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Abstract

Proofs of correctness of imperative programs are traditionally done in �rst order
frameworks derived from Hoare logic ��	
 On the other hand� correctness proofs
of purely functional programs are almost always done in higher order logics

In particular� the realizability ���	 allow to extract correct functional programs
from constructive proofs of existential formulae
 In this paper� we establish a
relation between these two approaches and show how proofs in Hoare logic can
be interpreted in type theory� yielding a translation of imperative programs into
functional ones
 Starting from this idea� we propose an interpretation of cor�
rectness formulae in type theory for a programming language mixing imperative
and functional features
 One consequence is a good and natural solution to the
problems of procedures and side�e
ects in expressions


Keywords� Program validation� Hoare logic� Realizability� Type Theory

R�esum�e

Les preuves de correction de programmes imp�eratifs sont traditionnellement faites
dans des th�eories du premier ordre d�eriv�ees de la logique de Hoare ��	
 D�un autre
c�ot�e� les preuves de correction de programmes purement fonctionnels sont le plus
souvent faites dans des formalismes d�ordre sup�erieur
 En particulier� la r�ealis�
abilit�e ���	 permet d�extraire des programmes fonctionnels corrects �a partir de
preuves constructives de formules existentielles
 Dans ce papier� nous �etablis�
sons une relation entre ces deux approches et montrons comment les preuves en
logique de Hoare peuvent �etre interpr�et�ees en th�eories des types� conduisant �a une
traduction fonctionnelle des programmes imp�eratifs
 Partant de cette id�ee� nous
proposons une interpr�etation des formules de correction en th�eorie des types pour
un langage de programmation m�elangeant des traits imp�eratifs et fonctionnels

Une cons�equence de cette interpr�etation est une solution simple et naturelle aux
probl�emes des proc�edures et des e
ets de bord dans les expressions


Mots�cl�es� Validation de programmes� Logique de Hoare� R�ealisabilit�e� Th�eorie des Types
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Abstract

Proofs of correctness of imperative programs are traditionally done in �rst order
frameworks derived from Hoare logic ���� On the other hand� correctness proofs of

purely functional programs are almost always done in higher order logics and are based
on the notion of realizability ����� In this paper� we establish a relation between these

two approaches and show how proofs in Hoare logic can be interpreted in type theory�
yielding a translation of imperative programs into functional ones� Starting from this

idea� we propose an interpretation of correctness formulae in type theory for a pro�
gramming language mixing imperative and functional features� One consequence is a

good and natural solution to the problems of procedures and side�e	ects in expressions�

Introduction

After having remained unexploited for a long time� the formalism known as Hoare logic has
�nally ended up in formal speci�cation languages� like Z ��	 or VDM ��	� and more recently
in real implementations of formal software validation methods� like the KIV project ���	 or
the B method ��	
 The programming languages handled by such methods are imperative and
the underlying logic appears to be mainly a �rst�order predicate calculus� usually based on
a set theoretical framework

Type theory is rather used to deal with correctness proof of purely functional programs�

because of the deep relation between typing and natural deduction � the so�called Curry�
Howard isomorphism �see ��	 for a good introduction to type theory�
 Moreover� the compu�
tational content of proofs in type theory� expressed by the notion of realizability� is naturally
written as a functional program

Actually� we can establish some connections between traditional Hoare logic and the no�

tion of realizability
 This relation naturally introduces a functional translation of imperative
programs� which is not like the one given by a traditional denotational semantics� but which
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yields programs rather close to the one we would have written ourselves
 Based on those
ideas� we propose a new interpretation of the correctness formula in type theory� with cor�
responding deduction rules ��a la Hoare�
 With such an interpretation� it is easy to extend
the programming language with functional features� and in particular with procedures and
functions� which had never been easily handled by traditional Hoare logic


This article is organized as follows
 In the �rst section� we quickly describe the two main
approaches to program validation i
e
 Hoare logic on one hand and realizability on the other
hand
 Then we show how they actually relate and what we can learn out of this relation
 In
the second section� we propose an interpretation of the correctness formula in type theory
and we give a corresponding set of deduction rules which is correct and complete
 In the third
section� we extend the programming language with functional features� giving a �rst way to
reason about procedures and functions
 In the fourth section� we give a better way to handle
procedures and functions in structured programs and this allow the treatment of recursive
functions
 Finally� we compare our approach of software validation to the traditional ones
and we discuss about the remaining work to get a real environment for program validation
based on the Calculus of Inductive Constructions as speci�cation language and on the Coq
Proof Assistant as prover


� Hoare Logic and Realizability

In this section� we shall compare the two traditional approaches of program validation for
both imperative and functional programs
 The relation that comes out of this comparison
will be the starting point of a new proposition for expressing the correctness of programs


��� Imperative programs and Hoare logic�

In the traditional approach to showing the total correctness of imperative program� the
formal semantics of a program p is de�ned as a relation between p and two stores � and � �
which states that the evaluation of p on the store � will terminate� with the resulting store
as � 
 Let us denote this relationship � p� � �� � 
 There are many ways to de�ne this
relation� depending on the programming language
 Here� for simplicity of presentation� let
us consider the imperative language with syntax�

C ��� skip j x �� I j C � C j if B then C else C j while� B do C done

where I stands for an integer expression and B for a boolean expression
 Since we are
interested in total correctness of programs� the while construct is annotated by a measure
�� which can be supposed here to be a natural number
 The usual semantics of such a
programming language is easy to de�ne and can be found in several places �e
g
 see ��	�

