
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A fast algorithm for optimal alignment between similar ordered trees

Jansson, Jesper; Lingas, Andrzej

Published in:
Combinatorial Pattern Matching / Lecture notes in computer science

DOI:
10.1007/3-540-48194-X_22

2001

Link to publication

Citation for published version (APA):
Jansson, J., & Lingas, A. (2001). A fast algorithm for optimal alignment between similar ordered trees. In
Combinatorial Pattern Matching / Lecture notes in computer science (Vol. 2089, pp. 232-240). Springer.
https://doi.org/10.1007/3-540-48194-X_22

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/3-540-48194-X_22
https://portal.research.lu.se/en/publications/da0e9dbc-bf7a-44ff-b690-2381069f73b1
https://doi.org/10.1007/3-540-48194-X_22

A Fast Algorithm for Optimal Alignment

between Similar Ordered Trees

Jesper Jansson and Andrzej Lingas

Dept. of Computer Science, Lund University
Box 118, 221 00 Lund, Sweden

{Jesper.Jansson,Andrzej.Lingas}@cs.lth.se

Abstract. We present a fast algorithm for optimal alignment between
two similar ordered trees with node labels. Let S and T be two such
trees with |S| and |T | nodes, respectively. An optimal alignment between
S and T which uses at most d blank symbols can be constructed in
O(n log n · (maxdeg)4 · d2) time, where n = max{|S|, |T |} and maxdeg
is the maximum degree of a node in S or T . In particular, if the input
trees are of bounded degree, the running time is O(n log n · d2).

1 Introduction

Let R be a rooted tree. R is called a labeled tree if each node of R is labeled by
a symbol from a fixed finite set Σ. R is an ordered tree if the left-to-right order
among siblings in R is given.

The problem of determining the similarity between two labeled trees occurs
in several different areas of computer science. For example, in computational
biology, methods for measuring the similarity between ordered labeled trees
of bounded degree can be used in the comparison of RNA secondary struc-
tures [2,4,9]. The problem also occurs in evolutionary trees comparison, organic
chemistry, pattern recognition, and image clustering [2,4,8,12].

The similarity between two labeled trees can be defined in various ways
analogous to the ways of defining the similarity between two sequences [5,7,8].
For example, one can look for the largest maximum agreement subtree, the
largest common subgraph, the smallest common supertree, the minimum tree
edit distance etc. [2,3,4,7,10,12].

In [2], Jiang et al. generalized the concept of an alignment between sequences
to include labeled trees as follows. An insert operation on a labeled tree adds a
new node u which is labeled by a blank symbol λ (space) not belonging to Σ.
The operation either (1) turns the current root of the tree into a child of u and
lets u become the new root, or (2) makes u the parent of a subset of (if the tree
is unordered) or consecutive subsequence of (if the tree is ordered) children of
an existing node v, and u a child of v. An alignment between two labeled trees
is obtained by performing insert operations on the two trees so they become
isomorphic when labels are ignored, and then overlaying the first augmented
tree on the other one. The score of the alignment is the sum of the scores of

A. Amir and G.M. Landau (Eds.): CPM 2001, LNCS 2089, pp. 232–240, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 233

all matched pairs of labels, where the score of a pair of labels is defined by a
given function µ : (Σ ∪ {λ})× (Σ ∪ {λ}) → Z. An optimal alignment between a
pair of labeled trees is an alignment between them achieving the highest possible
score1. See Fig. 1 for an example.

λ , e() (λ , b)

(c , c) (d , λ) (e , e)

a

b c d e

(a) (b)

a

a ec

(c)

a , a()

(b , a)

be

Fig. 1. Example: Let Σ = {a, b, c, d, e} and define the scoring function µ as
µ(x, x) = 3, µ(x, y) = −1, µ(x, λ) = µ(λ, x) = −2, µ(λ, λ) = −2 for all
x, y ∈ Σ with x 6= y. Then the score of the alignment in (c) of the two ordered
trees shown in (a) and (b) is equal to 2.

Jiang et al. presented an O(n2(maxdeg)2)-time algorithm for computing an
optimal alignment between two ordered trees with node labels, where n stands
for the maximum number of nodes in one of the input trees, and maxdeg for the
maximum degree of a node in the input trees. They also provided a polynomial
time algorithm for finding an optimal alignment of two unordered trees in case
maxdeg = O(1), and showed the latter problem to be MAX SNP-hard in general.

