
Analyzing Exception Flow in Java™ Programs 

by 

Martin P. Robillard 

B.Eng. (Computer Engineering) 

Ecole Polytechnique de Montreal 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

Master of Science 

in 

THE FACULTY OF GRADUATE STUDIES 

(Department of Computer Science) 

we accept this thesis as conforming 
to the required standard 

The University of British Columbia 

September 1999 

© Martin P. Robillard, 1999 



In presenting this thesis in partial fulfilment of the requirements 
for an advanced degree at the University of British Columbia, I 
agree that the Library shall make it freely available for reference 
and study. I further agree that permission for extensive copying of 
this thesis for scholarly purposes may be granted by the head of my 
department or by his or her representatives. It is understood that 
copying or publication of this thesis for financial gain shall not 
be allowed without my written permission. 



Abstract 

Exception handling mechanisms provided by programming languages are intended 

to ease the difficulty of developing robust software systems. Using these mecha

nisms, a software developer can describe the exceptional conditions a module might 

raise, and the response of the module to exceptional conditions that may occur as it 

is executing. Creating a robust system from such a localized view requires a devel

oper to reason about the flow of exceptions across modules. The use of unchecked 

exceptions, and in object-oriented languages, subsumption, makes it difficult for a 

software developer to perform this reasoning manually. In this thesis, I describe 

an approach for analyzing the flow of exceptions in Java source code to produce 

views of the exception structure. The approach is supported by a tool called Jex. I 

demonstrate how Jex can help a developer identify program points where exceptions 

are caught accidentally, where there is an opportunity to add finer-grain recovery 

code, and where error handling policies are not being followed. 



Contents 

Abstract ii 

Contents iii 

List of Tables vi 

List of Figures vii 

Acknowledgements viii 

1 Introduction 1 

1.1 Exception Handling Concepts and Terminology 2 

1.1.1 Defining Exceptions .2 

1.1.2 Exception Handling Mechanisms 3 

1.1.3 Exception Models . 4 

1.1.4 Hierarchies of Exceptions . 5 

1.2 The Flow of Exceptions 6 

1.2.1 Exception Interfaces . 6 

1.2.2 A Metric of Exception Flow 7 

1.3 Exception Handling in Java . . 10 

in 



1.4 Motivation and Thesis Statement 12 

1.5 Overview . . . . 14 

2 Related Work 15 

2.1 Specifying and Verifying Exception Interfaces 16 

2.2 Analysis Tools and Techniques 18 

2.3 Exception Analysis Approaches . : . . 19 

3 The Jex Approach and Tool 21 

3.1 Extracting Exception Structure 21 

3.2 The Architecture and Implementation of Jex 25 

3.2.1 ,The Application Controller 26 

3.2.2 The Parser 26 

3.2.3 t h e Abstract Syntax Tree 27 

3.2.4 The Type System 28 

3.2.5 The Jex Loader . 29 

3.2.6 Using Jex 30 

3.2.7 The Subsumption Analysis Tool 30 

4 Validating the Jex Approach 33 

4.1 Methodology 34 

4.2 Analysis of Subsumption in t r y Blocks 36 

4.3 Analysis of Exception Specifications 39 

4.4 Quantitative Considerations 42 

4.5 Summary 44 

IV 



5 Conclusions 45 

5.1 Discussion 46 

5.1.1 White-box Exception Information ,. . . . 46 

5.1.2 Alternative Approaches 46 

5.1.3 The Descriptive Power of the Current Exception Structure . 47 

5.1.4 The Precision of Jex Information 48 

5.2 Future Work 49 

5.3 Summary 50 

Bibliography 52 

Appendix A Grammar for Jex Files 55 

A.l Notation 55 

A.2 Grammar 56 

Appendix B Environment-Generated Exceptions 57 

v 



List of Tables 

2.1 Exception Handling Characteristics of Some Programming Languages 17 

4.1 Levels of Subsumption Required to Catch an Exception 39 

VI 



List of Figures 

1.1 Exception Models . 5 

1.2 A Metric for Quantifying Exception Interfaces 9 

1.3 Exception Handling Structures in Java 10 

1.4 The Java Exception Type Hierarchy 11 

3.1 The Source Code for the Constructor of FileOutputStream 23 

3.2 The Structure of Exceptions for the Constructor of FileOutputStream 23 

3.3 An Example of Code not Using Jex Information 25 

3.4 An Example of Code Making Use of Jex Information . 2 5 

3.5 The Simplified Architecture of Jex 26 

3.6 An Example of Jex Information . 31 

3.7 The Result of Applying JSA to the Code of Figure 3.6 31 

4.1 Exception Matching in catch Clauses, no Environment-Related Ex

ceptions 37 

4.2 Exception Matching in catch Clauses, with Environment-Related Ex

ceptions 38 

4.3 Cm-Gm Distribution for all Packages Except the Jex Packages . . . 40 

4.4 Cm-Gm Distribution for the Package j ex .u t i l 41 

vn 



Acknowledgements 

I am very thankful to my supervisor, Gail Murphy, for her generous help and her en

couragement. I would also like to thank my friend and colleague Stephane Durocher, 

and Prof. Alan Wagner, for patiently reading through this thesis, providing me with 

helpful comments. 

M A R T I N P . R O B I L L A R D 

The University of British Columbia 

September 1999 

vin 



Chapter 1 

Introduction 

Prom the early days of computing, software developers have recognized that pro

grams can encounter various situations that prevent a correct continuance of the 

sequence of instructions. Conditions such as an arithmetic logical unit reporting 

a division by zero, a system running out of memory, or an error reported by in

put/output devices can prevent programs from producing meaningful results. De

tecting and reporting such situations presents an opportunity to recover from, or to 

provide more details about these kinds of problems. 

These disruptions of normal program execution are -called exceptions, and 

the mechanism to detect and react to these exceptions is called exception handling. 

Syntactically, an exception handling mechanism consists of a means to explicitly 

raise an exceptional condition at a program point, and a means of expressing a block 

of code to handle one or more exceptional conditions. Software exceptions can be 

supported at the operating system level (e.g., Mach [3], Windows NT [9]), or at the 

programming language level (e.g. Ada95 [1], C++ [26], Java [12], Modula-3 [5]). 

One of the main goals of exception handling is to separate code dealing with 

1 



unusual situations from the code supporting normal processing. This usually leads 

to cleaner, more understandable programs. 

Unfortunately, since exceptions can propagate in a program, local reasoning 

about the code is not generally sufficient to develop a module that will react appro

priately to all unexpected situations. This thesis shows that the lack of information 

describing the global flow of exceptions, especially in object-oriented languages, can 

prevent developers from fully leveraging the power of exception handling mecha

nisms. For example, a lack of information about which exceptions can arise at a 

particular program point can make it difficult for developers to effectively imple

ment error handling policies. To compensate for this information gap, I introduce 

an approach to provide information about the flow of exceptions. The approach has 

been implemented in a tool that performs the extraction of exception information 

from programs written in Java. 

The remainder of this chapter presents the general concepts of exception 

handling. 

1.1 Exception Handling Concepts and Terminology 

1.1.1 Defining Exceptions 

Although the implementation of exception systems varies in different programming 

languages and operating systems, there seems to be a consensus on the more general 

concept of an exception [8, 11, 19, 20, 21]. Ah exception can be defined as "an abnor

mal computation state" [21, p. 86]. This definition applies both to programming-

language-based and operating-system-based exceptions [19]. This thesis, however, 

focuses exclusively on programming-language-based exceptions. 

2 



Exceptions can be classified as either pre-defined or user-defined [8, 11, 19]. 

Pre-defined exceptions are generally associated with conditions that are detected 

by the system. User-defined exceptions are defined and detected at the application 

level [19]. 

An exception is raised, or signaled, when the corresponding abnormal state 

is detected. Exceptions can be raised implicitly or explicitly [11]. Exceptions poten

tially raised by function calls or language-defined operators (e.g., arithmetic opera

tors) are said to be raised implicitly, while exceptions raised deterministically using 

a command or language-defined keyword, like raise or signal, are said to be raised 

explicitly. 

1.1.2 Exception Handling Mechanisms 

Exceptions would not be useful if they always resulted in the abnormal termina

tion of a program. For this reason, programming languages supporting exceptions 

also provide exception handling mechanisms. Exception handling mechanisms allow 

programmers to define code to be executed when certain exceptions are detected, 

and to link the occurrence of exceptions to the corresponding code. An exception 

handler is the code executed in response to an exception. In most languages, when 

an exception is raised, the system halts the execution of the program and searches 

for a handler for the exception. The search starts in the target, usually the enclosing 

syntactic scope. An exception is said to be handled when a handler for it is found 

and the corresponding code has been executed. If the handler is found directly in the 

target, the exception is said to be masked. Otherwise, the exception is propagated 

to an enclosing scope selected according to the implementation of the exception 

handling mechanism. Exceptions can be propagated implicitly (automatic propa-

3 



gation), or explicitly. In systems supporting automatic propagation, if no handler 

for an exception is found in a target, the exception is automatically re-raised. With 

explicit propagation, in order to be propagated, an exception has to be explicitly 

re-raised in a handler. There exists different models describing the control flow be

tween signalers, targets, and handlers. The most common models are described in 

the next section. 

1.1.3 Exception Models 

This section describes three well-known exception models: the termination model, 

the resumption model, and the retry model. The descriptions of the models are 

adapted from [21]. 

Termination Model In the termination model, the scope of the signaler is de

stroyed, and, if a handler is found, control resumes at the first syntactic unit follow

ing this handler. 

Resumption Model In the resumption model, once an exception is handled, 

computation continues from the point where the exception was originally raised. 