Then� the formal semantics of programs having been given� it is possible to de�ne the

notion of total correctness
 P and Q being predicates on the stores� the total correctness
formula fPg p fQg means �the evaluation of the program p on any store satisfying P termi�
nates and the resulting store satis�es Q�
 Since the programming language is deterministic�
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there is at most one execution of a program and thus the total correctness formula may be
written as�

���P ���� ��� � p� � �� � �Q�� �

To achieve the goal of verifying software� we must be able to check the validity of such
correctness formulae
 But such propositions are not easy to handle� since their de�nitions
involve a semantic relation
 Hoare logic solves this problem by introducing inference rules
� the so�called Hoare rules � based on the syntax of programs
 The rules corresponding
to our language are given in �gure �
 They are not only proved to be sound but also
complete� assuming that we are able to establish the validity of propositions appearing in
the consequence rule
 Then we have no longer to reason about the semantic relation� but
only about predicates on the stores


fPg skip fPg
�SkipP�

fP �x� t	g x �� t fPg
�AssignP�

fPg t� fRg fRg t� fQg
fPg t�� t� fQg

�CompositionP�

fP � b � trueg t� fQg fP � b � falseg t� fQg
fPg if b then t� else t� fQg

�ConditionalP�

fP � b � true � � � zg t fP � � � zg
fPg while� b do t done fP � b � falseg

�LoopP�

P � P� fP�g t fQ�g Q� � Q
fPg t fQg

�ConsequenceP�

Figure �� Hoare rules

��� Functional programs and realizability�

Things are easier in purely functional programming languages
 Indeed� programs are now
��terms� that are mathematical objects on which it is easy to reason and to compute
 As a
consequence� the semantic relation is now de�ned in terms of reduction �i
e
 equality� of the
program itself and the correctness formula becomes �x�P �x�� �y�y � p�x��Q�y�
 Usually�
we prefer to use a postcondition on both input and output� that is

�x�P �x�� �y�y � p�x� �Q�x� y�

There are nowadays several implementations of theorem provers based on ��calculi� in which
such formulae can be formally proved� such as HOL� LEGO� Nuprl� etc
 One of them is the
system Coq ��	� a Proof Assistant for the Calculus of Inductive Constructions ��� ��	 �CIC
for short�
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Conversely� let � be a constructive proof of a proposition S � �x�P �x� � �y�Q�x� y�

The notion of realizability ���	 associates a program to that proof� which is its computational
content
 In that case� it is a program p computing the output y from the input x� and
therefore � may be viewed as the proof of correctness of p
 There are several ways of
computing the realizer � the underlying program � and in the case of the CIC� this process
is called extraction ���	
 We shall denote the extracted program by E���
 We shall write
� � P when P is provable under the assumptions �� and � � P �p	 when the realizer is p

Then� proving that a particular functional program p satis�es the speci�cation S consists

in constructing a proof � of S such that E��� � p i
e
 a proof of � S �p	
 Actually� it
is possible to automatically construct some parts of � using p� in such a way that there
only remain some logical goals� called the proof obligations
 This methodology has been
implemented in the Coq Proof Assistant and is called the Program tactic� it is described
in ���	


��� How do they relate �

Even though the �rst approach deals with imperative programs and the second with func�
tional ones� they may be related
 Indeed� let us interpret the total correctness formula
fPg p fQg for an imperative program p� as the proposition P �x� � �y�Q�y� in the CIC�
where x and y are tuples representing respectively the initial and the �nal stores of p
 Then
the Hoare rules given in �gure � are valid for this interpretation
 As a consequence� any proof
of fPg p fQg in Hoare logic gives a proof � in the CIC of the proposition P �x� � �y�Q�y�

And then the natural question is� what is E��� �
With our interpretation of the total correctness formula� E��� is a functional term taking

the input x of the program p and returning the output y� it is a functional translation of
the imperative program p
 Let us take a small example and see how it works


Example � Let us consider the program p � �y �� y � x � x �� x 	 �� and the total
correctness formula fPg p fQg where P � �x � � � y � �� and Q � �x � � � y � ��� It can
be derived using Hoare rules as follows� using the intermediate predicate R � �x � ��y � ��

	� fx � � � y � x � �g y �� y � x fRg

fPg y �� y � x fRg

	� fx	 � � � � y � �g x �� x	 � fQg

fRg x �� x	 � fQg

fPg p fQg

where 	� is the proposition ��x� y��x� � � y � �� x � � � y� x � � and 	� the proposition
��x� y��x� � � y � �� x	 � � � � y � ��

Let us translate it into a constructive proof of P �x� y� � ��x�� y���Q�x�� y��� The logic rules
are given in appendix� �gure �� The only rules we need here are introduction and elimination
of �� which are the following�

� � L�t�

� � �x�L�x� �t	
���intro�

� � �x�L�x� �t	 �� L�x� � P �e	 x 

 �� P

� � P �let x � t in e	
���elim�

�



Thus the previous deduction gives the proof

P �x� y� � R�x� y � x�

P �x� y� � ��x�� y���R�x�� y�� ��x� y� x�	

P �x� y�� R�x�� y�� � Q�x� 	 �� y��

P �x� y�� R�x�� y�� � ��x
�� y���Q�x�� y�� ��x� 	 �� y��	

P �x� y� � ��x�� y���Q�x�� y�� �let �x�� y�� � �x� y � x� in �x� 	 �� y��	

So we get a program computing the new values of x and y which is p�x� y� � let x�� y� �
x� y � x in x� 	 �� y��

