
ANALYZING ENCRYPTION PROTOCOLS USING
FORMAL VERIFICATION TECHNIQUES

(Extended Abstract)

Richard A. Kemmerer

Department of Computer Science
University of California
Santa Barbara, CA 93 11 1

Introduction

Much work has been done in the area of analyzing encryption algorithms, such as DES
[Dav 81.Bri 85.BMP 861. A vast amount of work has also been expended on formally verifying com-

munication protocols [IEE 82,STE 82,RW 83.LS 84.Hol 871. In contrast, very little work has been
devoted to the analysis and formal verification of encryption protocols.

In this paper a n approach to analyzing encryption protocols using machine aided formal

verification techniques is presented. The idea of the approach is to formally specify the com-

ponents of the cryptographic facility and the associated cryptographic operations. The com-

ponents are represented as state constants and variables, and the operations are represented as

state transitions. The desirable properties that the protocol is to preserve are expressed as state

invariants and the theorems that must be proved to guarantee that the system satlsfies the invari-

ants are automatically generated by the verification system.

This approach does not attempt to prove anything about the strength of the encryption algo-

rithms being used. On the contrary, it may assume that the obvious desirable properties, such as

that no key will coincidentally decrypt text encrypted using a different key, hold for the encryp-

tion scheme being employed.

The following section presents a brief overview of the formal specification language that is

used. Next, a sample system is presented along with the desirable cryptographic properties for

that system. A formal specification for the example system is then given followed by a discussion

about formally verifying and testing encryption protocol specifications. A weakness of the exam-

ple specification that was discovered through testing the specification is also presented. Finally, a

comparison to other work in this area is given, and some thoughts on the usefulness of the

approach presented in this paper are discussed.

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 '87, LNCS 293, pp. 289-305, 1988.
0 Springer-Verlag Berlin Heidelberg 1988

290

The Formal Specification Language

Formal specification and verification techniques have become an accepted technique for

assuring that a critical system satisfies its requirements. There are a number of formal

verification systems available [Rob 79.TE 81,GDS 84,CDL 85.SAM 861. These systems all use

mathematical techniques to guarantee the correctness of the system being designed and imple-

mented. To use these techniques it is necessary to have a formal notation, which is usually an

extension of first-order predicate calculus, and a proof theory.

The formal verification system discussed in this paper uses the state machine approach to

formal specification. When using the state machine approach a system is viewed as being in vari-

ous states. One state is differentiated from another by the values of state variables, and the

values of these variables can be changed only via well defined state transitions.

The formal specification language that is used in this paper is a variant of h a Jo*, which is a

nonprocedural assertion language that is an extension of first-order predicate calculus. The key

elements of the h a Jo language are types, constants, variables, definitions, initial conditions, cri-

teria, and transforms. A criterion is a conjunction of assertions that specify the critical require-

ments of a good state. A criterion is often referred to as a state invariant since it must hold for

all states including the initial state. An Ina Jo language transform is a state transition function; it

specifies what the values of the state variables will be after the state transition relative to their

values before the transition. The system being specified can change state only as described by

one of the state transforms. A complete description of the Ina Jo language can be found in the Ina

Jo Reference Manual [SAM 861.

Before giving a formal specification of the example system a brief discussion of some of the

notation is necessary. The following symbols are used for logical operations:

& Logical AND - Logical implication

In addition there is a conditional form

(if A then B else C)

where A is a predicate and B and C are well-formed terms.

The notation for set operations is:

E is a member of

u set union

lna Jo is a trademark of System Development Corporation. a Burroughs Company.

29 1

la,b cl

b e t description) the set described by set description.

The language also contains the following quantifier notation:

the set consisting of elements a,b ..., and c

v for all

3 there exists

Two other special Ina Jo symbols that may be used are:

N" to indicate the new value of a variable

(eg. N"v1 is new value of variable vl)

T' which defines a subtype of a given type T.

An Example System

The system being used as a pedagogical example in this paper is a single-domain communica-

tion system using dynamically generated primary keys and two secret master keys, a s described in

[MM 801. The architecture of the system is presented in Figure 1. The terminals communicate

directly with the host system, and a new session key (the primary communication key) is dynami-

cally generated by the host for each session. In addition, each terminal has a permanent terminal

key that is used by the host to distribute the new session key to a terminal when a new session is

initiated. This is the terminal's secondary communication key. Both the terminal keys and the

current session keys are stored in encrypted form at the host.