Inspired by the known fast method for an optimal alignment between similar
sequences (see Section 3.3.4 in [8]), we give a fast algorithm for optimal align-
ment between two similar ordered trees with node labels. If there is an optimal
alignment between the two input ordered trees which uses at most d blank sym-
bols then our algorithms runs in O(n logn · (maxdeg)4 · d2) time. Hence, under
a natural assumption on the scoring, if the maximum possible score of an align-
ment between the two trees is O(d) apart from the score of a perfect alignment
of the first tree with itself then the algorithm runs in O(n log n · (maxdeg)4 · d2)
time. In particular, if both trees are of bounded degree the running time reduces
to O(n log n · d2).

1 In fact, Jiang et al. consider the arithmetically complementary distance measure of
an alignment which is the subject of minimization [2].

234 Jesper Jansson and Andrzej Lingas

2 d-Relevant Pairs

The general idea of our algorithm is to modify the dynamic programming algo-
rithm of Jiang et al. to only consider what we call d-relevant pairs of subtrees
or subforests. In order to introduce our slightly technical concept of d-relevance
we need the following definition.

Definition 1. For an ordered tree T and a node u of T , T [u] denotes the ordered
subtree of T rooted at u. When u is not the root of T , T [u] stands for the ordered
subtree of T resulting from removing T [u] and the edge between u and the parent
of u from T . Next, L(T, u) denotes the set of leaves in T that are to the left of the
leaves of T [u]. The number of nodes in T is denoted by |T | and the cardinality
of L(T, u) by |L(T, u)|.

Now, we are ready to introduce the concept of d-relevant pairs of subtrees as
well as those of d-descendant and d-ancestor.

Definition 2. Let d be a positive integer. For two ordered trees S, T containing
nodes u and v respectively, the pair of subtrees (S[u], T [v]) is called d-relevant if
||S[u]| − |T [v]|| ≤ d and ||L(S, u)| − |L(T, v)|| ≤ d. For a node w of T , T [w] is
called a d-descendant of T [v] if w is a descendant of v in T and |T [v]| − |T [w]|
≤ d. Symmetrically, T [w] is called a d-ancestor of T [v] if w is an ancestor of v
in T and |T [w]| − |T [v]| ≤ d.

The definition of d-relevance immediately yields the following lemma.

Lemma 1. Let S, T be two labeled ordered trees, and let u, v be two nodes in S
and T respectively. If there is an alignment between S and T which uses at most
d blank symbols (spaces) and consists of an alignment between S[u] and T [v] and
an alignment between S[u] and T [v] then (S[u], T [v]) is d-relevant for S and T .

The next three lemmas will be useful for bounding the number of d-relevant
pairs from above.

Lemma 2. If the pairs (S[u], T [v]) and (S[u], T [w]) are d-relevant for two or-
dered trees S and T , and w is a descendant (or, ancestor) of v in T then T [w]
is a 2d-descendant (or, 2d-ancestor) of T [v].

Proof. Since (S[u], T [v]) is d-relevant, it holds that ||S[u]|− |T [v]|| ≤ d. Suppose
that T [w] is not a 2d-descendant of T [v] in T , i.e., |T [v]| − |T [w]| > 2d. Then
we have |S[u]| − |T [w]| = |S[u]| − |T [v]|+ |T [v]| − |T [w]| > −d + 2d = d, which
contradicts the d-relevance of (S[u], T [w]). ut

Lemma 3. For a node u of an ordered tree S, the number of d-ancestors of S[u]
is at most d.

Proof. Assume that the number of d-ancestors of S[u] is greater than d. By
the pigeonhole principle there exists a d-ancestor S[u′] whose root u′ is located
at distance greater than d from u. But then |S[u′]| − |S[u]| > d, which is a
contradiction. ut

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 235

Lemma 4. Let {(S[u], T [vi])}l
i=0 be a sequence of distinct d-relevant pairs in

two ordered trees S, T such that for any 0 ≤ i, j ≤ l, vi is not a descendant of vj .
Then, l ≤ 2d holds.

Proof. We may assume w.l.o.g. that the sequence is ordered according to the
left-right order in T . Since (S[u], T [vl]) is d-relevant, ||L(S, u)| − |L(T, vl)|| ≤ d
holds. On the other hand, we have |L(T, vl)| − |L(T, v0)| ≥ l. Hence, if l > 2d
then |L(S, u)|−|L(T, v0)| > d, which contradicts the d-relevance of (S[u], T [v0]).

ut
By combining the three lemmas above, we obtain an upper bound on the

number of d-relevant pairs of subtrees.

Theorem 1. For two ordered trees S, T and a node u of S, the number of dis-
tinct d-relevant pairs of subtrees in which u participates is O(d2). Consequently,
there are O(|S| · d2) d-relevant pairs of subtrees for S, T .