�

This example highlights two features
 First� the extracted program is exactly the one we
would have written �by hand�� in the sense that it takes the values of the store necessary for
the computation �x and y� and returns the values of the store modi�ed by the computation
�x� and y�� as x	 � and y � x�
 So it is closer to the mathematical meaning of p than usual
representations in denotational semantics as store transformers that take the whole store
and return the whole store� even when only few variables are read or written

Secondly� it is much simpler to prove the correctness formula P �x� y� � ��x�� y���Q�x�� y��

by giving the functional term f � let x�� y� � x� y � x in x� 	 �� y� and trying to construct
of proof � such that E��� � f 
 Using the Program tactic� it remains to prove only one proof
obligation�

x � � � y � � � x	 � � � � y � x � �

Actually� it is exactly the computation of weakest preconditions in Hoare logic


Weakest preconditions� Given a program p and a postcondition Q� there exists a propo�
sition wp�p��Q�� called the weakest precondition of p with respect to Q� such that fPg p fQg
holds if and only if P � wp�p��Q� holds
 In particular� we have fwp�p��Q�g p fQg

In the general case� the proposition wp�p��Q� is not computable � this is a consequence

of G�odel�s incompleteness theorem
 But it becomes computable for the fragment without
loops
 For instance� in example �� we have that wp�p��Q� � x 	 � � � � y � x � �

Since proving the correctness formula is proving that the precondition implies the weakest
precondition� we have to prove that x � � � y � � � x	 � � � � y � x � �


Auxiliary variables� It is often necessary to relate the values of variables at di
erent
moments of execution� typically before and after a sequence of instructions� and the solution
is to use auxiliary variables
 These are logical variables� distinct from the variables of the
program �i
e
 of the store�� which are implicitly universally quanti�ed in the correctness
formulae

For instance� when writing a speci�cation of the factorial function one could write some�

thing like fg p fy � x�g� but the trivial program x �� � � y �� � will realize this speci�cation

So one should write a correctness formula like fx � x�g p fy � x��g where x� is an auxiliary
variable whose role is to relate the �nal value of y with the initial value of x

Notice that auxiliary variables are fresh variables not appearing in the program� which

are implicitly universally quanti�ed
 We shall illustrate the use of auxiliary variables in the
example of the next paragraph
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Loops and recursion� Since we are interested in total correctness� we have to face the
problem of the proof of termination of programs
 In both formalisms� this proof is related to
a well�founded order relation
 In the case of imperative programs� the proof of termination is
done by giving a quantity �which can be sometimes automatically determined� that strictly
decreases for a well�founded order relation
 Most often� this order is the usual order relation
on natural numbers
 In higher�order logics� and in particular in the CIC� we can de�ne new
order relations and prove that they are well�founded
 Then we can prove propositions by
well�founded inductions i
e
 applying an induction principle of the kind

�P���x���y�y � x� P �y��� P �x��� �x�P �x� ���

To understand the relationship between loops in Hoare logic and recursion� let us prove
the validity of the Hoare rule for loops when the correctness formula is interpreted by P �x� �
�y�Q�y�
 We assume that the premise of �LoopP� is true i
e


P �x�� b�x� � true� ��x� � z � �y��P �y� � ��y� � z� ���

and we have to prove that P �x� � �y��P �y� � b�y� � false�
 To establish that fact� let us
prove the strongest property ���� ����� where

 ���� � �x���x� � �� � P �x�� �y��P �y�� b�y� � false�

by well�founded induction on �� and the result will follow by an instantiation of �� by ��x�

A proof by well�founded induction corresponds to the rule with realizer

�� f � �x��x� � x� Q�x�� � Q�x� �e	

� � Q�x� �let rec f x � e in f x	

Therefore we have to establish that f � IH� ��x� � ��� P �x� � �y��P �y�� b�y� � false� where

IH � ������ � �� � �x���x� � �� � P �x�� �y��P �y� � b�y� � false�

At this step� we reason by case on the value of b�x�� which corresponds to the rule

�� b � true � Q �e�	 �� b � false � Q �e�	

� � Q �if b then e� else e�	

The case of the right premise �b�x� � false� is easy� we just have to take y � x
 In the
other case �b�x� � true� we use the hypothesis ��� with z � �� and we get an x� such that
P �x�� � ��x�� � �� holds
 Then we can apply the induction hypothesis IH on �� � ��x��
and x � x� and the result holds
 �

Putting all together� the realizer associated to the derivation of fPg while� b do t done fP�
b � falseg is the program

let rec f x � if b then let x� � e�x� in f x� else x in f x

where e�x� is the realizer associated to the derivation of fP �b � true�� � zg t fP �� � zg
i
e
 to the body of the loop
 Notice that this recursive function expresses an unfolding of
the loop which is traditionally written as the following equivalence�

while b do t done � if b then �t � while b do t done� else skip

Let us illustrate this relationship between loops and recursion on an example
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Example � Let us consider the factorial function� We choose the following implementation

p � y �� � � while x � � do y �� y � x � x �� x	 � done

and we wish to prove the following correctness formula

S � fx � x� � x � �g p fy � x��g

The derivation of the correctness proof is quite lengthy and so we present it in a sequential
manner� omitting the trivial steps�

fx � x� � x � �g
y �� � �
fy � � � x � x� � x � �g Assign � Consequence

fx�� y � x�� � x � �g Consequence

whilex x � � do

fx�� y � x�� � x � � � x � � � x � zg
y �� y � x �
x �� x	 �
fx�� y � x�� � x � � � x � zg � � Assign � Consequence

done

fx�� y � x�� � x � � � x 
 �g Loop

fy � x��g Consequence

As for example �� this derivation in Hoare deduction calculus can be translated into a
constructive proof in the CIC of the proposition x � x� � x � � � ��x�� y���y� � x��� Let � be
that proof� Then� after having reduced some let in constructs� we get