' TERMINAL
CRYPTOGRAPHK
F AC LlTY

(CONTAINS TERMINAL KEY(" TERMINAL fl

F i g u r e I S y s t e m A r c h i t e c t u r e

292

There are two data structures of interest in the host: the terminal key table and the session

key table. The terminal key fable is static. Each entry In this table contains the unique terminal

key for the corresponding terminal encrypted using a secret master key KMH1. The table looks as

follows:

E,,(Terminal Key(1)) 1
€,,(Terminal Key(2))

E,,(Terminal Key(i)) I
€,,(Terminal Key(n))

In this paper &,.-,,(text) is used to denote text encrypted using the key key-name. Similarly,

D,.,,,-M.Jtext) is used to denote text decrypted using key key-name. Since terminal keys never

change, this table is constant for the lifetime of the system.

Unlike the terminal key table, the session key ruble is a dynamic structure. This table is

updated each time a new terminal session is started: there is one current session key per terminal.

Each entry in the table contains the current session key for the corresponding terminal encrypted

using a second secret master key KMHO. The session key table looks as follows:

I &,,,,(Session Key(1)) I
E,,,,(SeSSiOn Key(2))

&,,,,(Session Key(i))

N o terminal key, session key, nor either master key is in the clear in the host. To store the

two masters keys a Cryptographic facility is connected to the host. This facility may be accessed

only through the limited cryptographic operations that are provided. In addition, the facility is

assumed to be housed in a tamper-sensing container, such as the one described by Simmons

[Sim 851, so that the vital information it contains is physically protected. The operations provided

293

by the cryptographic facility are encipher data (ECPH), decipher data (DCPH). and reencipher from

master key (RFMK). The interaction between the host and its cryptographic facility is shown in

Figure 2.

CRYPTOGRAPHIC
FACILITY

HOST

Figure 2 Host and Cryptographic Facility

The encipher operation is used when the host wants to send an encrypted message to a ter-

minal. The host provides the clear text message (msg) along with the encrypted form of the

appropriate terminal’s current session key, E,,,,(Session Key(i)). to the cryptographic facility and

is returned the message encrypted using the terminal’s session key. Figure 3 illustrates this pro-
cess.

HO!3 HOST CRYPTOGRAPHIC FACILITY

\
MSG >I ENCRYPT I

SESSION \ I

Figure 3 The Encipher Operation (ECPH)

294

When the host receives an encrypted message from terminal i it uses the decipher operation

provided by the cryptographic facility in a similar manner to get the message in the clear. That is.

the decipher operation must first decrypt the key presented and then use the result to decipher

the text presented. Figure 4 illustrates the decipher process.

H O S T HOST tRYF'TOGRAPHlC FACILITY

F i g u r e 4 The Decipher Operat ion (DCPH)

Each time a terminal initiates a session with the host a new session key is needed. Therefore,

the host needs access to a generate session key operation. It is not necessary, however, to have

session key generation be a n operation provided by the cryptographic facility. The seemingly

contrary requirements of having the host generate the session key and having no key in the clear

outside the cryptographic facility are resolved by having the host generate an encrypted version

of the session key. The entry in the host's session key table that corresponds to the terminal

requesting a session is then replaced by the encrypted key. Meyer and Matyas describe a method

of accompllshing this by using a pseudo-random number generator to generate a value that is

interpreted as the new session key encrypted using the secret master key KMHO [MM 801.

Since the requesting terminal is also sent a copy of the session key, it is necessary to have an

operation to translate the new session key enciphered using the KMHO master key to a form enci-

phered using the requesting terminal's terminal key. The reencipher from master key operation

provides this service. It takes two keys as input, decrypts one using KMH1. decrypts the other

using KMHO, and then uses the result of the first decryption to encipher the result of the second

decryption. Figure 5 illustrates this process.

295

HOST CRYPTOGRAPHIC FACILITY

HOST

Figure 5 Reencipher From Master Key (R F M K)

In addition to the host’s cryptographic facility, each terminal is assumed to have a crypto-

graphic facility that contains its permanent terminal key and that provides operations for encrypt-

ing and decrypting messages.

Operations for setting the secret master keys in the host’s cryptographic facility or the secret

terminal keys in the terminal cryptographic facilities have intentionally been avoided in this

paper. It is assumed that these secret keys are distributed by courier or some other trusted

means.