Retry Model In the retry model, when the exception is handled, the signaler's 

block is terminated and then retried. 

Figure 1.1 illustrates the three models. In every schema, the topmost block 

represents the syntactic unit where the exception is raised. The shaded block repre

sent the exception handling code, the bottommost block represents the next logical 

control block, and the arrows represent control flow. 

4 



r 
^ 

- • 

—• 

V 

Termination Model 

f 

J 

1-I 

iesiimpt ion 

\ 

Model 

• 

r 

\, 

Retry 

• 

\ 

Model 

Figure 1.1: Exception Models 

1.1.4 Hierarchies of Exceptions 

Exceptions are represented differently in different languages. They can be defined 

as various program entities, such as data types, procedures, values, or programming 

language primitives. Depending on their representation, we can classify exceptions 

as having either a singular or hierarchical structure [19].l Exceptions implementing 

the singular structure are unrelated and there is no way to group them together. 

Examples of programming languages implementing the singular exception structure 

include CLU and Ada. 

In languages implementing exceptions in a hierarchical structure, an excep

tion can have several sub-exceptions (and, in some cases, an exception can have 

several parents). This is the de facto standard for object-oriented languages rep

resenting exceptions as objects (e.g., Java, C++) . There are obvious advantages 

to representing exceptions in a hierarchy. First, the hierarchy provides a semantic 

organization for exceptions. For example, an exception representing a file not found 

*For the purpose of this work, I do not retain the nuance between the hierarchical and ob
ject structures as described by Lang and Stewart [19]. Both type of structures are considered 
hierarchical. 

5 



and an exception representing the end of a file being read are both 10 exceptions. 

A second advantage, for languages that map the exception structure to their type 

system, is that the handler for a parent exception can naturally handle all its child 

exceptions [19]. As we will see in section 1.2, there is unfortunately a cost associated 

with this property. 

1.2 The Flow of Exceptions 

1.2.1 E x c e p t i o n In te r faces 

The propagation of exceptions introduces the possibility of non-local control flow. If 

the caller of a module ignores the exceptions that can cross the module's boundary, 

the caller cannot adequately prepare for these exceptions, and robustness problems 

may arise. For this reason, many programming languages support exception inter

faces [19] (or exception specifications [21]). An exception interface "is the part in a 

module interface that explicitly specifies the exceptions that might be raised by the 

module" [19, p. 295]. Usually the system prevents exceptions that are not declared 

in the interface to propagate outside of the module boundaries. C++, CLU, and 

Java are examples of languages supporting exception interfaces (see section 2.1). In 

addition to providing information to users of a module, exception interfaces can be 

statically checked and enforced, thus providing an additional level of reliability. 

The problem with exception interfaces is that, in practice, they cannot be 

exhaustive. Indeed, it would be prohibitive for a programmer to have to both figure 

out and to declare the complete set of exceptions that a module can raise, mostly 

because of the high frequency of redundant system exceptions, like arithmetic, null 

pointer, or memory-related exceptions. To address this issue, languages enforcing 

6 



exception interfaces typically provide a means to bypass the checking mechanism. 

This is done, for example, by providing mechanisms for specifying exceptions that 

do not have to be checked (see section 2.1). In object-oriented languages repre

senting exceptions as objects, there exists a second way of limiting the precision. 

of exception interfaces. Since exceptions are organized in a hierarchy, declaring a 

general supertype of some exceptions automatically declares, by extension, all of its 

more specialized subtypes. 

1.2.2 A Metric of Exception Flow 

Keeping in mind the exception interfaces between modules, we can imagine a sim

ple metric of exception flow between module boundaries. The metric describes the 

precision and completeness of information that is available to programmers (and to 

static checkers). This metric can be described as a simple two-dimensional space. 

The first dimension quantifies the completeness of the exception interface, and the 

second dimension quantifies the granularity (or precision) of the interface. Com

pleteness designates the relative fraction of different exceptions crossing the module 

boundary that are actually declared in the interface. Let Cm be the completeness 

of the exception interface for a given module m, let E be the complete set of ex

ceptions that can cross a module's boundary, and let E& be the set of exceptions 

declared in m's exception interface. To take into account any hierarchical properties 

of exceptions that may exist in a system, Ec is defined as the set of exceptions in E 

that are either elements of Ed, or that can be functionally considered as a child of 

any exception in E^. 

7 



Completeness can then be defined as 

c™ = n H (L1) 
II 

The granularity Gm of an exception interface for a given module m, cannot 

be defined as intuitively as the completeness. For the purpose of this discussion, I 

shall define the granularity of an exception interface as the fraction of elements in 

Ec that are explicitly declared in the interface. Formally, we have 

a^nBk (1-2) 
I chose to include the set of declared exceptions {Ed) in the denominator 

both to bound the granularity metric to one, and to avoid the situation where an 

exception e £ Ed, e £ Ec cancels the effect of another exception in Ec. 

We see that in the case where E^ = Ec, we can assume a very fine granular

ity, as every exception that crosses the interface and that can actually match it is 

precisely known. Thus finer granularity is represented by a Gm closer to one, while 

a coarser granularity is represented by a value closer to zero. 

Figure 1.2 shows the basic representation of the two-dimensional quantifica

tion of exception flow through exception interfaces. The points noted m\ through 

771.4 represent four particular cases of exception interfaces. The interface correspond

ing to module m\ has a high granularity but low completeness. This means that 

exceptions crossing the module's boundary, if they are in Ec, will tend to correspond 

exactly to what is declared in the interface, and not to some subtype. However, many 

exception are not in Ec. The interface corresponding to module 7712 has both a high 

granularity and completeness. Exceptions crossing 7712's boundaries are precisely 

and exhaustively defined. Module 7773 is an example of a very complete but coarse 

specification. This kind of specification can be found in practice when a module 



simply declares to be raising a very general type of exception, and all the more spe

cialized children are thus implicitly declared. Finally, module 7714 has a very weak 

exception interface, in the sense that it is both incomplete and coarse-grain. Very 

little information can be obtained from such an interface. 

Gm 
1 

1 
1 

ml 
• 

• 
m4 

0 

• 

• 
m3 

1 
Cm 

Figure 1.2: A Metric for Quantifying Exception Interfaces 

In the general sense we can interpret the metric presented in this section the 

following way: the closer a point is to the upper-right corner, the more descriptive 

the corresponding interface. Conversely, the closer a point is to the origin, the more 

loosely defined the corresponding interface. 

The Cm-Gm metric has some obvious limitations. First, it can only quan

tify module interfaces actually declaring exceptions, even though not declaring any 

exceptions does not imply that no exception will be raised. Second, the value of its 

interpretation decreases with the values of | E |, | E& |, and | Ec j . However, we 

can see that, over a large number of modules, the metric is sufficient to describe 

the quantity of information provided by the use of exception specifications. Refer

ence to this simple metric will be used later to describe various exception handling 

approaches (section 4.3). 

9 



1.3 Exception Handling in Java 

Since the work described in this thesis applies to the Java language, it is necessary 

to describe how the exception system is implemented in this language. This section 

describes how the concepts presented previously are implemented in Java. 

In Java, exceptions are represented as first-class objects. As such, they can 

be instantiated, assigned to variables, passed as parameters, etc. An exception is 

explicitly signaled using a throw statement. Code can be guarded for exceptions 

within a t ry block. A try block is basically a syntactic scope denning the target. 

Exceptions signaled through execution of code within a t ry block may be caught in 

one or more catch clauses declared immediately following the t ry block. Optionally, 

a programmer can provide a f inally block that is executed independently of what 

happens in the t ry block. Exceptions thrown in the finally block mask any ex

ception that would have been thrown in the try block. Figure 1.3 illustrates Java's 

basic exception handling structures. 

try 
{ 

II 
} 
catch 
{ 

// 
} 

Code potentially 

[ IOException e ) 

Code 

finally 
{ 

II 
> 

Some 

recovering f 

finalization 

raising 

rom an 

code 

IOException 

IOException 

Figure 1.3: Exception Handling Structures in Java 

Java supports the termination model (see section 1.1.3) with automatic prop

agation. Exceptions not caught in any catch block are propagated back to the next 

10 



level of try block scope, possibly in the caller module. 

Like all other objects in Java, exceptions are typed. Exceptions are thus 

organized in a hierarchy corresponding to their type. 

What distinguishes exceptions from other objects is that all exceptions in

herit from the class type java.lang.Throwable. The exception type hierarchy defines 

three semantically and functionally different groups of exception types: errors, run

time exceptions, and checked exceptions (Figure 1.4). 

Java.lang.Object 

t 
java.lang.Throwable 

t 
1 

Java. lang.Error 

t 
Error Types 

1 
java.lang.Exception 

t 
Java.lang.RuntimeException Java. lang. Exception 

t t 
Runtime Exception Types Checked Exception Types 

Figure 1.4: The Java Exception Type Hierarchy 

Java enforces a partial exception interface. Errors and runtime exceptions 

are unchecked by the compiler and do not have to be declared in the method headers. 

Unchecked exceptions can be thrown at any point in a program and, if uncaught, 

may propagate back to the program entry point, causing the Java Virtual Machine 

to terminate abnormally. Errors represent unrecoverable conditions and are typi

cally raised by the virtual machine. As opposed to unchecked exceptions, checked 

exceptions that can potentially be raised in a method and that are not masked 

need to be declared in the header of the corresponding method. The language also 

requires exception conformance [21], so a method M' overriding the method M of 

11 



a supertype must not declare any exception type that is not the same type or a 

subtype of the exception types declared by M. Exceptions types present in the 

exception interface thus vary covariantly with the method type. 

