of two parts: the backend and the frontend. The backend
is the server part of a channel. It manages member subscription, the annotation database
and additional data such as the thesaurus of keywords. The backend processing queries
from frontends. It uses batch process to pre-compute data used later to produce recom-
mendations. If the channel is replicated, each backend exchanges updates with its peers to
maintain a consistent replica at each backend. If the channel has Web access, the backend
provides HTML interface to query or publish annotations.

The frontend is the client part of a channel. It contains the channel GUI hosted in the
browser assistant. It allows the user to add, display and query annotations, to edit the
thesaurus and to customize his profile.

Frontend / backend communication relies on RMI [26]. RMI (Remote Method Invoca-
tion) is a Java API based on the RPC paradigm extended for the Java object model. Each
backend exports a remote object which is invoked by frontends. However, some updates are
propagated from the backend to frontends thanks to a lazy notification mechanism detailed

RR n~°3679

12 Vincent Bouthors , Olivier Dedieu

in Section 4.1.

To factorize certains resource consumption (e.g. network port, Web access, JVM®, code),
backends hosted on the same machine can be aggregated in a PharosServer. It has its own
RMI access which is used by the browser assistant to list available channels on a machine.
This helps users to discover and choose the channels they want to subscribe to. Finally, the
PharosServer has a Web access which gives links to backends that have registered a Web
access.

3.2 The Browser Assistant

Pharos has been designed to annotate Web documents. Frontends must be aware of the
URL the user is browsing. To this end several techniques exist, such as HTTP proxy [15],
browser parasite [16], customized browser, applets or browser plug-ins. The proxy solution
has been used in Pharos because it works with any browser and provides the assistant with
a high degree of control to observe the traffic and to enrich the content of returned pages.
The browser assistant relies on Pluzy [7], an extensible HT'TP proxy. Pluxy can dynamically
aggregate a set of proxy components, the pluzins. Each pluxin can observe requests and
responses, modify them, or provide a response.

The browser assistant is made of a pluxin which (i) observes request URLs in order to
fetch associated annotations and (ii) extracts the HTML title of the page (if any) from the
responses to fill the title field in the annotation editor. In an upcoming version, it will
also be used to enrich HTML hyperlinks with icons pointing out the relevancy of targeted
documents.

When the user requests the annotation database, the frontend builds an HTML page
containing the results and displays it in the browser (see Figure 2). However, the proxy
model does not allow the proxy to send requests to the client. The frontend therefore
uses a mechanism to tell the browser to fetch a special URL. When the proxy receives this
special URL, it calls the targeted frontend which then returns the HTML result page. This
notification mechanism is browser- and OS-dependent. Under Unix/X11, Netscape provides
a special option to open an URLS. Under Windows, Netscape and InternetExplorer provide
a DDE’ communication handler.

3.3 Channel Flexibility

Pharos handles a variety of channels thanks to a composition architecture. This architec-
ture relies on the JPlug framework [6] which is intended for building modular and extensible
applications in Java. JPlug allows an application to confine some functionnality within

5Java Virtual Machine.
Snetscape -remote openURL(url)
"Dynamic Data Exchange.

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 13

components and gather these components into a container. A JPlug component is a set
of resources such as code (Java classes), configuration files and icons for the GUI. JPlug
allows any component to be dynamically installed, loaded, started, stopped and unloaded.
Installing a component means fetching it and installing it on a local disk to be loaded. Load-
ing a component means creating an instance of this component and initializing it. Start and
stop events control its activity. Finally, unload removes the component from its container.
Combined with the load functionality, this helps to debug and to tune a component without
restarting the whole application. Furthermore, JPlug also provides facilities to update and
reinstall new version of a component automatically.

When loaded, each component receives a sandbox, i.e. a node in the file system, where
it can create new files. A SecurityManager [9] ensures that a component does not access
files outside of its sandbox. A component can rely on other components. Such a component
expresses its dependencies in its description file. JPlug ensurse that all the required com-
ponents will be loaded in the right order®. JPlug supports component inheritance. That is,
a component receives the resources (including the code) of its parent component but can
override some of them.