E����x� y� � let rec f �x� y� � if x � � then f �x	 �� y � x� else �x� y� in f �x� ��

We can see that E��� is a function computing the new values of x and y from their initial
values� very close to the usual way to write the factorial function �except that� in that case�
we have an extra argument y and an extra result x	�

�

� Program correctness in Type Theory

Following the ideas developed in the previous section� we would like to mix features from
Hoare style and type theoretic frameworks to get an improved methodology for showing
correctness of imperative programs
 We keep the same small imperative language for the
moment

As we explained before� our main purpose is the possibility to express the correctness

formula in the same logical language as speci�cations� and not only in a meta�level logical
language as it is usually done
 Then� the correctness formula being a proposition fully
expressible in the logic� we can prove it as we want� using the full expressiveness and power
of higher order
 Of course� we shall also give a methodology similar to the Hoare deduction
rules to automate a large part of correctness proofs
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Before�after predicates� Firstly� an obvious requirement is the ability to use before�
after predicates in postconditions� i
e
 to speak of the values of variables before and after the
computation
 Indeed� in the classical correctness formulae� we can only speak of the values
after the computation� and this restriction implies a huge use of auxiliary variables� as we
illustrated in the previous section
 For instance� the speci�cation languages of VDM and Z
both provide a way to refer to the old values of objects

Let V be the set of the variables of the store
 Let V � be a copy of V that belongs to

a distinct syntactic class� say� for instance� that the variables of V � are written with a �
and those of V are not
 Then� a precondition is a predicate over the variables of V and a
postcondition is a predicate over the variables of V and V �
 The variables of V � represent the
values of the variables after the computation
 For instance� the speci�cation of the factorial
function will become fg p fy� � x�g


Correctness formulae expressed in type theory� We explained that we prefer a cor�
rectness formula that we can fully express in our logical framework� in such a way that we
can handle it and prove it as we want
 So� instead of having a semantic �mathematical�
de�nition of the proposition 
the program p evaluated on the initial store � terminates on
the store ��� we will prefer to express it directly as a computation
 To achieve this goal�
we consider a functional translation of the imperative program p� that is a function taking
the input of the program and returning its output
 But instead of taking and returning a
whole store� as in denotational semantics� we will consider a functional program which takes
only the values which are necessary for the computation and returns the minimal �nite set
of values �possibly� assigned by the program

Such a functional translation for the small imperative programs we are considering here is

easy to de�ne
 It is a particular case of more general ways to translate imperative programs
into functional ones
 For instance� P
W
 O�Hearn and J
 C
 Reynolds recently described how
to translate Algol programs into a purely functional language� in an unpublished article ���	

Independently� we introduced another way to do such translations based on monads� this
work is described in ��	
 Without entering into technical details� let us brie!y describe what
we mean by this functional translation
 Let p be a program and Xp � var�p� the set of its
variables
 Then a functional translation of p is a functional term p of type intXp � intXp�
where intXp is the space of functions from Xp to int
 p is assumed to have the same semantics
as p i
e
 for all stores � and � � of type intV � we have

� p� � �� � �� �y� � �y� �

�
p��jXp

��y� if y 
 Xp

��y� if y 

 Xp

where �jXp
is the restriction of � to the domain Xp
 If X is a set of variables including Xp

we denote by pX the canonical extension of p to a function of type intX � intX �i
e
 such
that pX�f��x� � f�x� if x 

 Xp and pX�f��x� � p�fjXp

��x� otherwise�

Now� let us de�ne the correctness formula
 A precondition is a predicate P over some

variables of V and a postcondition is a predicate Q over some variables of V and some
variables of V �
 Then let X be the union of all these variables � taken in V � and of the
variables of var�p�
 Let A be the set of auxiliary variables appearing in both P and Q
 Then

�



the interpretation of the correctness formula fPg p fQg is de�ned as

��fPg p fQg		
def
� P �X�� �X ��X � � pX�X� �Q�X�X

�� ���

where X and X � are sets of variables of type int in this formula� but considered as functions
of type intXp in the equality X � � pX�X� in order to simplify the notation
 Notice that the
variables of X and A are free in this proposition


Note� It is possible to de�ne this interpretation using p instead of pX � expressing this
way the fact that some variables of V � in Q are actually not modi�ed by p� but we chose this
formulation here in an attempt to simplify the presentation


Proof system� We now give a proof system for the new notion of correctness formulae