The ability to declare exceptions within a hierarchy also means that an excep

tion may be cast back implicitly to one of its supertypes when a widening conversion 

requires it. For example, this conversion occurs when the assignment of an object 

of a subtype is made to a variable declared to be, of its supertype. This property is 

called subsumption [2]; a subtype is said to be subsumed to the parent type. When 

looking for a handler, exceptions can be subsumed into the type of the target catch 

clause if the type associated with the catch clause is a supertype of the exception 

type. Similarly, a method declaring an exception type E can throw any of the 

subtypes of E without having to explicitly declare them. 

As we will see in more detail later, Java's support for unchecked exceptions 

and subsumption means that it is difficult for a software developer to know the 

actual set of exceptions that may cross a method's boundaries. The following section 

' describes the information that is necessary to gain this knowledge. 

1.4 Motivation and Thesis Statement 

To design and implement a robust and reliable system, local reasoning about the 

code is generally insufficient. In some applications, such as games, it may be suffi

cient to trap an unexpected condition, write a generic error message, and terminate. 

In many other applications, it is preferable to either recover silently, or at least pro

vide a meaningful error message. For example, a user of a word-processor trying 

to open a file may want to know that a file sharing violation has occurred and be 

allowed to correct the problem, rather than just being told there was a file problem. 

12 



Fine-grain reactions to exceptions require a software engineer to reason about the 

code on which the module being constructed depends. This includes being able to 

reason about the exceptions that might flow out of a module. 

In section 1.2.2, we have seen that the precision of exception interfaces— 

represented as the combination of granularity and completeness—can basically vary 

between all extremes. This variability is a factor of three things: 

• the characteristics of the language of implementation; , 

• the actual interface specification; and '•• ' 

• the implementation of the module. 

Since Java supports both exception type hierarchies and unchecked excep

tions, we can assume that exception interfaces in that language can take any value 

on the granularity-completeness grid. Hence, it is possible for developers to specify 

exception interfaces that carry very little information about the flow of exceptions 

across module boundaries. The rationale behind such a design is not necessary 

negligence. It can stem from a lack of information about the modules being used. 

With languages actually enforcing interfaces at. compile time, the choice to broadly 

define the specification of an interface might be additionally driven by the concern 

for greater compatibility with other components, or simply by convenience for users 

of the module. 

Whatever the reasons, it is not practical to expect an exception interface to 

completely and unambiguously specify every single type of exception that can cross 

a method's boundary. The hypothesis underlying the work described in this thesis 

is that, to produce quality code, developers need to have access to more complete 

and precise exception flow information than what typical exception interfaces can 

13 



provide them. In an attempt to provide this information to software developers, I 

propose an approach, based on static analysis techniques, to extract exception flow 

information from source code. 

1.5 Overview 

This chapter presented the use of exceptions, provided general background on excep

tion handling, and motivated the purpose of the research described in this thesis. 

The remaining chapters of the thesis are organized as follows. Chapter 2 covers 

the related work. Chapter 3 describes the approach chosen to address the problem 

of exception handling in Java. Chapter 4 shows the results that can be obtained 

using the approach and the corresponding tool. Finally, chapter 5 discusses the 

applicability and general future directions of the work. 

14 



Chapter 2 

Related Work 

There exists two basic ways to obtain information about various aspects of a pro

gram. One is to refer to information that a software developer has explicitly pro

vided, either in syntactic declarations or in the source code documentation. Another 

approach is to extract this information from unannotated program representations. 

This chapter describes how both approaches can provide information about 

the flow of exceptions. Section 2.1 presents an overview of the mechanisms used to 

specify and check exception declarations in languages supporting exception handling. 

Section 2.2 discusses typical program analysis techniques. Unfortunately, to this 

day, most program analysis tools and techniques typically overlook exceptions. The 

section also provides an overview of analysis techniques that integrate exception 

flow analysis. Finally, section 2.3 describes some tools that were specifically built to 

extract information about the flow of exceptions, and explains how they differ from 

the work described in this thesis. 

15 



2.1 Specifying and Verifying Exception Interfaces 

This section describes and compares six relatively modern programming languages 

directly supporting exceptions: Ada [1], C + + [26], CLU [20], Java [12], ML [14], 

and Modula-3 [5]. 

ML, Ada95 and Modula-3 do not support specification of exceptions in func

tion declarations. ML is a functional language in which exceptions are values that 

can be declared anywhere in a program. These values can be signaled at any point 

following their declaration. Similarly, in Ada95, exceptions are simple name declara

tions. In Modula-3, exceptions are also names, but they can optionally be associated 

with a data type. In all three, ML, Ada95, and Modula-3, the representation of ex

ceptions follows the singular structure (see section 1.1.4). 

CLU, C + + and Java, on the other hand, support exception specifications. In 

CLU, like in Modula-3, exceptions are represented by a name to which is associated 

zero or more values. However, in CLU, for every exception signaled in a routine, 

the compiler ensures that there is a corresponding exception present in the routine 

declaration. Since exceptions have a singular representation, modules do not suffer 

from the granularity problem presented in section 1.1.4. However, completeness 

can be a problem because of a special exception called failure. This exception is 

implied in every exception interface (i.e., it does not have to be declared), and 

can represent any type of failure. Since a failure exception can describe all the 

different types of failures, this special exception reduces the descriptive power of the 

exception specification. In comparison to Java, the use of fai lure in CLU is roughly 

equivalent to using the Java exception type RuntimeException without specializing it. 

Nevertheless, according to the criteria of section 1.1.4, CLU is one of the languages 

enforcing the highest level of exception flow information in its module interfaces. 

16 



Table 2.1: Exception Handling Characteristics of Some Programming Languages 

Language Representation Category Exception Interface 
ML Named value singular No 
Ada95 Name singular No 
Modula-3 Named value singular No 
CLU Named set of values singular Yes (checked) 
C + + Object hierarchical Yes (unchecked) 
Java Object hierarchical Yes (checked) 

The C + + language specification ensures that a method can only raise ex

ceptions it declares. If a method signature does not include the declaration of 

exceptions, it is assumed that all types of exceptions may be raised. However, 

C + + adopts a different strategy to enforce interfaces. It does not check clients of 

a function to make sure that declared exceptions are either masked or re-declared. 

Instead, any exception raised within the method that is not declared is re-mapped to 

a special unexpected exception. The developer of a client is not informed of missing 

handlers. Furthermore, in C++, exceptions are typed objects, and thus are subject 

to granularity degradation (see section 1.2.2). 

Finally, as we have seen in section 1.3, exceptions in Java are typed objects. 

Java supports exception interfaces, and checks these interfaces only for a subset of 

all exceptions (checked exceptions). The combination of the type hierarchy in Java, 

and the fact that not all exceptions have to be declared in exception interfaces means 

that developers do not have precise and complete information about the number and 

type of exceptions potentially crossing a method's boundary. 

Table 2.1 summarizes the characteristics of the exception systems of the 

languages discussed in this section. 

17 



2.2 Analysis Tools and Techniques 

Many approaches and tools exist to help software engineers obtain information about 

properties of programs. These approaches are usually based on some form of inter

mediate program representation, such as system dependence graphs [16] or abstract 

syntax trees (AST). Historically, these approaches have mostly been used for lan

guages without exceptions. In the case of languages that do support exceptions, 

the integration of exception-related structures complicates the intermediate repre

sentations of programs and is not relevant for most tasks, such as compiling. These 

reasons can serve to explain why most program analysis techniques typically avoid 

the consideration of exceptions. 

Slicing [28] is a technique used to identify the flow of information responsible 

for a specific value at a program point. It is based on data-flow and control-flow anal

ysis of programs, and has many software engineering applications, such as debugging 

and testing [25]. Recent work is beginning to incorporate exception information into 

data-flow and control-flow representations of programs. Sinha and Harrold describe 

techniques to model control-flow in the presence of exceptions [24, 25]. Choi et al. [7] 

describe a representation to improve procedural optimizations in the presence of 

exceptions. These efforts differ from my work in that their focus is on modeling pro

gram execution rather than on enabling a developer to make better use of exception 

mechanisms. 

Program databases, like the C Information Abstraction System (CIA) [6], are 

tools that allow users to retrieve various types of information about a program, and 

to perform some analysis tasks, like call-graph generation and subsystem extraction. 

Most of the implementations of such systems were designed for the C language, 

which does not support exceptions. In the case of CIA, there exists a version for 

18 



C++ called ACACIA, but it does not currently support the querying of exception 

information.1 

Finally, there exists many other systems that perform various analyses on 

Java programs specifically. Recent examples include CoffeeStrainer [4], an AST-

based framework for the static checking of constraints on Java programs, and the 

Womble tool [17], built to extract object models from Java bytecode. Although 

such tools have access to much of the exception handling information, they typically 

ignore this information, mostly because the tasks they are intended to support do 

not involve exceptions. 

2.3 Exception Analysis Approaches 

Many exception analysis tools have been developed for ML, a functional language 

that represents exceptions as singular values and that does not support exception 

interfaces (see section 2.1). Theses two characteristics make it difficult for pro

grammers to ensure that all exceptions are caught. Pessaux and Leroy report that 

uncaught exceptions are the most frequent mode of failure in large ML applica

tions [22]. The goal of the tools is thus obvious: to help programmers identify the 

points in a program where different exceptions can.be thrown. 

Guzman and Suarez have proposed an extension of the ML type system by 

which it is possible to estimate all uncaught exceptions that can be raised [13]. Their 

type system is limited in that it does not handle exceptions carrying arguments. 