An assumption of this system is that the intruder can obtain any information communicated

between the host and the terminals. In addition, the intruder can masquerade as an authorized

user, and he/she can invoke any of the operations of the host’s cryptographic facility.

An obvious desirable property that one may wish to verify about this system is that no clear

key exists outside the cryptographic facilities of the host and terminals.

Formal Specification of the Example System

The complete Ina Jo specification for the example system is presented in the appendix. In

this section the important aspects of the specification are discussed.

296

In the example system each terminal has a constant terminal key. This is represented in the

model by the Ina Jo constant

Similarly. each terminal's session key, which is dynamic, is represented by the Ina Jo variable

As the terms infer, an h a Jo constant is unchanged from state to state and an h a Jo variable may

change from state to state. It is the value of the state variables that differentiate one state from

another.

Terminal-Key(Termina1-Num): Key.

Session-Keyverrninal-Num): Key.

The other state variables in the specification are Keys-Used and Intruder-Info. which are both

of type information. Keys-Used keeps track of all of the keys that have ever been used by the

system. The Intruder-Info variable keeps track of all of the information that the intruder has

access to. This includes the contents of the encrypted key tables as well as any information com-

municated between the host and the terminals.

The four cryptographic operations for the example system are represented by the h a Jo
transforms ECPH, DCPH. RFMK. and Generatesession-Key. The first three correspond to the

operations provided by the host's cryptographic facility and the last is provided by the host itself.

Since only traffic that is a key or an encrypted form of a key is of interest, there is no need to

model any of the send or receive text operations. Also, because it is assumed that the intruder

cannot correctly guess random text that corresponds to some encrypted key, the ECPH. DCPH, and

RFMK operations change state only when they are invoked with information that the intruder has

available. Therefore, each of these operations is written using a conditional form where there is

no state change if the information provided is not available to the intruder (i.e.. not part of

Intruder-Info).

The constants Encrypt and Decrypt represent the encryption and decryption algorithms,

respectively. They both take a key and text pair and return text. Properties of the encryption and

decryption algorithms are represented in the specification as axioms. An Ina Jo axiom is an

expression of a property that Is assumed. Thus, these qualities are assumed about the algorithms.

For instance, one could express the fact that the encryption and decryption functions were com-

mutative by using the axiom

Similarly, the following axioms express the properties that no key Is an Identity function for any

text and that no key will correctly decrypt text encrypted using another key.

AXIOM v t:Text, kl.k2:Key (Encrypt(kl.Decrypt(kZ,t))-Decrypt(k2.Enc~pt(kl,t)))

AXIOM v t:Text. k1:Key (Encrypt(k1,t) # t)

and

AXIOM v t:Text. kl.k2:Key (kl + k2 - Decrypt(kZ.Encrypt(k1.t)) # t)

Note that all of these assumptions are not expressed in the example specification.

297

The fact that the intruder receives ail of the information that is communicated between the

host and the terminals is expressed in the Generate-Session-Key transform where the intruder’s

information is enhanced with the new session key encrypted using the terminal key of the

requesting terminal. Also. since the intruder can masquerade as an authorized user, whenever one

of the cryptographic operations is invoked the intruder’s ‘information is updated with the new

information that is produced.

The critical requirements that the system is to satisfy in all states are expressed in the cri-
terion clause of the formal specification. For the example system the criterion states that any key

that the intruder has (i.e.. any key contained in the set Intruder-Info) must not be a key that was

used by the system (i-e.. a key in the set Keys-Used). Note that this includes keys used in the past

as well as those presently being used. The criterion is expressed as follows:

CRITERION v kKey (k E Intruder-Info .-c k e Keys-Used)

The initiul clause describes the requirements that must be satisfied when the system is ini-

tialized. For the example system the initial value of the Keys-Used variable is the se t of keys

currently being used (i.e., all terminal keys and session keys as well as both master keys). The ini-

tial value of the Intruder-info variable is the appropriate encrypted versions of the terminal and

session keys. Because the keys are not required to have any particular value. their values are not

specified in the initial clause. However, since the desirable property is for the intruder to never

have any keys in the clear. the last conjunct of the initial clause states that none of the encrypted

values of the keys can be coincidentally equal to a key being used. That is,

v kl.k2:Key (k l e Intruder-Info & k2 E Keys-Used -. k l # k2).

