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Abstract

This investigation examines the average distribution of the components and cycles of a
random function. Here we refer to the mappings from a finite set of, say, n elements into
itself; denoted by rn. Suppose the elements of rn are assigned equal probability, i.e.
P(y) = n-", 1ern. The directed graph that is naturally associated with ¥y consists of
several components, each with a unique cycle. Define Xn(s,t)(1) as the number of
components in y containing at Teast the fraction s of the total number of nodes, with the

1/2

size of each component’s cycle not exceeding tn We show that the expected value of

Xn(s,t) can be approximated by the double integral

Lo U ey
EX (s,t) = [ [ — ————— dydx
t o Jox x3( 1-x)

The average number of components of a given size with cycles of a specified length
approximately equals the volume under the graph of the integrand. This expression can be
used to estimate the probability that a function has a component which contains a

significant percentage of the total number of nodes and yet its cycle is relatively small.
Introduction

Random functions often arise as a model for the pseudo-random functions generated by

a cryptosystem. Typically, the experiments performed on the latter are concerned with the
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size of its components and the length of the corresponding cycles. It is natural then to
address similar problems for random mappings. This paper analyses the expected number
components of a given size that contain cycles of a specified length. The asymptotic
expression of this average value for random mappings provides some insight into the

behavior of pseudo-random functions.

To better understand Hellman’s time-memory cryptanalytic scheme [1], Hellman and
Reyneri [2] estimated the expected size of the largest component of a random function.
They compare this value with the average size of the largest component of the pseudo-
random functions generated by the Data Encryption Standard (DES). In this case they
considered mappings f(-) from the Key-space into itself. Specifically, the functional
value f(k) was defined by applying the DES operation Sk(') to a fixed plaintext block P0
and then reducing the 64-bit block Sk(Po) to 56-bits through a reduction operation R(-),

f(k) = R(Sk(PO)) .

Choosing a different plaintext block defines a new function. They found their statistical

tests to be in close agreement with the expected outcome for random maps.

More recently, at Crypto ‘86, G. J. Simmons presented a study by Quisquater [3] in
which the cycling experiments invoived DES functions similar to those described above. In
his investigation Quisquater found a function with a relatively large component (= 3% of
the total number of nodes) that contained a relatively smail cycle (cycle size = 216). As

we will see, the probability of such an event for random functions is = 10-3.

A variety of different functions have been introduced to analyze cryptosystems. To
examine the closure properties of DES, Kaliski et al. [4] defined a set of mappings from
the cipher-space into itself. In contrast to the preceding example, they applied a
pseudo-random function g(-) to the cipher x to obtain a key k = g(x). In turn, this key

was used in the DES operation to produce
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Again, these studies detected no statistical anomalies. Assuming that random functions
are a reasonable model for the maps in question, the methods developed in this paper are

applicable.

Beyond these practical motivations the study of random functions is of some intrinsic
combinatorial interest. Examples of probability distributions related to random functions
are presented in [5], [6], [7], and [8]. A relationship between branching processes and

random maps is discussed in [9] and [10]. For a survey of results, see [11].

In the following section we introduce the necessary definitions and notation. First
we consider the average number of components of size k containing a cycle of length £ (a
(k,2)-component). Next we analyze the expected number of such components when k and £ are
allowed to range over an entire region. Finally we estimate the probability of
discovering a function that has a component which contains a significant percentage of the

total number of nodes and such that its cycle is relatively small.

Components and Cycles

The set of mappings from an n element set into itself endowed with the uniform
distribution is called the set of random functions or random mappings and is denoted
rn,(P(7)=n-n,1ern). The directed graph naturally associated with each function v is the
graph with a vertex for each element of the domain and a directed edge from vertex i to
vertex j if and only if v(i) = j. The components of such a graph consist of a cycle with
trees attached to its nodes (cyclic points). (In the following we sometimes write that vy
has a certain property when in fact it is the associated graph that has this property.)
We are interested in estimating the average number of components of a given size and with

a specified cycle length.

First we define the random variable Yn(k,l)(y) that counts the number of (k,2)-

components in vy (a (k,2)-component has k nodes and £ cyclic points). Next we introduce
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the function

exn[-yz/ZXJ
flx,y) = — —— .
Jen &3(1-x)

The following lemma, whose proof is postponed until the end of this section, provides an

estimate for the average value of Yn(k,ﬂ).