A different approach has been adopted by Yi, who developed an exception 

analyzer based on abstract interpretation techniques [29]. Since this analyzer suf

fered from severe performance problems, Yi and Ryu developed a more efficient 

^mden R. Gansner. AT&T Labs-Research. May 1999. Personal Communication. 

19 

http://can.be


one [31], using control-flow analysis and a set-constraints framework [15]. 

Fahndrich et al. [10] have built an Exception Analysis Tool (EAT) "that 

allows the programmer to display uncaught exceptions at certain program points 

while browsing the code" [10, p. 1]. EAT is based on BANE, a general framework 

for implementing constraint-based program analyses. Yi's tool is more precise than 

EAT, but EAT, which uses a more conservative approach, is more scalable. The EAT 

tool also provides support for visualizing the declaration and handling of exceptions 

at different points in the program. Pessaux and Leroy [22] propose a type-based 

analysis of uncaught exceptions in ML that offers different speed/precision tradeoffs 

than the previous constraint-based approaches. 

The analysis tools proposed for ML have basically the same goal as the work 

described in this thesis: to provide programmers with information about the flow 

of exceptions, in order to allow them to design more robust code. However, there 

are many differences between functional and object-oriented languages in general, 

and between ML and Java in particular. Exception interfaces and hierarchies of 

exceptions, two concepts present in Java and absent in ML, introduce subtleties and 

tradeoffs that programmers must take into account, and that an analysis tool must 

consider. The focus of this work is on these latter concepts. 

Finally, Yi and Chang [30] have sketched an approach within the set-constraint 

framework that would provide an exception flow analysis for Java similar to that 

implemented by the tool presented in this thesis. It is unclear whether formalization 

in the set-constraint framework will cause them to make different trade-offs between 

precision and scalability than have been made, in the approach I propose. 

20 



Chapter 3 

The Jex Approach and Tool 

In the previous chapters, I have justified the need for providing information about 

the flow of exceptions in object-oriented programs. There remains the questions of 

what information should be extracted, and of how it should be presented to a user. 

Extracting information flow is not a well-defined problem and, as such, there exists 

numerous possible solutions. The specification and design of my approach is based 

on two considerations of a practical nature, namely, accessibility and usefulness of 

the information. In other words, the initial goal of the Jex approach is that the 

information produced has to be easy to interpret and useful. 

This chapter describes the approach taken to extract exception information 

from Java programs (section 3.1), and discusses the details of the tool used to realize 

the extraction (section 3.2). 

3.1 Extracting Exception Structure 

Understanding and evaluating how exceptions are handled within a method requires 

reasoning about which exceptions might arise as a method is executing, which ex-

21 



ceptions are handled and where, and which exceptions are passed on. 

Manually extracting this information from source code is a tedious task for 

all but the simplest programs. In the case of an object-oriented program, a developer 

must consider how variables bind to different parts of the type hierarchy, the methods 

that might be invoked as a result of the binding, and so on. For this reason, I have 

built the Jex tool, that automates this task for Java programs. 

To retain meaning for a developer, I wanted to present a view of the exception 

flow within the context of the structure of the existing program. The Jex tool thus 

extracts, synthesizes, and formats only the information that is pertinent to the 

task. In the case of Java, for each method, our tool extracts, the nested t r y block 

structures, including the guarded block, the catch clauses, and the f i n a l l y block. 

Within each of these structures, Jex displays the precise type of exceptions that 

might arise from operations, along with the possible origins of each exception type. 

If an exception originates from a method call, the name of the class and method 

raising the exception are identified. If an exception originates from the run-time 

environment, the qualifier environment is used. This information is placed within a 

Jex file corresponding to the analyzed class. 

We can illustrate this exception structure using code from one of the con

structors of the class Java. io.Fi leOutputStreamfrom the JDK 1.1.3 API . 1 Figure 3.1 

shows the code for the constructor; Figure 3.2 shows the exception structure ex

tracted according to the proposed technique.2 The extracted structure shows that 

the code preceding the explicit t r y block may raise a SecurityException, and that 

the code inside the t r y block may result in an IOException being raised by the call 

1 Source code for the JDK 1.1.3 API is publicly available. This source code can be used 
to determine the exceptions possibly thrown by the various methods. 

2Figure 3.2 is a simplified view of the information generated by Jex. Specifically, for clar
ity in presentation, the full qualification of Java names that is usually shown was removed. 

22 



to openAppend or to open on an object of type FileOutputStream. The catch clause 

indicates that any lOException raised during the execution of the code in the try 

block may result in a FileNotFoundException being raised. FileNotFoundException 

is a subtype of lOException, the exception declared in the constructor's signature. 

public FileOutputStream(String name, 

throws lOException 

{ 
SecurityManager security = System 

if (security != null) { 
security.checkWrite(name); 

} 

try { 
fd = new FileDescriptorO ; 

if(append) 
openAppend(name); 

else 
open(name); 

} catch (lOException e) { 

boolean append) 

.getSecurityManagerO ; 

throw new FileNotFoundException(name); 

} 

> 

Figure 3.1: The Source Code for the Constructor of FileOutputStream 

FileOutputStream(String,boolean) throws lOException 

{ 

SecurityException:SecurityManager.checkWrite(String); 

try { 

lOException:FileOutputStream.openAppend(String); 

lOException:FileOutputStream.open(String); 

} 

catch ( lOException ) { 

throws FileNotFoundException; 

} 

} 

Figure 3.2: The Structure of Exceptions for the Constructor of FileOutputStream 

This analysis provides two useful kinds of information to a software devel

oper implementing or maintaining this constructor. First, the developer can see that 

23 



the constructor may signal an unchecked SecurityException that originates from a 

checkWrite operation; a comment to this effect may be added to the constructor's 

header for the use of clients. Second, the developer can determine that the ex

ceptions that may be raised within the scope of the t r y block are actually of type 

lOException and not some more specialized subtype; thus, finer-grained handling of 

the exception is not possible and should not be at tempted. Neither of these cases 

would be detectable based on an inspection of the constructor's source code alone. 

The analysis can also benefit a client of the constructor. Consider the code for 

the doSomething method in Figure 3.3. This code will pass the checking of the Java 

compiler as there is a handler for the declared exception, lOException. Applying 

the exception extraction technique to this code returns the information that the 

invocation of the FileOutputStream constructor might actually result in the more 

specialized FileNotFoundException or an unchecked SecurityException. 

Knowing the details about the exceptions flowing out of the constructor 

allows the developer of the client code to introduce additional handling. Figure 3.4 

shows an enhanced version of the doSomething client code. A handler has been 

introduced to catch SecurityException. This handler warns the user that permission 

to modify the file is missing. A handler is also introduced to provide a specialized 

error message for the case when a FileNotFoundException occurs. 

To conform to the constructor's interface, it is also necessary to provide 

a handler for lOException: this handler serves to protect the client from future 

modifications of the constructor, which may result in the throwing of an 10 exception 

different from FileNotf oundException. 

24 



public void doSomething( String pFile ) 
{ 
try { 
FileOutputStream lOutput = new FileOutputStream( pFile, true ); 

> • 

catch( IOException e ) { 
System.out.println( "Unexpected exception." ); 

} . . 
}• 

Figure 3.3: An Example of Code not Using Jex Information 

public void doSomething( String pFile ) 
{ 

try{ 
FileOutputStream lOutput = new FileOutputStream( pFile, true ); 
// Various stream operations 

} catch( SecurityException e ) •[ 
System.out.println( "No permission to write to file " + pFile ); 

} catch( FileNotFoundException e ) { 
System.out.println( "File " + pFile + " not found" ); 

} catch( IOException e ) { 
System.out.println( "Unexpected exception" ); 

} 

Figure 3.4: An Example of Code Making Use of Jex Information 

3.2 The Architecture and Implementation of Jex 

As described in the previous section, Jex is a tool for extracting exception informa

tion from Java source files. It is entirely developed in Java and comprises 23000 

lines of commented Java source code spread over 138 classes and interfaces. It con-. 

sists of two command-line applications: jex. Analyzer (or Jex), the main source code 

analyzer, and jex. subsumpt ion. Analyzer (or JSA), a higher-order analysis tool used 

to perform analysis on the information extracted by Jex. 

The architecture of Jex consists of five components: the application con

troller, the parser, the abstract syntax tree (AST), the type system, and the Jex 

loader (Figure 3.5). 

25 



Controller 

Relationships 

*• Knows about 

Creates 

•*• Type System 

Figure 3.5: The Simplified Architecture of Jex. 

3.2.1 The Application Controller 

The application controller is the entry point to Jex. It processes the command-

line arguments, loads the type system (section 3.2.4), and parses the input file 

(section 3.2.2), which returns a reference to a corresponding AST (section 3.2.3). 

It then passes the type system to the AST component, and requests the AST to 

perform the exception analysis. 

The application controller is implemented as a standard Java program entry 

point, that is, a static main method. 

3.2.2 The Parser 

The parser loads and parses a Java source file specified as input. The parser also 

contains actions to build an abstract syntax tree representation of the program 

26 



analyzed (section 3.2.3). The parser was constructed using version 0.8prel of the 

Java Compiler Compiler™ (JavaCC) [27]. The current implementation of the tool 

supports the Java 1.0 language specification, which does not include the support for 

inner classes and initializer blocks [12]. 

3.2.3 The Abstract Syntax Tree 

The AST is built by parser actions. It contains the functionality to extract excep

tion information from the representation of the program and to generate a Jex file 

containing this information. A Jex file is a normal text file containing a description 

of the exception flow for all the methods of a class, following the technique high

lighted in section 3.1 and illustrated in Figure 3.2. Appendix A contains the formal 

description of Jex files. 