Channels’ frontends and backends are JPlug components which are respectively plugged
into the browser assistant and the PharosServer. When a user subscribes to a new channel,
the corresponding frontend is downloaded, installed and loaded. The BasicChannel can be
specialized with the component inheritance mechanism. The specialization consists only of
properties and file settings. So, combined with the component loading mechanism, users
can quickly and dynamically create new channels by inheriting the BasicChannel compo-
nent. The starting, stopping and unloading facilities allow PharosServer’s administrators to
perform tricky operations on a channel without stopping all the other ones.

4 Scalability

Pharos distributes communities of users into channels and then pushes scalability issues onto
the channels. A channel is said to be scalable if it can handle the addition of users and an-
notations without suffering a noticeable loss of performance [18]. This section describes two
techniques used by the BasicChannel to reduce server load and to increase their availability:
(i) frequently used data are cached in the frontend side, (ii) backends can be replicated close
to their members.

4.1 Data Caching

To reduce network exchanges, frontends cache some frequently used data such as the users list
and the thesaurus of keywords. These data are infrequently updated but when a backend

8 JPlug loads components according to a topologic sort; the dependency graph must therefore be acyclic.
g g g

RR n~°3679

14 Vincent Bouthors , Olivier Dedieu

receives an update it must propagate it to all of its frontends. However, since RMI is
a point-to-point communication protocol, forwarding an update to all the clients requires
enumerating a list of all the frontends, to contact them and to send them the updates. Such
an approach would be very inefficient and would reduce the scalability of a backend. We use
therefore a lazy notification mechanism. Each operation is assigned a timestamp ts. The
frontend piggybacks the last timestamp ts it received from the backend on each request.
When a backend is invoked, in addition to the request processing, it extracts updates with
a greater timestamp than ts and piggybacks them on the returned values of the request.

4.2 Channel Replication

Replication is another solution to scale in distributed systems [18]. It increases performance
by reducing network distance and improves reliability by multiplying places where data are
available. However, the main difficulty is to keep all the replicas mutually consistent. That
is, when a write operation is done on a replica, the system must ensure that it does not
corrupt the global consistency model of the system.

4.2.1 Consistency models and protocols

Consistency models fall into one of two categories: strong or weak [10]. The former ensures
there are no inconsistencies in the logical view of the group. The latter allows replicas to
contain invalid data. Weak consistency requires fewer agreement message exchanges and
fits better with the network constraints we address. It can be achieved with two kinds of
protocol: pessimistic or optimistic. The first prevents any write operations from producing
conflicts when replicas exchange their updates. Indeed, some data are dependent on the
order in which the operations are processed?. The second allows arbitrary write operations
on any replicas and delays potential conflict resolution until later.

4.2.2 The replication protocol

The complete details of the replication protocol are beyond of the scope of this article. We
give in this section the main principles which have been chosen.

The replication protocol of BasicChannel has been inspired by Bayou [25] which guaran-
tees Eventual consistency [4]. It is a weak consistency model based on an optimistic protocol.
It allows write operation without any agreement with the rest of the group. As a result,
replicas can contain out-of-date data. Replicas synchronize their databases by exchanging
their updates from peer to peer. Updates are propagated epidemically [8], which guarantees

91n the literature [3] executions of such operations are said to be non-serializable. For instance, non-
commutative operations such as addition and multiplication are non-serializable (e.g. = <+ =z + 1;
T — T X 2).

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 15

that all the replicas will finally reach a consistent state!. In BasicChannel, the partner
selection pattern for synchronization is left to the channel’s administrator. The protocol
does not prevent conflicts due to parallel write operations. We propose a new model to
detect and handle conflicts. Conflict detection is semi-automatic. We distinguish conflicts
concerning data structure integrity and those concerning the semantic integrity of the data.
The former is handled by the collections themselves which ensure their data structure is
not corrupted (e.g. an operation on a tree must not transform it into a graph). The latter
is handled by the application which uses these collections (e.g.: a thesaurus mapped on a
tree ensures there is no double term in a same node level). When a conflict is detected, we
keep the conflicting operations which are considered as propositions. The administrator is
responsible for accepting one of those operations or rejecting all.