Proof. Let {(S[u], T [vi])}l
i=0 be a maximal sequence of distinct d-relevant pairs

of subtrees for two ordered trees S, T such that for each 0 ≤ i ≤ l there is no d-
relevant pair (S[u], T [v]), where v is a descendant of vi. It follows from Lemma 2
that for each d-relevant pair (S[u], T [w]), it either belongs to the sequence or
T [w] is a 2d-ancestor of a member in the sequence. Hence, the number of d-
relevant pairs in which u participates is at most (2d + 1) · (l + 1) by Lemma 3.
Now, it is sufficient to observe that l cannot exceed 2d by Lemma 4. ut

2.1 d-Relevant Pairs of Subforests

The dynamic programming algorithm of Jiang et al. recursively computes scores
not only between pairs of subtrees of the input trees but also between some
pairs of subforests of the trees. Therefore, in order to modify this algorithm, we
need to generalize the concept of d-relevance for pairs of subtrees to include the
aforementioned pairs of subforests. For this purpose, we introduce the following
technical notations.

Definition 3. For an ordered tree S and a node u of S, let du be the degree
of u and denote the children of u by u1, ..., udu, according to their left-to-right
order. S(u, i, j) refers to the ordered forest S[ui], ..., S[uj], and S(u) is short for
S(u, 1, du).

Thus, S(u) is the complete ordered forest obtained by removing u and all
edges incident to u from S[u]. Also note that S(u, i, i) = S[ui].

Definition 4. Let S(u, i, j) be an ordered forest in an ordered tree S. S(u, i, j)
stands for the ordered subtree of S obtained by removing S(u, i, j) and all edges
incident to S(u, i, j) from S. L(S(u, i, j)) denotes the set of leaves in S that are
to the left of the leaves of S(u, i, j). The number of nodes in S(u, i, j) is denoted
by |S(u, i, j)| and the cardinality of L(S(u, i, j)) by |L(S(u, i, j))|.

236 Jesper Jansson and Andrzej Lingas

Now, we are ready to generalize the concept of d-relevance as well as those of
d-descendant and d-ancestor for pairs of nodes inducing full subtrees to include
pairs of subforests of the form (S(u, i, j), T (v, k, l)).

Definition 5. Let d be a positive integer. For two ordered trees S, T containing
nodes u and v respectively, the pair of ordered subforests (S(u, i, j), T (v, k, l)) is
called d-relevant if ||S(u, i, j)|−|T (v, k, l)|| ≤ d and ||L(S(u, i, j))|−|L(T (v, k, l))||
≤ d. For a node w of T , T (w, k′, l′) is called a d-descendant of T (v, k, l) if w
is a descendant of v in T and ||T (w, k′, l′)| − |T (v, k, l)|| ≤ d. Symmetrically,
T (w, k′, l′) is called a d-ancestor of T (v, k, l) if w is an ancestor of v in T and
||T (w, k′, l′)| − |T (v, k, l)|| ≤ d.

The definition of d-relevance of subforests immediately yields the following
lemma analogous to Lemma 1.

Lemma 5. Let S, T be two labeled ordered trees, and let S(u, i, j) and T (v, k, l)
be ordered forests in S and T respectively. If there is an alignment between S
and T which uses at most d blank symbols (spaces) and consists of an alignment
between S(u, i, j) and T (v, k, l) and an alignment between S(u, i, j) and T (v, k, l)
then (S(u, i, j), T (v, k, l)) is d-relevant for S and T .

The next three lemmata will be useful for bounding the number of d-relevant
pairs of subforests from above. Their proofs are analogous to the corresponding
proofs of Lemmata 2–4.

Lemma 6. If the pairs (S(u, i, j), T (v)) and (S(u, i, j), T (w)) are d-relevant for
two ordered trees S, T and w is a descendant (or, ancestor) of v in T then T (w)
is a 2d-descendant (or, 2d-ancestor) of T (v).

Lemma 7. For a node v of an ordered tree T , the number of d-ancestors of the
form T (w) of a forest T (v) is at most d.

Lemma 8. Let {(S(u, i, j), T (vq)}l
q=0 be a sequence of distinct d-relevant pairs

in two ordered trees S, T such that for any 0 ≤ q′, q′′ ≤ l, vq′ is not a descendant
of vq′′ . Then, l ≤ 2d holds.

By combining the three lemmas above, we obtain an upper bound on the
number of d-relevant pairs (S(u), T (v, k, l)) and (S(u, i, j), T (v)) as in Theo-
rem 1.