From the original version of the AST created by the parser, it takes four 

steps to generate a Jex file: 

1. Type analysis. The AST resolves the type of every expression in the source 

code. The type system is not used at this preliminary step, because the types 

of program expressions can all be derived from declared types. 

2. Control-flow analysis. The AST performs a total ordering of the methods to 

analyze in the input source code file. The order is based on the call hierarchy 

within the methods of a class, so that a method A called by a method B would 

be analyzed first. The current version of Jex does not support cycles in the 

call graph. 

3. Jex analysis. Every operation (i.e., operator, method call) that can generate 

an exception is examined, and the exceptions that can be thrown by that 

27 



operation are mapped to a dynamically-allocated data structure representing 

the exception handling constructs.3 For every method call, a type analysis 

using the type system component (section 3.2.4) is performed to determine 

all of the possible implementations of the method being called. For all of the 

implementations identified, the Jex loader (section 3.2.5) is used to obtain 

the list of exception types that can be thrown by the method. In the case 

of operations that are built in the language (such as multiplicative operators 

and array accesses), the exceptions generated are based on the Java language 

specifications [12]. The list of environment-related exceptions generated by 

Jex can be found in appendix B. 

4. Generation of the Jex files. Finally, the data structure representing the ex

ception information is written to Jex files corresponding to every class in the 

input source. 

Steps 1 to 3 correspond to a traversal of the AST, while step 4 corresponds 

to a traversal of the exception data structure. The AST was built using the JJTree 

preprocessor distributed with JavaCC. 

3.2.4 The T y p e Sys t em 

The AST relies on the type system to return a list of all types that override or 

implement a particular method. Ensuring all possible types are considered in such 

an operation would require global analysis of all Java classes reachable through the 

Java class path. This approach has the disadvantage of being overly conservative 

because unrelated classes may be considered. For example, the method toS t r ing 

3 The exception to this statement is that exceptions potentially thrown as a consequence 
of the initialization of static variables are not considered because it is not always possible 
to statically identify the program points where a class is first loaded. 

28 



of class Object is often redefined by application classes. Two classes, both in the 

class path but from two unrelated applications, might each redefine toString. If a 

method in a class of the first application makes a call to toString, it is reasonable 

to assume that the method toString implemented by the second class will not be 

invoked. To prevent this, we restrict the analysis to a set of packages defined by 

the user. The normal Java method conformance rules are taken into account in 

establishing the potential overriding relationships between methods. 

The type system is implemented as a 3-level hash table. This hash table maps 

package names to class names, to method signatures, to a list of types possibly 

implementing the methods. Loading the type system component is done in two 

steps. A first step loads all the classes of all the packages specified in the data 

structure. The second step establishes the implementation relationships between all. 

the methods in the system, using introspection to extract type hierarchies. 

3.2.5 The Jex Loader 

To determine the actual exceptions thrown by a Java method call, the AST compo

nent relies on the Jex loader. Given a fully qualified Java type name, the Jex loader 

locates the Jex file describing that type. The AST component can then query the 

Jex loader to return the exceptions that might arise from a method conforming to a 

particular method signature for that type. The Jex files for a Java type are stored 

in a directory structure that parallels the directory structure of the Java source files. 

It is necessary to have a different directory structure for Jex files because some class 

files might not be in writable directories. The Jex files thus serve both to provide a 

view of the exception structure for the user, and as an intermediate representation 

for the Jex system. 

29 



The Jex loader is implemented as a parser for Jex files, enhanced with actions 

to recognize method matching according to the conformance rules of Java, and to 

extract uncaught exceptions. 

3.2.6 Using Jex 

To use Jex, a user must specify a list of packages, a path to search for Jex files, and 

a Java source code file. The list of packages and the path for Jex files are specified 

in a resource file named . include. The first line of the file must be a valid directory 

pointing to the root of the Jex file hierarchy. The subsequent lines are a list of 

packages to include in the type system. The Java source file to analyze is specified 

as a command-line argument. 

Currently, the Jex system requires that all necessary Jex files to analyze 

a source code file be available. Since an analysis will terminate abnormally if a 

such a Jex file is missing, the user must make sure that all necessary Jex files are 

available before launching an analysis. For this reason, Jex supports the command-

line option -d, that will simply produce a list of all the Jex files necessary for the 

analysis of the input file specified. 

3.2.7 The Subsumption Analysis Tool 

Jex files provide two different kinds of detailed information to users: types of excep

tions that can be raised, and the program structures in place to handle them. To 

make efficient use of this information, it is sometimes necessary to reason about the 

interaction between the two types of information. This requires knowing which types 

of exception can be caught by which types of catch clauses. Because of subsumption, 

this is sometimes difficult, because developers have to keep in mind the complete 

30 



type hierarchy of exceptions. For example, Figure 3.6 shows Jex information for a 

print method.4 

print 0 
{ 

t ry 
{ 

j ava.lang.NullPointerException:environment; 
j ava.lang.OutOfMemoryError:environment; 
j ava.io.IOException:FileWriter.<C>FileWriter(String); 
j ava.io.FileNotFouridExcept ion:FileReader.<C>FileReader(String); 
Java.io.IOException:BufferedReader.readLineO; 
Java.io.IOException:LineNumberReader.readLineO; 

> 
catch ( Java.io.IOException ) 
{ 
} 

} 

Figure 3.6: An Example of Jex Information 

print() 
{ 

try 
{ 

Java.lang.NullPointerException -> *UNCAUGHT* 
Java.lang.OutOfMemoryError -> *UNCAUGHT* 
Java.io.IOException -> Java.io.IOException 
Java.io.FileNotFoundException -> Java.io.IOException 

} 
catch ( java.io.IOException ) 
{ 
} 

} 

Figure 3.7: The Result of Applying JSA to the Code of Figure 3.6 

Without knowing how the exception types appearing in the t ry block relate to 

IOException, it is not possible to infer what exception will get caught. To help devel

opers perform this task, Jex includes an accessory tool called j ex. subsumption. Analyzer, 

or JSA. JSA takes a Jex file as input, and produces a reduced, annotated version 

'For clarity in presentation, the full qualification of origin type names was removed. 

31 



of the Jex file. The information produced by JSA consists of, for every block, a set 

of unique exception types (without origin information), and an indication of which 

type is used to catch it. If the exception is not caught by any catch clause attached 

to the try block, the exception type is simply identified as "uncaught". Figure 3.7 

gives the JSA information corresponding to the Jex information of Figure 3.6. It is 

now clear that NullPointerException and OutOf MemoryError remain uncaught, and 

that both lOException and FileNotFoundException are caught by the catch clause 

declaring the type lOException. Of course, this is a trivial example; in cases where 

t r y blocks contain numerous exception types and have more than one catch clause, 

JSA greatly simplifies the task of inferring exception flow. 

When Jex files contain nested try blocks, an important issue to consider is 

whether to make a global or local analysis of the exceptions escaping a t r y block. 

In the strictly local view, exceptions escaping an inner t r y block are not propagated 

to the outer t r y block. In the global view, these exceptions are propagated. Both 

views are supported by JSA. The default is the local view, and the global view can 

be selected using the -propagate command-line argument. 

JSA is implemented as a Jex parser with actions. Like the Jex loader, JSA 

parses a Jex file and stores the information in a dynamic structure. The structure 

is then written to a file according to the choice of view determined by the user. 

32 



Chapter 4 

Validating the Jex Approach 

As mentioned in the introduction, the hypothesis of this thesis is that to produce 

quality code, developers need to have access to more complete and precise exception 

flow information than what typical exception interfaces can provide them. This 

initial hypothesis can be separated into two clauses: (a) in practice, programming 

languages cannot provide complete exception flow information, and (b) information 

about the flow of exceptions is necessary to build robust programs. The first clause is 

based on a survey of programming languages supporting exception handling (see sec

tion 2.1), while the second clause is based on observations made while programming 

in Java. Particularly in the initial construction of a method, it is often tempting, 

for expediency, to insert a catch clause that will simply handle all exception types. 

A developer might choose this course of action not as the result of negligence, but 

rather because of a lack of access to information that allows an appropriate decision 

to be made. As an example, a developer may not have suitable information about 

the recovery possible for a particular kind of exception in the absence of knowledge 

about the application as a whole. Introducing these generalized handlers causes 

33 



exceptions to be caught through subsumption. Although such short-cuts should be 

refined as development proceeds, some occurrences may evade detection. 

To validate my initial hypothesis, I was interested in determining how often 

cases of exception subsumption and uncaught exceptions occur in released code, 

and in quantifying how well Java formally describes the flow of exceptions across a 

method's boundary (clause a). I was also interested in determining how knowing 

about the flow of exceptions could suggest ways in which programs could be made 

more robust (clause b). 

The last chapter presented an approach to provide information about the flow 

of exceptions, and a tool, Jex, implementing the approach. This chapter uses results 

obtained from applying Jex to demonstrate the relevance of the initial hypothesis, 

and the contribution of the approach to providing information about exception flow. 

Section 4.1 describes the code that was analyzed with Jex and the conditions in 

which the analysis was performed. Sections 4.2 and 4.3 provide arguments demon

strating that, in practice, Java cannot provide complete and precise exception flow 

information. Section 4.4 is a qualitative analysis of the results obtained with Jex and 

discusses how information about the flow of exceptions is necessary to build robust 

programs. Finally, section 4.5 summarizes the conclusions of the experiments. 

4.1 Methodology 

To investigate the various factors mentioned in the previous section, a variety of 

source code was analyzed using Jex: 

• JTar, a command-line utility for the extraction of t a r files;1 

1Package ne t .v t ic . t a r , developed by J. Marconi and available from the Giant Java 
Tree, http://www.gjt.org. 