This system� called F � is given in �gure �
 We write �F fPg p fQg when the correctness
formula fPg p fQg is derivable using F 
 These rules need some comments
 The rules for

fQ�X�X�g skip fQ�X�X ��g
�SkipF�

fQ�X�X�x� t	�g x �� t fQg
�AssignF�

fP �X�g t� fR�X�X
��g fR�Xi�X�g t� fQ�Xi�X

��g
fP �X�g t�� t� fQ�X�X

��g
�CompositionF�

fP �X� � b � trueg t� fQ�X�X
��g fP �X� � b � falseg t� fQ�X�X

��g
fP �X�g if b then t� else t� fQ�X�X

��g
�ConditionalF�

fQ�Xi�X� � b � trueg t fQ�Xi�X
�� � ��X � X �	 � �g

fQ�X�X�g while� b do t done fQ�X�X
�� � b�X � X �	 � falseg

�LoopF�

P � P� fP��X�g t fQ��X�X
��g Q� � Q

fP �X�g t fQ�X�X ��g
�ConsequenceF�

Figure �� new deduction rules �to establish �F fPg p fQg�

skip� assignment� conditional and consequence are somewhat similar to the traditional ones
and are easy to understand
 In the rule for composition� some fresh auxiliary variables Xi

are introduced in the right premise
 They represent the values of the variables before the
evaluation of the sequence t� � t�� whereas X in the right premise would have refered to the
values before the evaluation of t� i
e
 in the intermediate state of the sequence
 Similarly�
the auxiliary variables Xi in the rule for loop represent the values of the variables before the
evaluation of the whole loop� while X and X � in the premise refer to the values before and
after one evaluation of the body t of the loop

As for the traditional deduction system of Hoare rules� we have the following results


Proposition � �Soundness� The proof system F is sound� i�e�

�F fPg p fQg � ��fPg p fQg		 is true

�



Proof outline� The proof is straightforward
 For each deduction rule� we have to prove
that the conclusion is a consequence of the premises
 The only subtle case is for the loop�
where we have to apply a well�founded induction principle
 �

Proposition � �Completeness� The proof system F is complete� i�e�

��fPg p fQg		 is true � �F fPg p fQg

Proof outline� The proof is quite standard� following traditional ones as in ��	
 We
�rst introduce a notion of weakest precondition such that fPg p fQg holds if and only if
P � wp�p��Q� holds
 Here� the weakest precondition is directly de�ned as

wp�p��Q�
def
� �X ��X � � pX�X� �Q�X�X

�� ���

Then it is only necessary to prove that �F fwp�p��Q�g p fQg and the result will follow
using the consequence rule
 To establish this fact� we prove some properties of the weakest
precondition


Proposition � The weakest precondition satis�es the following properties�

��� wp�skip��Q�X�X ���� Q�X�X�

��� wp�x �� t��Q�X�X ���� Q�X�X�x� t	�

��� wp�t�� t���Q�X�X ���� wp�t����wp�t���Q�Xi�X
�����X � X �	�Xi � X	�

��� wp�if b then t� else t���Q�X�X ���
� if b then wp�t���Q�X�X ��� else wp�t���Q�X�X ���

��� wp�while� b do t done��Q�Xi�X
��� � b � true

� wp�t���wp�while� b do t done��Q�Xi�X
�����X � X �	�

��� �wp�while� b do t done��Q�Xi�X
�����X � X �	 � b�X � X �	 � false� Q�Xi�X

��

Notice that those properties of wp allow us� for the fragment without loops� to compute it
recursively from the structure of the program


�

These results show how it is possible the give a precise de�nition of the total correctness
formula in presence of before�after predicates and auxiliary variables� a correct and complete
deduction calculus ��a la Hoare� being still de�nable
 It now becomes important to move a
step further and to study the case of a more realistic programming language


� A logic for real programming languages

��� The programming language Real�

Let us consider now a more powerful programming language� called Real� that mixes impera�
tive and functional features
 On one hand� in contrast with purely imperative programming

��



languages� a program is no longer a sequence of commands� but is now an expression of
atomic type� and we have now functions �procedures are just functions returning a value of
type unit�
 On the other hand� in contrast with purely functional languages� we still have
references� sequences and loops

Atomic types �A� are the type bool of booleans� the type int of integers and the type

unit of commands
 Base types �B� are either atomic types or types of references on integers�
written int ref
 Access to the value of the reference x is written �x
 Functions have types
of the form B� � � � � � Bn � A� which means that functions take either arguments by
values or by references and return values of atomic types
 To simplify the presentation� we
assume that arguments passed by values are given �rst and then those given by references

We do not consider here the case of partial applications
 Notice that the presence of local
references �let ref� allow us to have local variables in functions

Programs are closed expressions that follow the syntax given in �gure � and that are

correctly typed with respect to the typing rules given in the appendix� �gure �


M ��� v values
j x variable
j �x access
j x �� M store
j M � M sequence
j if M then M else M conditional
j while� M do M done loop
j let x � ref M in M new reference

j �op M � � �M� app
 of primitive operation
j ��x � B	 � � � �x � B	M M � � �M� app
 of function

Figure �� Syntax of Real

��� Correctness formulae�

Since programs are now expressions� we have to extend the notion of postcondition to es�
tablish properties of the result of programs
 For this purpose� a postcondition will now be a
predicate over the variables of V and V �� and also over a special variable r that stands for
the result of the program
 Moreover� the functional translation of a program p of type A is
now a term p of type intXp � intXp � A� i
e
 a term that takes the values of the variables
used by p and that returns the new values of these variables together with the result of p

Then we can de�ne the correctness formula� which is somewhat similar to the correctness

formula ��� de�ned in the previous section
 With the same notations as before� we de�ne

fPg p fQg
def
� P �X�� ��X �� r���X �� r� � pX�X� �Q�X�X

�� r� ���

Notice that the value of the reference x is written �x inside programs to avoid confusion with
the reference itself� but is directly written x in the logical propositions