Theorem 2. For two ordered trees S, T and a node u of S, the number of dis-
tinct d-relevant pairs of the form (S(u, i, j), T (v)) is O(d2(deg(S))2). Symmet-
rically, for a node v of T, the number of distinct d-relevant pairs of the form
(S(u), T (v, k, l)) is O(d2(deg(T))2). Consequently, there are O(n · d2(maxdeg)2)
d-relevant pairs of the form (S(u), T (v, k, l)) or (S(u, i, j), T (v)) for S, T, where
n = max{|S|, |T |}.

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 237

3 Constructing the d-Relevant Pairs

The test for d-relevance for a pair of subtrees can easily be accomplished in
constant time after appropriate preprocessing. However, in order to speed up
the at least quadratic algorithm of Jiang at al., we cannot afford testing each
possible subtree pair for d-relevance. Instead, we proceed as follows.

First, we compute all vectors (|T [v]|, |L(T, v)|), where v ∈ T . This can be
done in linear total time by using the Eulerian tour technique from [11]. We
insert the vectors into a standard range search data structure, e.g., a layered
range tree [6]. The construction of the data structure takes O(|T | · log |T |) time.
Then, for all u in S we compute the vectors (|S[u]|, |L(S, u)|) in linear total time
in the same way as above. For each u in S, we query the data structure with
the square centered at (|S[u]|, |L(S, u)|) having side length 2d. Each query takes
O(log |S|+ r) time, where r is the number of reported vectors. Since each of the
returned vectors is in one-to-one correspondence with a node v such that the
pair (u, v) is d-relevant, r = O(d2) holds by Theorem 1.

Putting everything together, we obtain the following theorem.

Theorem 3. For two ordered trees on at most n nodes each and a non-negative
integer d, all d-relevant pairs of subtrees can be reported in O(n(log n+d2)) time.

We can use the same technique to precompute all pairs of d-relevant sub-
forests. In fact, for our purposes it is sufficient to report all pairs of d-relevant
subforests where at least one of the subforests is complete, i.e., is of the form
S(u) or T (v). To report all d-relevant pairs of the form (S(u), T (v, k, l)), the
number of vectors to insert into the layered range tree is O(|T |(maxdeg)2)
since O((maxdeg)2) ordered forests of the form T (v, k, l) originate from each
node v in T . Thus, the construction time becomes O(|T | · (maxdeg)2 · log(|T | ·
(maxdeg)2)) = O(n ·(maxdeg)2 · logn). The number of queries to the data struc-
ture is O(|S|), and the query time is O(log(|T | · (maxdeg)2) + r) = O(log n + r)
time, where the sum of the r’s over S is O(nd2 · (maxdeg)2) by Theorem 2. The
reporting of d-relevant pairs of the form (S(u, i, j), T (v)) can be done symmet-
rically within the same (in terms of n) preprocessing and query time bounds.

Summing up, we obtain:

Theorem 4. For two ordered trees on at most n nodes each and a non-negative
integer d, all d-relevant pairs of subforests, where at least one subforest is com-
plete, can be reported in O(n · (maxdeg)2 · (log n + d2)) time.

4 The Fast Algorithm

Our fast algorithm for an optimal alignment between two ordered trees works
under the assumption that there is an optimal alignment between the trees
S, T which uses at most d blank symbols (spaces). First, we compute all d-
relevant pairs of subtrees of S, T as described in Section 3. As each d-relevant
pair is reported, we insert it into a balanced binary search tree B1. Next, all

238 Jesper Jansson and Andrzej Lingas

d-relevant pairs of subforests in which at least one subforest is complete are
computed and inserted into a balanced binary search tree B2. According to
Theorems 1 and 2, there are O(nd2(maxdeg)2) d-relevant pairs of subtrees or
subforests where at least one subforest is complete, so this preprocessing takes
O(n·(maxdeg)2 ·(logn+d2)+n·d2(maxdeg)2) log(n·d2(maxdeg)2)) = O(n logn·
(maxdeg)2 · d2) time by Theorems 3 and 4. Then, we modify the algorithm of
Jiang et al. recursively evaluating the score values (see [2]) solely for d-relevant
pairs of subtrees or pairs of subtrees where one of the subtrees is empty.