34 

http://www.gjt.org


• A GNU regular expression package;2 

• the J a v a . u t i l . V e c t o r and Java. io .Fi leOutputStream classes from the Sun™ 

Java Development Kit version JDK 1.1.3; 

• a command-line rule parser; 3 

• four database and networking packages from the Atlas web course server 

project [18]: userDatabase, userData, userManager, and userlnfoContainers; 

• the code of Jex itself.4 

Together, these packages comprise roughly 32 000 commented lines of code, including 

input /output , networking, and parsing operations. 

To perform an analysis on a source file, Jex requires a Jex information file 

corresponding to every class referenced in the source file, and to all subclasses indi

cated by the Jex type system (see sections 3.2.3 and 3.2.4). These Jex files contain 

information about the exceptions potentially raised by the various methods called 

by the code being analyzed. This implies that Jex files for most of the JDK API 

be available. Since performing Jex analyses on the bulk of the JDK class libraries 

would not have been a cost effective measure at this stage of the experimentation 

with Jex, I decided not perform the Jex analysis on the classes comprising the JDK 

API (except for the two mentioned in the list above). Instead, a Jex file for each of 

the relevant API classes was generated using a script that extracts the information 

2Packages gnu.getopt and gnu.regexp, also available from the Giant Java Tree 
3 Available from a compiler course web page of the School of Computing, National Uni

versity of Singapore (h t tp : / /dkiong.comp.nus .edu.sg /compi lers /a / ) . 
4The code of Jex was analyzed both to test the Jex tool itself and to provide insight into 

the usefulness of the approach. It was not, however, used in the statistical compilations 
of sections 4.2 and 4.3. Because Jex was designed with exception policies in mind, I have 
chosen to leave Jex out of the statistical analyses so it would not bias the results. The 
statistics of sections 4.2 and 4.3 thus only represent independent code. 

35 

http://dkiong.comp.nus.edu.sg/compilers/a/


from corresponding HTML files produced by Javadoc. Javadoc is a tool that auto

matically converts Java source code files containing special markup comments into 

HTML documentation. The Jex files produced from these scripts simply consist 

of a list of exception types potentially thrown by each method of the class. The 

list consists of a union of the exception types declared in the method's signature 

with the exception types annotated in the special markup comments. The exception 

types annotated in the comments for a class may include both checked and runtime 

exception types. 

4.2 Analysis of Subsumption in t ry Blocks 

A first aspect investigated was whether or not subsumption in t ry blocks actually 

occurred in practice. By "subsumption in try block", I mean the situation in which 

a catch clause declaring to catch an exception type T can also catch exceptions 

that are subtypes of T. A first experiment was performed with a version of Jex 

that did not include runtime exceptions generated by the environment [23]. A 

subsequent experiment was done including such exceptions. Figures 4.1 and 4.2 show 

a comparison of the data, both with and without runtime exceptions, respectively. 

The graph in Figure 4.1 shows a breakdown of exceptions and their associ

ated handling in the analyzed code. It represents information from the packages 

that contain at least one try block. Each bar in the graph shows the number of 

occurrences of different levels of subsumption in handlers. The level of subsumption 

between the type T of an exception potentially raised in a try block and the type T" 

declared in a catch clause is the difference in depth in the type hierarchy between T-

and T.' Levels zero and one are labeled by their semantic equivalent: "same type" 

and "supertype", respectively. Exception types raised in a try block that cannot be 

36 



subsumed to any of the types declared in the catch clauses remain uncaught by the 

t ry block. In all but one case, the Rule Parser, some exceptions in try blocks re

main uncaught. All but one of the packages, the Java JDK code, contain exception 

handlers that catch exceptions through subsumption. 

JTar JDK RuleParser userDatabase userData userManager 

Packages 

Figure 4.1: Exception Matching in catch Clauses, no Environment-Related Excep
tions 

Because of its similarity to Figure 4.1, Figure 4.2 shows that the presence 

of runtime exceptions generated by the runtime environment does not significantly 

influence the distribution of subsumption in catch clauses. We can notice two mi-

37 



nor effects: an increase in the number of uncaught exceptions and an increase in 

subsumption levels greater than or equal to one. Both of these effects can be ex

plained by the observation that environment-related runtime exceptions are usually 

not considered by the user and thus no catch clause is inserted to explicitly catch 

these types of exceptions. These types of exceptions either remain uncaught, or are 

caught by subsumption by more generalized types, such as Exception. 

JTar JDK RuleParser userDatabase userData userManager 

Packages 

Figure 4.2: Exception Matching in catch Clauses, with Environment-Related Ex
ceptions 

38 



Table 4.1: Levels of Subsumption Required to Catch an Exception 

24% 
14% 
22% 
9 % 

3 1 % 

14% 
11 % 
20% 
6 % 

4 9 % 

T , r , • ' ,. Frequency 
Level ol subsumption 1VT _, J; . 

Mo Environment Environment 
Same type 
Supertype 
2 Levels 
3 Levels 
Uncaught 

Table 4.1 provides a different view of the data. This view illustrates that, for 

the analysis including environment-related exceptions, 49% of the different exception 

types present in t ry blocks remain uncaught in the target. In 37% of the cases, 

exceptions are not caught with the most precise type available (i.e., some degree of 

subsumption occurs), and in only 14 % of the cases,the exceptions potentially raised 

in a t ry block are caught by their exact type (i.e., no subsumption occurs). 

This data lends evidence to support the claims that exception subsumption 

and unhandled exceptions are prevalent in Java source code. However, this quan

titative data does not indicate whether the quality of the code could be improved 

through the use of Jex-produced information. Quantitative aspects are discussed in 

section 4.4. 

4.3 Analysis of Exception Specifications 

A second aspect investigated was how much information about the flow of excep

tions is actually present in formally-declared method headers. This information was 

favored as opposed to program documentation because formally-declared exceptions 

are less likely to be subject to errors and inconsistencies than program documenta-

39 



tion. Furthermore, the formal syntax allows a more conservative verification. 

To investigate how methods in Java typically describe localized exception 

flow, I used the metric described in section 1.2.2. I applied this metric to all pack

ages analyzed by Jex, except for Jex itself. Of the 375 methods present in the 10 

packages considered, only 55 (15%) specified exceptions. For these 55 methods, the 

completeness (Cm) and granularity (Gm) of the interfaces was calculated. Figure 4.3 

shows the distribution of the interfaces in the completeness-granularity graph (some 

data points overlap). 

Figure 4.3: Cm-Gm Distribution for all Packages Except the Jex Packages 

In analyzing the completeness and granularity of exception specifications, 

several observations were made. First, in the packages analyzed, exception interfaces 

are never used to specify runtime exceptions. Indeed, there is not much incentive for 

a Java programmer to specify runtime exceptions since these are not checked by the 

compiler. As a result, completeness of the exception specification in Java is strongly 

related to the number of different runtime exception types that can be raised by 

the method. As expected, the number is usually high, leading to low Cm values. 

40 



A second observation is that the completeness and granularity metrics are non-

orthogonal. The relationship between the two aspects is subsumption. Declaring a 

general supertype will result in low granularity, but on the other hand will tend to 

encompass a bigger set of the exceptions potentially thrown by the method. Finally, 

I observed that, in the packages analyzed, granularity usually has a value of one for 

user-defined exceptions, which allows one to think that when a developer defines an 

exception, it is used with precision. 

The distribution of exception specifications on the Cm-Gm graph, shown in 

Figure 4.3, is somewhat extreme in that most of the specifications represented have 

a granularity of 1.00. As a comparison, Figure 4.4 shows the distribution of a low-

level package of the Jex application, j ex .u t i l . We can notice that the distribution is 

more scattered than the one represented in Figure 4.3, with some interfaces having 

a granularity of 0.5 and lower. A possible explanation for this is that j ex .u t i l deals 

with components involving more hierarchical exception types, such as IOException. 

Figure 4.4: Cm-Gm Distribution for the Package j ex .u t i l 

41 



4.4 Quantitative Considerations 

The first part of this chapter showed that, in practice, not all exceptions flowing out 

of try blocks and methods are specified by the programming language constructs. 

As a result, developers do not always leverage the full expressiveness of an excep

tion system. In section 3.1, I have shown the approach by which Jex fills in these 

information gaps. Based on experience, this section illustrates how Jex can be used 

to improve code, and thus provides evidence for the clause b of the hypothesis. 

To investigate the usefulness of the Jex information, I performed an after-

the-fact manual inspection of the source code. I focused this inspection on cases of 

subsumption since the benefits of identifying uncaught exceptions are straightfor

ward and are discussed in greater depth elsewhere [10, 29, 31]. 

The investigation of the cases of exception subsumption found several in

stances in which knowledge of the subsumption could be used to improve the code. 

In the RuleParser application, for instance, the body of a method reading a line 

from an input buffer is guarded against all exceptions using the Exception type. 

This type is a supertype to much of the exception hierarchy. Expecting input 

problems, the code produces a message about a source input exception. How

ever, Jex analysis reveals that two other types of runtime exception may also arise: 

StringlndexOutOfBoundsException and SecurityException. These two unchecked 

exceptions will be caught within the Exception handler, producing an inappropri

ate error message. More specific exception handlers could be added to improve the 

coherence of termination messages, or to implement recovery actions. 

Cases of subsumption were also useful in pointing out program points at 

which exception handling code did not conform to the strategy established by the 

developer. For example, in one of the Atlas classes, an exception was explicitly 

42 



thrown in a t ry block, caught in a catch clause corresponding to the same try block, 

and re-thrown. In another case, two similar accessor methods displayed different 

exception -handling strategies: one masked all exceptions; the other one masked 

only two specific exceptions. A discussion with the developer of Atlas allowed the. 

irregular exception handling strategies to be traced to unstable or unfinished code. 