5 Related works

5.1 Collaborative Indexing

Several works address the indexing problem through collaborative systems. Marais and
Bharat [16] uses both content and collaborative indexing. Their desktop assistant'!, Vistabar,
continuously indexes!? the full text of all viewed pages. In addition, they allow people to
add comments about Web pages. A comment has a unique structure composed of the page’s
URL, the page’s title, a set of categories choosen in a hierarchy, a short subject, a free text
area and an icon indicating the nature of the comment. They do not address comments
with specifics for some community. They do not have a rating model nor synthesizing mech-
anisms to reduce noise. The comments feed a centralized database which represents the
CommonKnowledge of a community. As a result, they do not address scalability issues as
describe in Section 4.

The Open Directory Project!3’s goal is to produce a comprehensive directory of the Web,
by relying on volunteer editors. The indexing is mapped onto a tree structure. Each node of
the tree represents a category (e.g.: Sports:Tennis, Computers:Hardware, and so on). The
user interface is very similar to Yahoo!; people browse in the categories and have a full-
text search from each category. Volunteers are responsible for editing entries in categories.
This project uses delegation rather than collaboration. There is only one editor per category.
Anyone can submit a site for a category but it will be validated by the editor of that category.
Nevertheless, adding a site matching several categories requires submitting it to all editors
of these categories. In fact, the tree does not help to categorize entries but rather to refine
the search. Each leaf of the tree is composed of a link on the site and of a short description.

10Tn fact, this state would be reached if and only if all replicas stopped exchanging updates. That is, if
no more write operations were done.

1 They have developed a parasite browser which works with InternetExplorer.

12They uses the Altavista NI2 library to build full-text indexer.

131'11:‘l:p ://www.dmoz.org/

RR n~°3679

16 Vincent Bouthors , Olivier Dedieu

A very few of them may have an icon indicating that it is a good site. Furthermore, users
must trust the editors and they cannot give their opinion of the indexed sites. So, it helps
to find information but not to evaluate it.

5.2 Recommendation Systems

Only some representative works are presented here. For an overview of systems see [21]. For
a discussion on the application of recommendation in digital libraries see [5].

GroupLens [20] is a representative example of a collaboration filtering tool. It was pri-
marily dedicated to net-news. Each user puts a rating on messages. The system computes
correlations between users according to their ratings. The main drawback of the system lies
in the network architecture. It does not address the scalability issues and the centralized
server is often overloaded.

Firefly'* and NetPerceptions!®, the commercial version of GroupLens, illustrate the main
target of today recommendation products. They provide personalization for visitors of com-
mercial Web sites. For instance Amazon'® recommends books to their customers. This is
based both on explicit recommendation and on previous purchases. These kinds of services
are limited to visitors and customers of a Web site.

Fab [2] is an example of a hybrid system. It integrates both collaborative and content-
based recommendations. The latter tries to recommend documents similar to those a given
user has liked in the past. It tries to avoid the limitations of both categories (number of
stmilar users for the former, noise for the latter). The annotation contains only a rating, as
for GroupLens, and the data are centralized.

6 Future Work

6.0.1 Experimentation

The major functionalities of Pharos have been implemented. The current work concerns the
URL issues and the scalability issues. A first prototype has been used internally for some
months and the lastest version is released: the browser assistant is freely available.

Currently, experimentation is being lead by CNET'? with the help of ergonoms. Pharos
will be used by teachers to recommend documents that may be pedagogic supports. We are

Mhttp://wuw.firefly.net/studio/applications/
5http://www.netperceptions.com/

16http ://www.amazon.com/

17CNET - Centre de Recherche et Développement de France Télécom.

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 17

supported by CNDP'® which provides us the database Educasource to help this experimen-
tation.

Inside INRIA and Bull, some technical channels are used to closely follow technical and
scientific evolution in areas such as Java, Web technologies, Distributed computing, or Pro-
gramming. Some other channels such as Art are intended for a larger audience. We foresee
the use of a meta channel to recommend channels themselves.

6.0.2 Recommendation

This paper has presented two recommendation algorithms. Other algorithms are envisaged.
For instance, instead of using correlation between users on their annotations, it is also pos-
sible to use profile correlation: if member A places a high confidence in member B, who in
turn places a high confidence in member C, then it could be deduced that member A places
a reasonable confidence in member C.