The need for this additional requirement is discussed in the next section.

To verify that the system specified satisfies the invariant requirements, as expressed in the

criteria, two types of theorems are generated. The first states that the initial state satisfies the

invariant and the second, which is generated for each transform, states that if the state where the

transform is fired satisfies the invariant, then the resultant state will also satisfy the invariant.

Thus, by induction all reachable states will satisfy the invariant.

If one can verify the theorems generated, then any system that is consistent with the

specification will preserve the invariant. The reader should note that for a system to be con-

sistent with the specification its encryption algorithms must satisfy the axioms stated about

encrypt and decrypt.

Formally Verifying the Specification

After the formal specification is completed one can verify the theorems that are generated to

check if the critical requirements (h a Jo criteria) are satisfled. if the theorems are verified and the

298

encryption algorithms satisfy the assumed axioms, then the system will satisfy its critical require-

ments.

Because the axioms represent the properties that the encryption algorithms are to satisfy,

one can verify the system assuming the use of a different encryption scheme by replacing the

current axioms with axioms that express the properties of the new encryption scheme.

An advantage of expressing the system using formal notation and attempting to prove pro-

perties about the specification is that if the generated theorems cannot be proved the failed

proofs often point to weaknesses in the system or to an incompleteness in the specification. That

is, they often indicate the additional assumptions required about the encryption algorithm (i.e.,

missing axioms), weaknesses in the protocols. or missing constraints in the specification. For
example. the original specification for the example system did not include the third conjunct that

is now in the initial clause. However, without this conjunct the initial clause was not strong

enough to imply the invariant. After analyzing the failed proof for some time the possibility of an

encrypted version of a key being coincidentally identical to another key was apparent. By adding

the third conjunct to the initial clause the problem was avoided. This was a reasonable change to

make to the specification since the the occurrence of coincidental values is easy to check when

the system is initialized.

Being aware of the coincidental key value problem in the initial clause resulted in a

strengthening of the specification for the generate session key operation. That is, the reqilire-

ments

Encrypt(KMH0.k) e Keys-Used

and

Encryptflerminal-Key(Ter).k) e Keys-Used

were added to the formal specification to prevent the encrypted value chosen as a new session

key from being coincidentally equal to the value of a key that had been used in the past. This

requirement is likely to be harder to realize in an actual system since it requires recording infor-

mation about all keys that have ever been used.

Testing the Formal Specification

There is a specification execution tool for the Ina Jo language called lnatest [EK 8Sl. This tool

allows Ina Jo specifications to be analyzed by symbolically executing the formal specifications.

With the lnatest tool it is possible to interactively introduce assumptions about the system, exe-

cute sequences of transforms, and check the results of these executions. This provides the user

with a rapid prototype for testing properties of the cryptographic facilities [Kern 851.

299

Using the lnatest tool revealed the following weakness in the example formal specification. If

the secret master keys, KMHO and KMH1. are equal, then the intruder can obtain a session key in

the clear. This flaw is demonstrated by first invoking the Generate-Session-Key transform, which

generates a new session key, k. This key is communicated to the requesting terminal (encrypted

using the terminal key of the requesting terminal) at the start of the current session; therefore,

the encrypted key becomes part of the intruder’s information. The DCPH transform is then

invoked using the encrypted terminal key from the host’s terminal key table and the intercepted

session key encrypted using the the requesting terminal’s terminal key. Figure 6 illustrates the

result of executing the DCPH transform on the two encrypted keys.

HOST CRYPTOGRAPHlC FACILITY

E KMH, (TERMINAL KEY(t))

T W l V I A L KEY Lt

Figure 6 Protocol Flaw Using DCPH

When using the lnatest tool to test a formal h a Jo specification the user defines a start state,

a sequence of transforms (with the appropriate actual parameters) to be executed, and a desired

resultant state. To test this weakness the default start state, which is the initial state, was used

Keys-Used-Terminal-Keys u Session-Keys u (KMH0,KMH 1)

& Intruder-Info -
(ks:Key (3 t:TerminaLNum (ks-Encrypt(KMHO,Session_Key(t)))))

u (kt:Key (3 t:Terminal-Num (kt-Encrypt(KMH 1 ,Terminal-Key(t))))]