��



��� Deduction rules�

The new deduction rules to establish correctness formulae are given in appendix� �gure � on
page ��
 They di
er quite a lot from the classical Hoare rules� mainly because expressions
can now cause side e
ects and must be treated as programs
 See for instance the rule �store�
of assignment which is now completely di
erent from the rule �assignF� given in �gure �
page �
 The rule for the loop has also changed
 The idea is still to prove that an invariant
holds during the whole execution of the loop� but the di
erence is now that the test b is any
expression of type bool� and may cause some side�e
ects
 Therefore� instead of just writing
b � true at the entrance of the loop and b � false at its exit� we can use any predicate R
 If b
is purely functional we can choose for R the predicate b � r� then the �rst premise becomes
trivially true and we �nd again the same rule as before �see �gure ��

The rules for application may seem complicated because they are given in their full

generality� for any arity
 �Notice that we chose to evaluate arguments of functions from
left to right
 We could have chosen to do the converse� but in presence of side�e
ects it
would have given a completely di
erent semantics to our language�
 These rules are easy to
understand and quite natural when instantiated on small arities
 Let us give some examples


Unary operation� For a primitive unary operation op we get the deduction rule

fP �X�g e fQ�X�X �� �op r�g

fP �X�g �op e� fQ�X�X �� r�g

Binary operation� For a primitive binary operation op we get the deduction rule

fP �X�g e� fR�X�X
�� rg fR�X��X� v�g e� fQ�X��X

�� �op v� r�g

fP �X�g �op e� e�� fQ�X�X
�� r�g

Function application� Let us consider the case of a function taking two arguments� the
�rst one by value� of type int� and the second by reference� of type int ref
 Then the
deduction rule is

fP �X�g e� fR�X�X
�� r�g fR�X��X� x��y� z	g e fQ�X��X

�� r��y� z	g

fP �X�g ��x � int	�z � int ref	e e� z� fQ�X�X
�� r�g

where �y � z	 stands for the substitution of y by z in X� X � and X�
 In the right
premise� the auxiliary variables X� represent the values of variables before the whole
execution of the ��redex� this is similar to what is done in the rule for composition�
and this will be justi�ed in the next paragraph


Let us give some examples of correctness proofs with this new system


Example � First� let us consider a trivial correctness proof� Let p be the program x �� �x"��
without any precondition and with the postcondition Q � x� � x� The deduction is the
following

x" � � x fx" � � xg �x fr" � � xg

fg �x fr" � � xg fv� " � � x�g � fv� " r � x�g

fg �x" � fr � xg

fg x �� �x" � fx� � xg

��



and so the only logical premise to prove is

x" � � x

�

Example 	 Then� let us illustrate how it works with a function application� Let f be the
function that augments a reference with a given value� that is

f � �x � int	�y � int ref	y �� �y " x

Let p be the program �f � z� with the precondition P � z � � and the postcondition Q �
z� � �� The derivation is the following

D

fy " x � �g �y fr" x � �g fv� " x � �g x fv� " r � �g

fy " x � �g �y " x fr � �g

fy " x � �g y �� �y " x fy� � �g

fz � �g �f � z� fz� � �g

where D is the derivation

z � �� z " � � � fz " � � �g � fz " r � �g

fz � �g � fz " r � �g

and so the only logical premise to prove is

z � �� z " � � �

�

Application as a let in construct� It is important to notice that the rule for function
application is not really a rule of ��reduction� since there is no real substitution of the formal
arguments by the real ones
 It is better to see it as a sequence of bindings of several values
in an expression i
e
 as a sequence of let in constructs
 Indeed� a ��redex may be rewritten
like this

��x� � A�	 � � � �xk � Ak	e e� � � � ek� � let x� � e� in let x� � e� in � � � let xk � ek in e

By the way� we could add the construct let x �M in M to the syntax of our language Real�
and the corresponding deduction rule would be

fP �X�g e fR�X�X �� r�g fR�X��X� x�g e
� fQ�X��X

�� r�g

fP �X�g let x � e in e� fQ�X�X �� r�g

Using this deduction rule for each argument ei of the function� and some substitutions for
the arguments which are references� we �nd again exactly the same rule as the rule ��� given
in �gure �� page ��


��



Actually� it is possible to consider a let in construct as a sequence� by introducing a new
reference variable
 Indeed� we can write let x � e in e� � x �� e � e��x ��x	
 Then� a
function application can be considered as a sequence of assignments followed by the body of
the function i
e


��x� � A�	 � � � �xk � Ak	e e� � � � ek� � x� �� e� � � � � � xk �� ek � e�xi ��xi	

with still some substitutions for the references given as arguments
 Seen like this� the rule
for function application becomes really obvious

But it is clearly not the good way to handle functions and that is the problem we shall

consider in the next section


� Structured programming and recursive functions

Until now we have considered a program as a single closed term
 It is clear that this is not the
case in practice and that programs are split into some more or less elementary functions
 And
so must be the correctness proofs
 The idea is to associate a correctness formula fPfg f fQfg
to the de�nition of each function f � ��x	��z	e
 To prove it is just proving it for the body e

It is expressed by the following rule

fPf �X�g e fQf�X�X
�� r�g

fPf �X�g �f x� � � � xk z� � � � zn� fQf�X�X
�� r�g

�Abstraction�

Once the correctness formula for f is proved� or assumed� it can be used to do other correct�
ness proofs and it should not be necessary to look again at the body of f 
 So correctness
proofs are now done in environments of the kind