The abstract view of the exception flow provided by Jex made it easy to identify 

these suspicious cases. 

I found other uses of subsumption in the Atlas packages. For example, in a 

database query, exceptions signaled by reading from a stream are all caught by a gen

eralized catch clause which generates a generic "read error", message and which re

throws a user-defined exception. However, the exceptions thrown in the t ry block in

clude such specialized types as StreamCorruptedException, InvalidClassException, 

OptionalDataException, and FileNotFoundException. It may be advantageous to 

catch these exceptions explicitly, producing a more descriptive error message when 

one of the exceptions occurs. 

As I have already pointed out, the use of Jex is not only beneficial to sloppy 

programs, or to programs written without a general exception handling strategy. 

It can also help fine-tune programs designed with exception handling in mind. As 

an example, we can take the code of Jex itself. In the code of Jex, knowing about 

the precise local flow of exceptions allowed the identification of methods declaring 

exceptions that were never thrown. The cause of this incoherence is one of evolution: 

a method called another method that threw an IOException. The called method then 

evolved to perform its own handling of the exception. 

Other high-level improvements stemming from such detailed knowledge of 

how exceptions flow include limiting the scope of some exception types. For example, 

43 



a specification of the Jex type system was that all ClassCastExceptions had to be 

caught in the type system component, and only rethrown as TypeExceptions when 

necessary. Since ClassCastException is a type of runtime exception, and thus not 

checked, it was very difficult to verify that the specification was respected. With 

Jex, this turned into a trivial task. 

4.5 Summary 

In brief, experimentation with Jex allowed to validate the hypothesis of this thesis, 

namely that, to produce quality code, developers need to have access to more com

plete and precise exception flow information than what typical exception interfaces 

can provide them. An analysis of cases of subsumption and uncaught exceptions in 

Java code (section 4.2) showed that developers do not always use the most precise 

type available to catch exceptions, and do not catch all exceptions. An analysis of 

exception specifications (section 4.3) showed that the Java language structures in 

place to provide information about the flow of exception do not provide complete and 

precise information. Finally a qualitative study of the code analyzed (section 4.4) 

showed that knowing about the flow of exceptions could help developers build more 

robust and reliable code. 

44 



Chapter 5 

Conclusions 

During the initial conception of the Jex approach, and all through the development 

of the corresponding tool, many tradeoffs and decisions have been made. Most of 

them were engineering tradeoffs that have no impact on the use of the approach, 

and as such are of limited interest to readers. A few aspects, however, inevitably 

have had an influence on the use of Jex and on the quality of the information 

that can be obtained from it. These aspects include the information included in 

Jex files, the expressiveness of the information, and the level of conservatism of the 

information. In this chapter, I discuss how these decisions influence the performance 

and usefulness of Jex, and compare my technique to other potential approaches. I 

then present the future avenues for Jex and discuss how it generalizes to object-

oriented, languages other than Java. Finally, I summarize the thesis. 

45 



5.1 Discussion 

5.1.1 White-box Exception Information 

By expressing the actual exceptions that may flow out of a method invocation, we 

expose knowledge about the internals of a supplier method to a client. If a software 

developer relied upon this knowledge of a supplier's implementation rather than 

on the supplier's declared interface, unintended dependencies could be introduced, 

potentially limiting the evolution of the client. 

For instance, consider the case for Atlas described in section 4.4, in which 

the developer learned that a particular method could receive a number of specialized 

exception types, such as StreamCorruptedExceptionand InvalidClassException. As

sume that the methods that can raise these exceptions declare more general excep

tion types as part of their interfaces. If the developer introduced handlers only for 

each of the specialized types that could actually occur, the code might break if a 

method evolved to signal a different specialized exception type. In the case of Java, 

this situation cannot arise because the compiler forces the presence of handlers for 

the exception types declared by supplier operations. If the language environment 

did not provide this enforcement, the Jex approach would have to be extended to 

ensure that the use of white-box information did not complicate evolution. 

5.1.2 Alternative Approaches 

Increasing the robustness and recovery granularity of applications does not require 

a static analysis tool. One alternative currently in use is to document the precise 

types of exceptions that a method may throw in comments about the method. With 

this approach, a developer can retain flexibility in a method interface, but still pro-

46 



vide additional information to clients wishing to perform finer-grained recovery. A 

disadvantage of this approach is that it forces the developer to maintain consistency 

between the program code and the documentation, an often arduous task. Moreover, 

this approach assumes that a developer knows all of the exception types that might 

be raised within the body of the method being developed; the presence of runtime 

exceptions makes it difficult for a developer to provide complete documentation. 

Another course of action available is for a software developer to inspect the 

exception type hierarchy, and to provide handlers for all subtypes of a declared 

exception type. It is unlikely that in most situations the extra cost of producing and 

debugging these handlers is warranted. Furthermore, this solution is not robust since 

subtypes can be added to the exception hierarchy at any point in the development. 

The Jex approach provides a means of determining cost-effectively which of the 

many possible handlers might be warranted at any particular source code point. 

5.1.3 The Descriptive Power of the Current Exception Structure 

The current exception structure extracted for source files enables a developer to 

determine the exceptions that can be signaled at any point in the program, along 

with the origin of these exceptions. The former information allows a developer 

to determine the actual exceptions that can cross a module boundary. The latter 

information allows a developer to trace exceptions to their source, enabling a more 

thorough inspection. 

One aspect missing from the information currently produced by Jex is a link 

to the particular statements that can produce an exception. As a result, it is not 

possible to trace actual instances of exceptions. For example, when an exception is 

explicitly thrown, it is not possible to determine, only from Jex information, if it is 

47 



a new exception or if an existing exception instance is being re-thrown. Informa

tion about exception instances would allow developers to reason about how specific 

exceptional conditions circulate in a program. However, it is unclear whether the 

additional benefits that could be obtained from the more specific origin information 

outweigh the possible disadvantage of reducing the clarity and succinctness of the 

exception structure. 

5.1.4 The Precision of Jex Information 

There are three cases in which the Jex tool may not return conservative information. 

First, Jex uses the packages specified by the user as the "world" in which to search 

for all possible implementations of a particular method. If a user fails to specify 

a relevant package, Jex may not report certain exceptions. If, in specifying the 

packages, the user fails to include a package defining a type being analyzed, Jex can 

issue a warning message. If the user fails to specify packages that extend types that 

are already defined, then Jex is unable to warn the user. 

Second, Jex relies on a model of the language environment to determine the 

exceptions that might arise from basic operations, such as an add operation, and 

the exceptions that might arise from native methods. Although the model of the 

environment used when applying Jex to the code described in chapter 4 was partial, 

Jex still returned information useful to a developer. 

Third, Jex does not report asynchronous exceptions [12]. An asynchronous 

exception may arise from a virtual machine error, such as running out of memory, 

or when the stop method of a thread object is invoked. Since these exceptions can 

arise at virtually any program point, one can assume a user of Jex will find it easier 

to use the output of the tool if it is not cluttered with this information. However, it 

48 



may prove useful, once more experience is gained with Jex, to introduce an option 

into the tool to output such exceptions as a means of reminding the user. 

If Jex returned information that was too conservative, the usability of our ap

proach would likely be impacted. With Jex, this situation can arise when reporting 

all possible runtime exceptions because there are many points in the code that can 

raise exceptions such as NullPointerException. This situation can be managed by 

providing a means of eliding this information when desired. To make this possible, 

the structure of the files generated by Jex is designed to make it possible to remove 

certain types of exceptions by using the UNIX command grep -v <exception type> 

on a Jex file. This command has the effect of producing a new Jex file where 

information about the exception type specified does not appear. 

Another source of imprecision in Jex arises from the assumption that a call 

to a method made through a variable might end up binding to any conforming 

implementation on any subtype of the variable's type. In some cases, it may be 

possible to use type inference to limit the subtypes that are considered. However, 

with my current experience with Jex, I have not found that this assumption greatly 

increases the exception information returned. 

5.2 Future Work 

This thesis addressed the problem of providing information about the flow of excep

tions in a localized way. It described a mean to analyze how exceptions flow in and 

out of t ry blocks and methods. Although this solution provides useful information 

to developers, there remains a need for a more global method of representing the 

flow of exceptions. Coming up with a practical method of representing the flow of 

exceptions in software applications would enable software engineers to better design 

49 



and test applications. For example, a method for representing the global flow of 

exceptions would allow developers to trace exceptions to their origins, or to better 

understand how exception evolve in programs. 

A second aspect of this research that appears worthy of further investiga

tion is the generalization of the Jex technique to other object-oriented languages. 

Even though most object-oriented languages supporting exceptions display the same 

fundamental concepts justifying Jex, their exception handling systems differs from 

Java. It would prove useful to explore how useful and effective the Jex approach 

can prove for such languages, such as C++. 

Finally, in order to be able to address a wider base of source code and a 

larger pool of user, the Jex tool necessitates some improvements. The most impor

tant of these improvements include supporting the Java 1.1 language specification, 

and resolving cycles in method and class dependencies. Supporting Java 1.1 basi

cally means supporting the concept of inner classes. This introduces difficulties in 

the organization of Jex information, and requires a more complex analysis at the 

AST level. It is nevertheless feasible. For Jex to be able to resolve cycles in method 

and class dependencies, although strictly a usability improvement, would allow de

velopers to analyze source code files in batches, thus greatly reducing the level of 

intervention currently required of Jex users. 