We intend to validate the rating prediction algorithms by checking their output with the
real ratings published by the users. We are aware that this approach has two limitations.
Firstly the best function for computing prediction is dependent on the function choosen to
evaluate accurary. Secondly members won’t annotate most documents and worse, users
might annotate documents only when they disagree with the prediction. If they agree with
the prediction, they are happy with it and don’t fell necessary to give their advice.

6.0.3 Integration with other applications

Pharos does not intend to obsolete existing indexing services. Pharos is mostly a comple-
mentary approach. Moreover, Pharos may be integrated with an indexing service to provide
advanced functionalities. Firstly, indexing recommended documents would allow the re-
trieval of documents according to both kinds of criteria: the subjective meta-data of Pharos
and the content of the document. Secondly, some indexing tools are able to propose classi-
fications. Pharos could submit these proposed classifications to the user for validation.

It would be interesting to integrate Pharos with a Web cache server. Pharos could ask
the cache to tell the user if a document is already present in the cache. In the other direction,
Pharos could give the cache a hint of the probability for a document to be retrieved in the
future. Basically, the higher it is rated the more it is recommended, and the more probable
it will be retrieved.

18CNDP - Centre National de Documentation Pédagogique.

RR n~°3679

18 Vincent Bouthors , Olivier Dedieu

Finally, we expect to support the data format RDF'? based on XML?? to facilitate export
and import to and from other applications. RDF has been proposed as a generalization of
the format designed for PICS?! and is a good candidate to become a widely used standard.

7 Conclusion

Pharos brings a new kind of service to Web users. Some channels are publicly available
at http://webtools.dyade.fr/pharos/. Compared to indexing tools, Pharos provides
a collaborative forum for communities to exchange subjective information. Compared to
newsgroups, it copes with heterogeneity of a large number of members by synthesizing auto-
matically a personalized recommendation for each member. Exchanging recommendations is
a widely used practice in professional and daily life. We believe that services such as Pharos
will be widely used in many areas. In the digital library domain, these recommendation
tools will be a new way to manage knowledege and to involve both final users and librarians.
In other words, we believe that human beings are the intelligent agents of the Internet.

References

[1] ArNOLD, K., AND GOSLING, J. The Java Programming Language. Addison-Wesley,
1996.

[2] BALABANOVIC, M., AND SHOHAM, Y. Fab: Content-based, collaborative recommen-
dation. Communications of the ACM 40, 3 (Mar. 1997), 66-72. http://www.acm.org/
pubs/citations/journals/cacm/1997-40-3/p66-balabanovyic/.

[3] BERNSTEIN, P. A., AND GoODMAN, N. Concurrency control and recovery for repli-
cated databases. Tech. Rep. TR-2, Harvard University,, 1983. serializability for Repli-
cated Databases. Shows problems with Eswaran et al, Rosenkrantz et al approaches. A
new theory and analysis of quorum consensus (voting), 'missing write’ (by Eager and
Sevcik), and ’available copies’ (SDD-1) algorithms (which are found to be best).

[4] BIRRELL, A. D., LEVIN, R., NEEDHAM, R. M., AND SCHROEDER, M. D. Grapevine:
an exercise in distributed computing. Communications of the ACM 25, 4 (Apr. 1982),
260-274.

[5] Davip M. NicHOLS, M. B. T., AND PAICE, C. D. Recommendation and usage in the
digital library. Tech. Rep. CSEG/2/97, Computing Department, Lancaster University,
2 1997.

19Resource Description Framework.

20Extensible Markup Language.
21Platform for Internet Content Selection.

INRIA

Pharos, a Collaborative Infrastructure for Web Knowledge Sharing 19

[6] DEDIEU, O. JPlug, a framework to build modular applications. http://webtools.
dyade.fr/jplug/.

[7] DEDIEU, O. Pluxy: un proxy Web dynamiquement extensible. In Proceedings of
the 1998 NoTeRe colloguium (Oct. 1998). http://wuw-sor.inria.fr/publi/PPWDE\
_notere98.html.

[8] DEMERS, A., GREENE, D., HAUSER, C., IrRISH, W., LARSON, J., SHENKER, S.,
STURGIS, H., SWINEHART, D., AND TERRY, D. Epidemic algorithms for replicated
database maintenance. In Sizth Symposium on Principles of Distributed Computing
(Vancouver, Canada, Aug. 1987), pp- 1-12.