� ��� � j �� �A��X�fPf�X�g f fQf �X�X
�� r�g

where A stands for the auxiliary variables appearing in the correctness formula of f 
 The
variables of A and those of X must be abstracted in the correctness formula since this one
may be used in di
erent contexts

Then� one could think that the consequence rule is exactly the rule we need to use

informations of the context� but that is not so
 Indeed� suppose for instance that we have
speci�ed a function f that augments a reference with a given value i
e
 we assume the
correctness formula fg �f x y� fy� � y " xg to be in the context
 Then we want to use this
assumption to prove the correctness formula fz � �g �f � r� fr� � r"�� z� � �g
 Omitting
the premise corresponding to the evaluation of the �rst argument� �� an application of the
consequence rule would give us the premises�

z � �� True fg �f � r� fr� � r " �g r� � r " �� r� � r " � � z� � �

fz � �g �f � r� fr� � r " � � z� � �g

and clearly the third one is not provable
 Indeed� two main facts are not expressed by the
consequence rule� �rstly that z � � should still be available to establish the postcondition�
and secondly that z is not modi�ed by f �so that we can replace z� by z�


��



Actually� each of these two problems can be easily solved
 Firstly� the fact that the
precondition still holds after the computation � as a predicate of the variables representing
the old values� of course � is expressed by the following rule�

fP �X�g e fQ�X�X �� r�g

fP �X�g e fP �X� �Q�X�X �� r�g
�Persistence�

which is clearly sound

Secondly� the fact that some variables are not modi�ed by a program is expressed by the

following rule�

fP �X�g e fQ�X�Y�X �� r�g Y � var�e� � �

fP �X�g e fQ�X�Y ��X �� r�g
�Identity�

which is also sound since eX is the identity on the variables of X that do not belong to var�e�


Function application� Since the two previous rules can be used anywhere� it is di#cult
to use them signi�cantly in an automatic application of the deduction rules
 But we can
actually restrict their use to function application
 The rule we propose for application �app�
is given in appendix� �gure �
 Let us illustrate it on the example of a function taking two
arguments� one by value and one by reference
 The corresponding rule is�

fP �X�g e fR�X�X �� r�g R�X��X� x�� Pf �X��z� y	

R�X��X� x� � Qf�X�X �� r��z� y	� Q�X�� Y�W �� r� Y � var�f� � �

fP �X�g �f e y� fQ�X�Y ��W �� r�g

under the assumption that a correctness formula for f of the kind fPfg �f x z� fQf�X�X �� r�g
belongs to the context
 This rule illustrates the fact that we �rst evaluate the argument e�
leading to a predicate R� then we have to prove that the precondition Pf of the function is
true under the assumption R and �nally we have to establish the postcondition Q under the
assumptions R and Qf 


Recursive functions� We are now in position to deal with recursive functions
 As do the
loops� the recursive functions also carry an argument of well�founded induction� as a quantity
�
 So recursive functions will be written Rec� f � �x�	 � � � �xn	e
 Since we have now a rule
for function application� the only thing to do is to give a rule to establish the correctness of
a recursive function
 The idea is to prove the correctness formula under the assumption that
it holds for smaller calls of the function� in the sense of the well�founded induction

So� writing explicitly the context � in which we do the correctness proof� the rule to

derive the correctness formula for a recursive function F � Rec� f � ��x	e is the following�

���Y�fP �Y � � ��Y � � ��X�g �f �y� fQ�Y� Y �� r�g � fP �X�g e fQ�X�X �� r�g

� � fP �X�g �F �x� fQ�X�X �� r�g
�Rec�

We have shown in this section that it is possible to keep the structure of programs when
doing correctness proofs� by associating a correctness formula to each function
 This way�
it enables modularity in correctness proofs� in the sense that it is possible to assume and to
use the speci�cation of a function without having to implement it� which is crucial in real
software validation


��



� Conclusion and future work

Two main ideas summarize what we have presented in this paper
 First� we have proposed
a correctness formula for imperative programs in Type Theory
 The main advantage is that
there are several robust implementations of theorem provers for type theoretic frameworks
�HOL� Coq� PVS� etc
�
 Moreover� they are general provers i
e
 in which we can de�ne new
notions and prove new theorems
 This is not the case in specialized provers for one particular
logic

Let us compare our approach to the approach of the B method ��	
 There are not so many

di
erences in the proof obligations� even if types allow not to consider proof obligations of
the kind t 
 int since they are treated by the decidable typing judgment
 But the way the
proof obligations are generated and proved are really di
erent
 Indeed� in the case of the B
method� the proof obligations are generated from the speci�cations by an external program�
the proof obligations generator� and passed to another program� the prover� which tries to
prove them using a huge database of logic rules �more than �����
 In case of failure� it is
possible to add unjusti�ed axioms in the database of the prover
 The speci�cations and the
proof obligations do not belong to the same logic� actually� the correctness formula is not
even expressed

In our approach� on the contrary� the correctness formula is expressed in the same logic

as the speci�cations
 The generation of the proof obligations is now just a particular tactic
to help the user in proving the correctness formulae
 Therefore� if the user need more notions
and more theorems to ful�ll its proof �a proof of well�foundness for instance� he can use the
all power of the theorem prover to do so