& v kl,k2:Key (k l E Intruder-Info & k2 E Keys-Used - klick2)

The sequence of transforms to be executed consists of the Generate-Session-Key transform fob

lowed by the DCPH transform. The parameters of the DCPH transform are the encrypted terminal

key for terminal t and the current session key for terminal t encrypted using the terminal key for

300

terminal t. Both keys are known to be part of the intruder’s information. The first is from the ter-

minal key table, and the second was sent to terminal t when the current session was started. Let-

ting k represent the key that results from executing the GenerateSessiokKey transform on

behalf of terminal t. the sequence is.

followed by

The desired resultant s ta te requires that the key for terminal t that was generated by the

Generate-Session-Key transform be part of the intruder’s information. This requirement is

expressed as:

This is a clear violation of the security requirement since one of the assumptions included in the

start state is that k Is one of the keys used by the system.

Generate-Session-Key(t)

DCPH(Encrypt(KMH 1,Terminal-Key(t)), Encrypt(Termina1-Key(t),k)),

k E Intruder-Info

By expanding Generate-Session-Key one gets

3 k:Key v t:Terrninal-Num (

Encrypt(KMH0.k) f Keys-Used

& Encrypt(Terrnina1-Key(Ter),k) e Keys-Used

& k f Keys-Used

& N“Session-Key(t) -
if t-Ter

then k

else Session-Key(t)

& NKeys-Used - Keys-Used u (k)

& Nlntruder-Info - Intruder-Info u

(Encryp t(KMHO.k).Encrypt(Terminal-Key(Ter).k))l
The existential is instantiated to k and the resulting information is combined with the start State

information.

Next, by expanding the DCPH transform one gets

N”1ntruder-Info -
if Encrypt(Terrnina1-Key(t).k) E Intruder-Info

& Encrypt(KMH l.TerminaLKey(t)) E Intruder-Info

then Intruder-Info u
(Decrypt(Decrypt(KMHO,Encrypt(KMH 1. Terminal-Key(t))).Encrypt(Terminal-Key(t).k))~

else Intruder-Info.

Since both keys are part of the intruder’s information this can be reduced to

N”1ntruder-Info - lntruder-Info u

301

(Decrypt(Decrypt(KMHO.Encrypt(KMH 1. Terminal-Key(t))),Encrypt(Terminal-Key(t),k))).
Since the start state specifies that KMHO-KMH1, K M H l can be substituted for KMHO in the lnner-

most Decrypt yielding

N"lntruder-Info - Intruder-Info u

lDecrypt(Decrypt(KMH l,Encrypt(KMH I. TerminaLKey(t))).Encrypt(Terminal-Key(t).k))).
Then by applying the first axiom the expression reduces to

N"1ntruder-Info - Intruder-Info u
{Decrypt(Terminal_Key(t),Encrypt(Terminal-Key(t),k))).

N"1ntruderhfo - Intruder-Info u (k).

Applying the first axiom again yields

The desired result follows directly.

This is a well known weakness of using a single master key that Is presented in [MM 801. TO

strengthen the specification to avoid this particular problem one needs to add the axiom

AXIOM KMHO # KMHI.

Comparison to Previous Work

As was mentioned in the introduction very little work has been devoted to the analysis and

formal verification of encryption protocols. In particular, formal verlflcation techniques have not

been used in the analysis efforts that have been reported. A notable exception is the Interrogator

work of Millen [MCF 871.

The work reported in this paper differs from Millen's work in that the goal of the work being

reported is to use exlsting formal verificatlon tools to formally verify that an encryption protocol

specification satisfies its security requirements (as expressed in the Ina Jo criteria). This is accom-

plished by using the existing Formal Development Methodology (FDM) tool suite and treating the

encryption protocol specification like any Ina Jo formal specification.

The two efforts a re similar in that they both use a formal notation to express the protocol

(The Interrogator uses a Prolog specification.). The use of the lnatest tool for testing particular

scenarios is also similar to the use of the Interrogator tool. However, there are at the same time

major differences between using lnatest to test a protocol and using the Interrogator. When using

Millen's Interrogator the prolog program exhaustively searches for penetrations. [natest. in con-

trast, does not search through a large number of scenarios to detect a vulnerability. It is the task

of the human analyzer to come up with a posslble scenario that is then checked using the lnatest

tool to execute the formal specification. lnatest does not direct the analyst to determine what

tests to try; it merely aids the analyst by keeping track of state information and performing reduc-

tions when possible. Finally, the Interrogator tool was built explicitly for analyzing encryption

protocols, but lnatest was built to execute any Ina Jo specification. A s a result, the Interrogator

302

includes a more sophisticated display that dynamically illustrates the progress of the protocol

being tested.