[9] Gong, L. Java security: Present and near future. IEEE Micro 17, 3 (May/June 1997),
14-19. http://www.computer.org/micro/mi1997/m3014abs .htm .

[10] HELAL, A., HEDDAYA, A., AND BHAR, B. Replication Techniques in Distributed Sys-
tems. Kluwer Academic Publishers, august 1996. http://www.cise.ufl.edu/~helal/
books/repl.html.

[11] HowkL, J. Faq-O-Matic. http://www.dartmouth.edu/~jonh/ff-serve/cache/1.
html.

[12] KEHOE, C., Pitkow, D. J., LAWRENCE, D. J. R., AND GILES, C. L. GVU’s tenth
WWW user survey report. Tech. rep., Georgia Tech Research Corporation, Apr. 1998.
http://www.gvu.gatech.edu/user_surveys/survey-1998-10/.

[13] LagozE, C. The warwick framework - a container architecture for diverse sets of
metadata. D-Lib Magazine, SSN 1082-9873 (July/August 1996). http://www.dlib.
org/dlib/july96/lagoze/071lagoze.html.

[14] LAWRENCE, S., AND GILES, C. L. Searching the World Wide Web. Science 280, 5360
(1998), 98.

[15] LuOoTONEN, A., AND ArTIS, K. World-Wide Web Proxies. In Proceedings of the 1rst
International Conference on the World-Wide Web (Geneva, mai 1994).

[16] MARAIS, H., AND BHARAT, K. Supporting cooperative and personal surfing with a
desktop assistant. In Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST-97) (New York, Oct. 1997), ACM Press, pp. 129-138. ftp:
//ftp.digital.com/pub/DEC/SRC/publications/marais/uist97paper.pdf.

[17] MEDIAMETRIX. Top 25 Web sites, Jan. 1999. http://www.mediametrix.com/
PressRoom/Press_Releases/02_22_99.html.

[18] NEUMAN, B. C. Scale in distributed systems. IEEE Computer Society, Los Alamitos,
CA, 1994, pp. 463-489. ftp://ftp.isi.edu/isi-pubs/rs-94-411.ps.Z.

RR n°3679

20

Vincent Bouthors , Olivier Dedieu

[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

Patasunik, O. BibTeX 1.0. TUGboat 15, 3 (Sept. 1994), 269-273.

REsNick, P., Tacovou, N., SucHAak, M., BErRGsSTROM, P., AND RiEDL, J. Grou-
plens: An open architecture for collaborative filtering of netnews. In Proceedings of
ACM CSCW’94 Conference on Computer-Supported Cooperative Work (1994), Sharing
Information and Creating Meaning, pp. 175-186.

RESNICK, P., AND R.VARIAN, H. Recommender systems. Communications of the
ACM 40, 3 (1997), 56-88.

SHARDANAND, U., AND MAES, P. Social information filtering: Algorithms for au-
tomating "word of mouth”. In CHI’95 Proceedings Papers. http://info.sigchi.acm.
org/sigchi/chi95/Electronic/documnts/papers/us_)bdy.htm.

STUART WEIBEL, JEAN GODBY, E. M. Report - dublin core. Tech. rep., OCLC/NCSA
Metadata Workshop, march 1995. http://www.oclc.org:5046/oclc/research/
conferences/metadata/dublin_corje_report.html.

SULLIVAN, D. Search engine sizes, Feb. 1999. http://searchenginewatch.internet.
com/reports/sizes.html.

TERRY, D., THEIMER, M., PETERSEN, K., DEMERS, A., SPREITZER, M., AND
HAauser, C. H. Managing update conflict in bayou, a weakly connected replicated stor-
age system. In 15th ACM Symposium on Operating Systems Principles (Copper Moun-
tain Resort, Colorado, US, Dec. 1995). http://www.parc.xerox.com/csl/projects/
bayou/,.

WOLLRATH, A., Rigas, R., AND WALDO, J. A distributed object model for the Java
system. In Proceeding of the USENIX 1996 Conference on Object-Oriented Technologies
(COOTS) (Toronto, June 1996), USENIX. http://www.usenix.org/publications/
library/proceedings/coots96/wollrath.html.

INRIA

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