Lemma
For Yn(k,ﬂ) defined as above with 1 < € < k/2 and k < n - nl/3 we have
~ -3/2
EY (k) = flx, yn 7 (1+R (k) (1)
where x = k/n , y, = 2//n and R _(k,2) = 0% /kBsk Ln™3). for

1/3

n-n’” < k < n the 1eft hand side is O(f(xk_l,yg)n'3/2] .

The main features of this result are best explained by means of the graph of f(x,y)

(see figure 1).
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From the graph we see that the expected number of (k,¢)-components approximately equals

the volume of the parallelepiped with height f(x
-3/2
n

k’yﬂ) whose basis is the rectangle of area
centered at (xk,ye).

Except for K extremely close to 0 or n the sum over a range of these average values
approximately equals the volume under the graph of f over a given region. For example,

let Xn(s,t) represent the number of (k,Z)-components with sn < k < n (0<s<1)

and I < £ ¢ tn]/Z, that is

X (s:t) = Z Z 12 Y (k,2) . (2)

sn<k<n 1<2<tn

1/3

Excluding the terms n-n < k < n, the expected value of the expression on the right is

asymptotically equivalent to the integral of f{x,y) over s < x <1 - n-2/3, O<cy<t.

-1/2
The sum involving the excluded terms is measured by the integral of min{t,1} [x3(1-x)]

-2/3 -1/3

over the interval 1 - n < x £ 1, and the latter is O(min{t,1}n }y. It follows from

the lemma that for s fixed, 0 < s < 1, and n sufficiently large, we have:

Theorem 1

The average number of (k,£)-components in the region sn < k <n, 1 ¢ £ < tnl/2 is
approximately
EX (s,t) = fl ft f(x,y)dydx[1+R (s,t) (3)
n 3 S ° b [ n b ] Y

3s_zn_l/2+s'1n'l+n-]/3) .

where Rn(s,t) = 0t
Note: The error made by replacing the sum with the integral has been included in the
rematnder term. Also, notice that the x-coordinate refers to the component‘s size and the

y-coordinate indicates cycle Tength (see figure 2).

Although (3) is an asymptotic expression for an expected value, it can be used to
estimate probabilities. As an example, we consider the probability of finding a function

that has a companent which contains a significant percentage of the total number of nodes
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and yet its cycle is relatively small. That is, we want to estimate the probability that
a random function has a (k,f)-component in which k is a significant fraction of the total

number of nodes and yet £ is relatively small.
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To make these terms precise, we consider a cycle of order nl/Z-a’ 0<a<l1/2, as

1/2

small (since the total number of cyclic points is on average n”’"). A component is
considered large if it contains at least the fraction s of the total number of nodes,
0 <s <1. The number of such components is given by Xn(s,t) where t = n_a. Using this

notation the problem is to estimate the probability that Xn(s,t) is at least one.

The main idea is that if a function possesses a relatively large component with a

small cycle, then it is most likely the only such component. It follows that

P(X (s,t) 2 1) = EX (s,t) . (4)
More precisely, by Bonferroni‘s inequality [12], we have

EXn - E[Xn(Xn-l)] < P(anl) < EXn.

It can be shown (see the appendix) that E[Xn(xn'l)} is O(s_ln'za). Thus we need only

estimate the mean of Xn(s,t).
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Omitting, for the present, the error terms in Theorem 1, we obtain

t

2
EX (5, 1) (2m) Y2 [ 320V Y Py (5)
S 0 .

recall that t = n'¥. For small t the innermost integrand approxmiately equals one. That

is, replacing the exponential in (5) with 1 + O(yz/s) yields

BX (s,t) = (2n) /%™ I x 210"V 2] 140(s 102 (6)
Fortunately, the integral in (5) can be evaluated explicitly as
1/2 ‘
2(1-5) ) i i
c(s) = { } - (21) V2 It 32147V 2% . 7)
ns

Using the estimate for the second factorial moment and including the remainder terms given

in (3) leads to the conclusion

Theorem_ 2
The probability of finding at least one (k,£)-component with sn < k < n,

1¢tg tnl/2 where 0 < s <1and t =n" is given by

P(X,(5,8)21) = c(s)n *(1+0Lr, (s)]) (8)

here r (s) = I LR R

Consider the example presented in the introduction [3]. In this case

56’ tn1/2 . n-3/l4 -12

n=2 27 (i.e., t = =2 and @ = 3/14), and s = 0.03. It follows

that

PIX (s,t) 3 1) = c(0.03)27 1% = 1073,

with rn(0.03) < 2x10-3 (see figure 3). The key observation is that even if a DES cycling
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experiment occasionally produces a relatively large component with a small cycle, this

does not necessarily imply a statistical irregularity in DES.

fig 3 GRAPH OF C(S)
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Note: Here m = tn is the maximal cycle length.