Concluslons

This paper has proposed an approach to analyzing encryption protocols using existing for-

mal specification and verification techniques. The approach assumes the availability of encryption

algorithms that satisfy the properties expressed in the axioms.

An example system was specified using the h a Jo specification language. Some problems

discovered when attempting to prove the original specification are discussed, and a weakness in

the formal specification that was revealed by using an interactive testing tool was presented.

One of the advantages of this approach is that the cryptographic facility can be analyzed

assuming different encryption algorithms by replacing the set of axioms that express the proper-

ties assumed about the encryption algorithms with a new set of axioms that express the proper-

ties of a different encryption algorithm.

Another advantage is that the properties of a cryptographic facility can be tested before it is

built by using the formal specification and the available interactive testing tool as a rapid proto-

type.

The flaw that was confirmed by using the Inatest tool was a previously known weakness of

the protocol being analyzed. The true worth of the proposed approach will be established only

when a flaw can be discovered in a protocol that has been previously assumed to be secure.

References

[Bri 851

[BMP 861

[CDL 851

[Dav 811

Brickell, Ernest F. "Breaking Iterated Knapsacks," Advances in Cryptobgy: Proceedings

of Crypt0 84. Lecture Notes in Computer Science, Springer-Verlag. New York. 1985.

Brickell, E.F.. J.H. Moore, and M.R. Purtill, "Structure of the S-Boxes of the DES." Proceed-

ings of CRYPT0 86, Santa Barbara, California, August 1986.

Crow. J.. D. Denning, P. Ladkin, M. Melliar-Smith. J. Rushby, R. Schwartz. R. Shostak, and

F. von Henke. "SRI Veriflcation System Version 2.0 Specification Language Description."

SRI International Computer Science Laboratory, Menlo Park, California, November

1985.

Davies. Donald W.. "Some Regular properties of the 'Data Encryption Standard' Algo-

rithm." Proceedings of CRYPT0 8 l, Advances in Cryptogruphy. Department of Electrical

and Computer Engineering Report, ECE 82-04, Santa Barbara, California, August 1986.

303

[EK 851

[GDS 841

[Hol 871

[IEE 821

[Kern 851

[MM 80)

[MCF 871

[Rob 791

[RW 831

[SAM 861

[Sim 851

[STE 821

[TE 811

Eckmann. Steven T., and Richard A. Kemmerer, “INATEST: An Interactive Environment

for Testing Formal Specifications,” Third Workshop on Formal Verification, Pajaro
Dunes, California, February, 1985,

ACM - Softwure Engineering Notes, Vol. 10, No. 4, August 1985.

Good. D.I.. 5.L DiVito, and M.K. Smith, “Using the Gypsy Methodology:’ Institute For
Computing Science, University Of Texas, June 1984.

Holzmann, Gerard J., “Automated Protocol Validation in Argos: Assertion Proving and

Scatter Searching:’ I€€€ Transactions on Software Engineering. Vol. SE-13. No. 6. June

1987.

Sunshine, Carl A. (Editor), Special Issue on Protocol Specification and Verification, I€€€
Trunsuctions on Communications, Vol. COM-30, No. 12. December 1982.

Kemmerer, Richard A.. ‘‘Testing Formal Specifications to Detect Design Errors,” I€€€
Transactions on Software Engineering, Vol. SE-11, No. 1. January 1985.

Lam, Simon S.. and A. Udaya Shankar, “Protocol Verification Via Projections,” I€€€ Tran-
sactions on Software Engineering, Vol. SE-10. No. 4. July 1984.

Meyer. Carl H., and Stephen M. Matyas, Cryptogruphy. John Wiley, 1980.

Millen, Jonathan K., Sidney C. Clark, and Sheryl B. Freedman, T h e Interrogator: Proto-

col Security Analysis,” I€€€ Transuctions on Software Engineering, Vol. SE-13, NO. 2,

February 1987.