5.3 Summary 

It is not uncommon for users of software applications to become frustrated by mis

leading error messages or program failures. Exception handling mechanisms present 

in modern languages provide a means to enable software developers to build ap

plications that avoid these problems. Building applications with appropriate error 

50 



handling strategies, though,. requires support above and beyond that provided by 

a language's compiler or linker. To encode an appropriate strategy, a developer 

requires some knowledge of how exceptions might flow throughthe system. 

In this thesis, I have described an approach to help developers access this 

information. The approach, based on static analysis techniques, is supported by 

a tool named Jex. The Jex tool extracts information about the structure of ex

ceptions in Java programs, providing a view of the actual exceptions that might 

arise at different points and of the handlers that are present. Use of this tool on 

a collection of Java library and application-oriented source code demonstrates that 

the approach can help detect both uncaught exceptions, and uses of subsumption 

to catch exceptions. . • 

The view of exception flow synthesized and reported by Jex can provide sev

eral benefits to a developer. First, a developer can introduce handlers for uncaught 

exceptions to increase the robustness of code. Second, a developer can determine 

cases in which unanticipated exceptions are accidentally handled; refining handlers 

. for these cases may also increase code robustness. Third, inspection of subsumption 

cases may indicate points where the addition of finer-grain recovery code could im

prove the usability of a system. Finally, the abstract view of the exception structure 

can help a developer detect potentially problematic or irregular error handling code. 

The approach described in the thesis and the benefits possible are not limited to 

Java, but can also apply to other object-oriented languages. 

51 



Bibliography 

[1] Ada 95 Reference Manual: Language and Standard Libraries, version 6.0, De
cember 1994. Revised international standard ISO/IEC 8652:1995. 

[2] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996. 

[3] David L. Black, David B. Golub, Richard F. Rashid, Jr. Avadis Tevanian, 
and Michael W. Young. The Mach exception handling facility. Technical Re
port CMU-CS-88-129, School of Computer Science, Carnegie Mellon University, 
Pittsburgh, Pa., USA, April 1988. 

[4] Boris Bokowski. CoffeeStrainer: Statically-checked constraints on the definition 
and use of types in Java. In Proceedings of the Joint 7th European Software 
Engineering Conference and 7th ACM SIGSOFT International Symposium on 
the Foundations of Software Engineering, September 1999. To appear. 

[5] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, . 
and Greg Nelson. Modula-3 report (revised). Technical Report 52, Digital 
Systems Research Center, November 1989. 

[6] Yih-Farn Chen, Michael Y. Nishimoto, and C.V. Ramamoorthy. The C in
formation abstraction system. IEEE Transactions on Software Engineering, 
16(3):325-333, March 1990. 

[7] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient and 
precise modeling of exceptions for the analysis of Java programs. In ACM 
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and 
Engineering (PASTE'99), September. 1999. To appear. 

[8] Flaviu Christian. Exception handling and software fault tolerance. IEEE Trans
actions on Computers, 31(6):531-540, June 1982. 

[9] Helen Custer. Inside Windows NT. Microsoft Press, Bellevue, Wa., USA, 1993. 

52 



[10] Manuel Fahndrich, Jeffrey Foster, Jason Cu, and Alexander Aiken. Tracking 
down exceptions in standard ML programs. Technical Report CSD-98-996, 
University of California, Berkeley, February 1998. 

[11] John B. Goodenough. Exception handling: Issues and proposed notation. Com
munications of the ACM, 18(12):683-696, December 1975. 

[12] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. 
Addison-Wesley Longman, Inc., 1996. 

[13] Juan Carlos Guzman and Ascander Suarez. A type system for exceptions. In 
Proceedings of the 1994 ACM SIGPLAN Workshop on ML and its applications, 
pages 127-135, June 1994. Research report 2265, INRIA. 

[14] Robert Harper, Robin Milner, and Mads Tofte. The Definition of Standard ML: 
Version 3. Technical Report ECS-LFCS-89-81, Laboratory for the Foundations 
of Computer Science, University of Edinburgh, May 1989. 

[15] Nevin Heintze. Set-Based Program Analysis. PhD thesis, Carnegie-Mellon 
University, Pittsburgh, PA, USA, October 1992. 

[16] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing us
ing dependence graphs. ACM Transactions on Programming Languages and 
Systems, 12(l):26-60, January 1990. 

[17] Daniel Jackson and Allison Waingold. Lightweight extraction of object models 
from bytecode. In Proceedings of the 21st International Conference on Software 
Engineering, pages 194-201, May 1999. 

[18] Mik A. Kersten and Gail C. Murphy. Atlas: A case study in building a web-
based learning environment using aspect-oriented programming. In Proceedings 
of the Conference on Object-Oriented Programming, Systems, Languages, and 
Applications, 1999. To appear. 

[19] Jun Lang and David B. Stewart. A study of the applicability of existing 
exception-handling techniques to component-based real-time software technol
ogy. ACM transactions on Programming Languages and Systems, 20(2) :274-
301, March 1998. 

[20] Barbara H. Liskov and Alan Snyder. Exception handling in CLU. IEEE Trans
actions on Software Engineering, 5(6):546-558, November 1979. 

53 



[21] Robert Miller and Anand Tripathi. Issues with exception handling in object-
oriented systems. In Proceedings of the 11th European Conference on Object-
Oriented Programming, volume 1241 of Lecture Notes in Computer Science, 
pages 85-103. Springer-Verlag, June 1997. 

[22] Frangois Pessaux and Xavier Leroy. Type-based analysis of uncaught excep
tions. In Proceedings of the 26th Symposium on the Principles of Programming 
Languages, pages 276-290, January 1999. 

[23] Martin P. Robillard and Gail C. Murphy. Analyzing exception flow in Java 
programs. In Proceedings of the Joint 7th European Software Engineering Con
ference and 7th ACM SIGSOFT International Symposium on the Foundations 
of Software Engineering, September 1999. To appear. 

[24] Saurabh Sinha and Mary Jean Harrold. Analysis of programs with exception-
handling constructs. In Proceedings of the International Conference on Software 
Maintenance, pages 348-357, November 1998. 

[25] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-
graph-based slicing of programs with arbitrary control flow. In Proceedings of 
the 21st International Conference on Software Engineering, pages 432-441, May 
1999. 

[26] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2nd 
edition, 1991. 

[27] Sun Microsystems, Inc. The Java Parser Generator. 
http://www.suntest.com/JavaCC/. 

[28] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, 
10(4):352-357, July 1984. 

[29] Kwangkeun Yi. An abstract interpretation for estimating uncaught exceptions 
in standard ML programs. Science of Computer Programming, 31:147-173, 
1998. 

[30] Kwangkeun Yi and Byeong-Mo Chang. Exception analysis for Java. In 
ECOOP'99 Workshop on Formal Techniques for Java Programs, June 1999. 
To appear. 

[31] Kwangkeun Yi and Sukyoung Ryu. Towards a cost-effective estimation of un
caught exceptions in SML programs. In Proceedings of the J^th International 
Static Analysis Symposium, volume 1302 of Lecture Notes in Computer Science, 
pages 98-113, September 1997. 

54 

http://www.suntest.com/JavaCC/


Appendix A 

Grammar for Jex Files 

A.l Notation 

In the production rules, the string representation of terminal symbols are displayed 

in boldface font and non-terminal symbols are shown in italic font. Special token 

parsed during the lexical analysis are underlined. The definition of a non-terminal 

symbol is introduced by the name of the symbol being defined followed by a colon. 

Symbols inclosed in square brackets ([]) are optional. Parenthesis can be used to 

indicate sets of related symbols-. An asterisk (*) indicates zero or more repetitions 

of a symbol or set of symbols. A plus sign (+) indicates one or more repetitions of 

a symbol,or set of symbols. A vertical bar (|) indicates different possibilities among 

a set. The epsilon (e) letter represents the null symbol. 

55 



A. 2 Grammar 

JexFile: ( MethodDeclarator Block )* EOF 

MethodDeclarator: SimpleMethodName FormalP arameters [ throws NameList ] 

SimpleMethodName: [<C>] IDENTIFIER 

NameList: Name ( , Name )* 

FormalP arameters: ( [ Type ( , Type )* ] ) 

Block: { ( ExceptionGet ; | ExceptionThrow ; | TryCatch )* } 

ExceptionGet: Name : ( environment | MethodName FormalP arameters) 

ExceptionThrow: throws Name 

TryCatch: try 5/ocA; ( catch ( Name ) 5/ocA; )+ [ finally Block ] 

Name: IDENTIFIER ( . IDENTIFIER)* 

MethodName: ( Name \ e ) SimpleMethodName 

Type: ( PrimitiveType | Name | Array Type ) 

ArrayType: ([)+ (( B | C | D | F | I | J | S | Z ) | ( L iVame .; )) 

PrimitiveType: ( boolean | char | byte | short | int | long | float | double ) 

56 



Appendix B 

Environment-Generated 

Exceptions 

The following is a list of all environment-generated exceptions supported by Jex. 

Every type of exception is followed by an enumeration of all the environment op

erations potentially raising the exception. The list is based on the Java language 

specifications [12]. 

• Java. lang.Ari thmeticException (multiplicative expression); 

• java. lang.ArrayStoreException (Assignment to an array element); 

• java.lang.ArraylndexOutOfBoundsException (array access); 

• java. lang.ClassCastExcept ion (cast expression); 

• java.lang.NegativeArraySizeException (array allocation); 

• java. lang.Nul lPointerExcept ion (field access, method invocation, array ac

cess); • 

• java.lang.OutOfMemoryError (additive expression with string arguments, allo

cation expression); 

57 