The second main result of this paper is the extension of what was traditionally done

for imperative programming languages with functional features� still keeping a set of Hoare
deduction rules and a notion of weakest precondition
 Then it was rather easy to give sound
deduction rules for functions� even recursive ones
 In the way� this proof of correctness of
imperative programs is no longer restricted to imperative programming languages like C�
Pascal or ADA� but can be applied to functional languages with imperative features� like
SML or Objective Caml� which has never been done previously to our knowledge


A step further� A lot of work is currently in progress to get a real environment for
program validation in the Calculus of Inductive Constructions
 Firstly� we must de�ne a
functional translation of imperative programs� which is necessary to de�ne the correctness
formula
 This translation has to be proved correct with respect to the semantics of the
programming language
 This is described in a forthcoming paper ��	

But this alone is not enough� of course
 We would like to add two main aspects to the

programming language� which are data�types and exceptions
 Concerning data�types� the
case of arrays or tuples is quite easy to handle but the general case of recursive data�types
� with mutable parts � is not
 But this is necessary to prove real programs dealing with
lists� trees� etc
 Exceptions are also a fundamental aspect in real software development and
they have to be understood on the point of view of correctness
 This work is still in progress


��
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Logical propositions� L
Informative propositions� P ��� L j L� P j �x�P j �x�L
Realizers� e ��� t j �x�e j �e e� j if t then e else e

j let x � e in e j let rec x � e in e �t is a term�
Proofs environments� � ��� � j �� L j �� x � P

� � L�t�
� � �x�L�x� �t	

� � �x�L�x� �t	 �� L�x� � P �e	 x 

 �� P
� � P �let x � t in e	

� � P �x� �e	 x 

 �
� � �x�P �x� ��x�e	

� � �x�P �x� �e	
� � P �t� ��e t�	

�� L � P �e	
� � L� P �e	

� � L� P �e	 � � L
� � P �e	

�� b � true � P �e�	 �� b � false � P �e�	
� � P �if b then e� else e�	

�� f � �x��x� � x� P �x�� � P �x� �e	
� � P �x� �let rec f x � e in f x	

Figure �� Logic rules

Atomic types� A ��� unit j bool j int
Base types� B ��� A j int ref
Typing environments� � ��� � j x � B��

� � v � type of v
x � B 
 �
� � x � B

� � x � int ref
� ��x � int

� � x � int ref � � e � int
� � x �� e � unit

� � e� � unit � � e� � A
� � e� � e� � A

� � e� � bool � � e� � A � � e� � A
� � if e� then e� else e� � A

� � b � bool � � e � unit
� � while� b do e done � unit

� � e� � int �� x � int ref � e � A
� � let x � ref e� in e � A

op � A� � � � � � An � A � � ei � Ai i � �� � � � � n
� � �op e� � � � en� � A

�� x� � B�� � � � � xn � Bn � e � A � � ei � Bi i � �� � � � � n
� � ��x� � B�	 � � � �xn � Bn	e e� � � � en� � A

Figure �� Typing rules for Real
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fQ�X�X� v�g v fQ�X�X �� r�g
�value�

fQ�X�X� x�g x fQ�X�X �� r�g
�variable�

fQ�X�X� x�g �x fQ�X�X �� r�g
�access�

fP �X�g e fQ�X�X ��x� � r	� voidg
fP �X�g x �� e fQ�X�X �� r�g

�store�

fP �X�g e� fR�X�X
�� r�g fR�Xi�X� voidg e� fQ�Xi�X

�� r�g
fP �X�g e�� e� fQ�X�X

�� r�g
�sequence�

fP �X�g e� fR�X�X �� r�g

fR�Xi�X� trueg e� fQ�Xi�X
�� r�g

fR�Xi�X� falseg e� fQ�Xi�X �� r�g
fP �X�g if e� then e� else e� fQ�X�X

�� r�g
�if�

fQ�Xi�X�g b fI�Xi�X
�� r�g fI�Xi�X� true�g e fQ�Xi�X

�� � ��X � X �	 � �g
fQ�X�X�g while� b do e done fQ�X�X �� �R�X�X �� false�g

�loop�

where I�X�X �� r� � Q�X�X �� �R�X�X �� r�

fP �X�g e� fR�X�X
�� r�g fR�Xi�X� xg e� fQ�Xi�X

�� r�g
fP �X�g let x � ref e� in e� fQ�X�X

�� r�g
�new ref�

Primitive operation

fP �X�g e� fR��X�X
�� r�g fRi���X��X� vi��g ei fRi�X��X

�� r�g i � �� � � � � n
fP �X�g �op e� � � � en� fQ�X�X

�� r�g
�op�

where Rn�X�X �� r� � Q�X�X �� �op v� � � � vn�� r��

Function

fP �X�g e� fR��X�X �� r�g fRi���X��X� xi���g ei fRi�X��X
�� r�g i � �� � � � � k

fRk�X��X� xk��yi � zi	g e fQ�X��X �� r��yi � zi	g
fP �X�g �f e� � � � ek y� � � � yn� fQ�X�X

�� r�g
���

where f � �x� � A�	 � � � �xk � Ak	�z� � int ref	 � � � �zn � int ref	e

fP �X�g e� fR��X�X
�� r�g fRi���X��X� xi���g ei fRi�X��X

�� r�g i � �� � � � � k
Rk�X��X� xk�� Pf �X��zi � yi	

Rk�X��X� xk� � Qf�X�X �� r��zi � yi	� Q�X�� Y�W �� r� Y � var�f� � �
fP �X�g �f e� � � � ek y� � � � yn� fQ�X�Y

��W �� r�g
�app�

Figure �� Deduction rules for Real
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