Robinson, L.. T h e HDM Handbook, Vol 1: The Foundations Of HDM,” Computer Science

Laboratory, SRI International, Menlo Park, California, June 1979.

Rudin. H.. and C.H. West (Editors), Protocol Specification, Testing, and Verification III
Elsevier Science Publishers B.V., North-Holland, 1983.

Scheid, J.. S. Anderson, R. Martin, and S. Holtsberg. T h e h a Jo Specification Language

Reference Manual,” SDC document, System Development Corporation, Santa Monica,

California, January 1986.

Simmons, C.J.. “How to (Selectively) Broadcast a Secret.” Proceedings IEEE Symposium

on Security and Privacy, Oakland, California, April 1985.

Sunshine, Carl A.. David H. Thompson, Roddy W. Erickson, and Susan L Cerhart.

”Specification and Verification of Communication Protocols in AFFIRM Using State

Transition Models.“ I€€€ Transactions on Software Engineering, Vol. SE-8, No. 5. Sep-

tember 1982.

Thompson, D.H. and R.W. Erickson. eds. “Affirm Reference Manual,” USC lnforrnation

Sciences Institute. Marina del Rey, California, February 1981.

304

Appendix Formal Specification of the Example System
SPECIFICATION Crypto
LEVEL Top-Level

TYPE
Text.
Key subtype Text,
Pos-Integer - T’ i:Integer (i>O),
Information - Set Of Text

CONSTANT
Num-Terminals: Pos-Integer.
KMHO, KMH1: Key,
Encrypt(Key.Text): Text,
Decrypt(Key,Text): Text

TYPE
Terminal-Num - T” t:Pos-Integer (t<=Num-Terminals)

CONSTANT
Terminal-Key(Termina1-Num): Key,
Terminal-Keys: Information -

(kKey (3 t:Terminal-Num (k-Terminal-Key(t))))

AXIOM
v t:Text. kl.k2:Key (

kl-k2 + Decrypt(kl,Encrypt(k2,t))-t)

AXIOM
v t:Text. k1,kZ:Key (

kl-k2 + Encrypt(kl,Decrypt(kZ,t))-t)

VARIABLE
Session-Key(Termina1Jum): Key.
Keys-Used: Information,
Intruder-Info: Information

DEFINE
Session-Keys: Information --

(kKey (3 t:Terminal-Num (k-Session-Key(t))))

CRITERION
v k:Key (k E Intruder-Info + k Q Keys-Used)

INlTlAL
Keys-Used-Terminal-Keys u Session-Keys u {KMHO.KMH 11

& Intruder-Info -
{ks:Key (3 t:Terminal-Num (ks-Encrypt(KMHO.SessiohKey(t)))))

u (kt:Key (3 t:Terminal-Num (kt-Encrypt(KMH l,TerminaLKey(t)))))
& v k1,kZ:Key (kl E Intruder-Info & k2 E Keys-Used -* klzk2)

305

Transform ECPH(K:Key. T:Text) EXTERNAL
Effect

N"1ntruder-Info -
if T E Intruder-Info & K E Intruder-Info

then Intruder-Info u (Encrypt(Decrypt(KMHO,K),T))
else Intruder-Info

Transform DCPH(K 1:Key. T1:Text) EXTERNAL
Effect

Nlntruder-Info -
if TI E Intruder-Info & K1 E Intruder-Info

then Intruderlnfo u (Decrypt(Decrypt(KMH0.K l).Tl)]
else Intruder-Info

Transform RFMK(K1:Key. K2:Key) EXTERNAL
Effect

N"1ntruderJnfo -
if K1 E I n t r u d e r h f o & K2 E Intruder-Info

then Intruder-Info u [Encrypt(Decrypt(KMH 1,KI). Decrypt(KMH0,KZ)))
else Intruder-Info

Transform Generate-Session-Key(Ter:Terminal-Num) EXTERNAL
Effect

3 k:Key v t:TerminaI-Num (
Encrypt(KMH0,k) Keys-Used

& Encrypt(Termina1-Key(Ter),k) g Keys-Used
& k e Keys-Used
& NSession-Key(t) -

if t-Ter
then k
else Session-Key(t)

& N"Keys-Used - Keys-Used u Ik)
& N"1ntruder-Info - Intruder-Info u

(Encrypt(KMHO,k).Encrypt(Termlnal-Key(Ter),k)))

END Top-Level
END Crypto