We turn now to the proof of the lemma. Let C(k,£) denote the number of connected mappings

on k nodes with £ cyclic points. It is known [11] that

k-1
C(k,2) = (2-1)1 [2-1] P (9)

Using Stirling's formula [12]

¥
Kl = j27k [—] [1 + 0(%)] , (10)

e
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we compute

2
k—le-E /2k

Ck,2) = k [+ o*nd)] (11)

for 1 < £ < k/2.
The main idea in the proof involves writing Yn(k,ﬁ) as the sum of identically
distributed random variables. We define € = 1 if the i-th node belongs to a (k,£)-

component, otherwise set ei = 0.

It follows that

}z €, and E(Y (k,0)) = E Ple=1) . (12)

Y (k,2) =
n ;
1<ign

e

The probability that the i-th node belongs to a (k,£)-component is given by

[n—l K
P(e.=1) = k-I] C(k,2) (n-k)""m" . (13)

The first term is the number of ways to select the otﬁér membars of the (k,£)-component;
the second term is the number of connected mappings consisting of k nodes and £ cyclic
points; the third term is the number of functions on the n-k remaining elements; and the
last term is the total number of mappings on an n element set. Combining (11) - (13)

yields the expression

n 2
£ Y, (k)] - [k] (n-k) " KK LT 03] (14)

Applying Stirling's formula (10) to the first term in (14) and simplfying Teads to the

desired result

E[Y (k,8)] = f(xk,ye)n-3/2[1+0(23/k2+k_1+n'1/3)] , (15)
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for 1 <2 < k/2, k ¢ n-nl/3

the lemma is similar. The key step in these arguments is the introduction of the

» X, = k/n andy, = ¢//n. The proof of the last statement in
auxiliary random variables ei.
Summar

To better understand the structure of random functions we have examined the average
distribution of its components and cycles. The relationship between a component's size
and its cycle length is best illustrated by the graph of f(x,y). The volume under the
graph and over a specified region represents the expected number of components in a given
range with cycle Tengths belonging to a prescribed interval. In turn this mean value is
used to estimate the probability of discovering a function containing a relatively large

component with a small cycle.

Appendix

The derivation of the asymptotic expression for the second factorial moment
E[Xn(Xn-l)] is similar to the development for the mean of Xn. First, we may assume that

s £ 1/2 since Xn(s,t)(Xn(s,t)-l) =0 if s > 1/2. Expanding the product yields

Xn(s,t)(Xn(s,t)-l) = sn}; K }; 1/2 Yn(g,e)[vn(k ,8)-8], (16)
<KX 1ce,2 <tn
k +k<n

where § = 1 if k = k and 2 = £ ; otherwise § = 0. So the problem is reduced to

estimating the mean value of the terms in the sum.

As in the proof of the Temma, the main idea is to represent these terms as the sum of
identically distributed random variables. Fix (k,?) and (k ,¢ ); set eij =1 if i,]

belong to different (k,2), (k ,2 )-components, respectively; otherwise, let eij =0. A
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straightforward calculation shows that

;o 1
Y (K, 2)[Y (k ,2 )-§] = }: €. . (17)
n n ; s2a 1]

Kk 1#] .

The average value of the right-hand side of (17) is given by

n{n-1)
— Pleyyel) (18)
Kk
n! ’ ’ r k,
(K, 0)C(K L2 Y(n-kek KK P
k1K t(n-k-k )1

Here we have used arguments similar to the ones employed in the derivation of (13). As

before we apply Stirling's formula (10) and expression (11) to obtain the estimate

E (1, (KDY, (K 42 )-61) = Olalx, i’ a1 (19)

with

-3/2)("3/2 ' 12

g(x,x') = X {1-x-x )

’

and X = k/n, x , = k /n. Notice that the right-hand side of (19) does not depend on £ or

. k /2 | 12

’ !
2 . Summing (19) over £,f where 1l ¢ £, £ < tn leads to

’ ’ ’ , _z_za
) £ty - = ol 7 e

Finally, replacing the sum over k,k where sn < k ,k, k + k < n by the double integral of

’ 7
g(x,x ) over the region s < x,x , x + x < 1, produces the desired conclusion.
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