This evaluation involves also recursive evaluation of the score values for d-
relevant pairs of subforests where one of the forests is complete or empty. In
fact, the recursive procedures in [2] include also intermediate terms with the
scores values for pairs of subforests when none of the forests is complete or
empty. However, these intermediate terms are eliminated by the composition
of the aforementioned procedures, resulting in recursive formulas for the score
values expressed in the form of maximum of some sums of score values for pairs
of smaller subtrees or subforests where at least one of the subforests is com-
plete or empty. Whenever the left handside is d-relevant in the application of
such a formula, the components of the sum on the right hand side yielding the
maximum, with the exception of the scores for the pairs including an empty
subtree or subforest, also have to be d-relevant. Therefore, before an application
of such a formula to an evaluation of a d-relevant pair, we simply test each of
the components of the sums on the right handside, which is not a score for pair
containing an empty subtree or subforest, for membership in B1 or B2. Such a
membership query takes O(logn) time. If the test is positive we fetch the score
value for the argument pair which should be evaluated by this time, otherwise
we set that score value to minus infinity. The score values for pairs containing
an empty subtree or subforest can be trivially precomputed in time O(|S|+ |T |).
We conclude that the cost of determining the score for a d-relevant pair on the
left handside of such a recursive formula on the basis of the scores for d-relevant
pairs occuring on its right handside does not exceed the cost of determining
the scores for this pair on the basis of the scores of pairs occuring on the right
handside in the algorithm of Jiang et al. multiplied by O(log n).

Jiang et al. show that the cost of determining the score for a pair of subtrees
or subforests by using the aforementioned formulas and already computed scores
for pairs of smaller subtrees or subforests is O(deg(z) · (maxdeg)2), where z is
a node in S or T which is either the root of the first subtree or the second
subtree, or the parent of the roots of the trees in the first forest or the second
forest. Hence, the corresponding cost for d-relevant pairs in our modification
of this algorithm is O(deg(z) · (maxdeg)2 · log n). By Theorems 1 and 2, for a
given node z in S or T, there are O(d2(maxdeg)2) d-relevant pairs of subtrees
of the form (S[z], T [v]) or (S[u], T [z]), or subforests of the form (S(z, i, j), T [v])
or (S(u), T (z, l, k)). Hence, our modified algorithm runs in O(

∑
z∈S∪T deg(z) ·

(maxdeg)2 · logn ·d2(maxdeg)2) time, i.e., O(nd2(maxdeg)4 log n) assuming the
preprocessing has been done.

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 239

Theorem 5. An optimal alignment of two ordered trees which uses at most d
blank symbols can be constructed in O(n logn · (maxdeg)4 · d2) time.

Under the natural assumption that the score of a pair including at least one
blank symbol is negative and by Ω(1) smaller than that of a pair consisting of
two identical symbols, we immediately obtain the following lemma.

Corollary 1. An optimal alignment of two ordered trees whose score is O(d)
apart from the score of the perfect alignment between the first tree and its copy
can be constructed in O(n logn · (maxdeg)4 · d2) time.

Corollary 2. An optimal alignment of two ordered trees of bounded degree whose
score is O(d) apart from the score of the perfect alignment between the first tree
and its copy can be constructed in O(n logn · d2) time.

5 Final Remarks

An optimal alignment between two sequences whose score is at most d apart
from that of a perfect alignment between the first sequence and its copy can
be constructed in O(nd) time [8]. Since a sequence can be interpreted as a line
ordered tree with node labels, a natural question arises: is it possible to lower
the time complexity of our method, especially the exponent 2 of d?

Our method does not seem to generalize to include unordered trees directly.
Simply, the proof of Lemma 4 relies on the ordering of the trees (i.e., on the
sets L(,)). It is an interesting open problem whether a substantial speed-up
in the construction of an optimal alignment between similar unordered trees of
bounded degree is achievable.

In the construction of the d-relevant pairs we could use more sophisticated
and more asymptotically efficient data structures for two dimensional range
search on an integer grid [1]. However, this would not lead to an improvement
of the overwhole asymptotic time complexity of our alignment algorithm.

References

1. S. Alstrup, G.S. Brodal, T. Rauhe. New Data Structures for Orthogonal Range
Searching. Proc. of 41st Annual Symposium on Foundations of Computer Science
(FOCS 2000), 2000, pp. 198–207.

2. T. Jiang, L. Wang, and K. Zhang. Alignment of Trees - An Alternative to Tree Edit.
Theoretical Computer Science, 143 (1995), pp. 137–148. (A preliminary version in
Proc. of 5th Annual Symposium on Combinatorial Pattern Matching (CPM’94),
Lecture Notes in Computer Science, Vol. 807, Springer, 1994, pp. 75–86.)

3. D. Keselman and A. Amir. Maximum agreement subtree in a set of evolutionary
trees – metrics and efficient algorithms. Proc. of 35th Annual IEEE Symposium
on the Foundations of Computer Science (FOCS’94), 1994, pp. 758–769.

4. S.-Y. Le, R. Nussinov, and J.V. Maizel. Tree graphs of RNA secondary structures
and their comparisons. Computers and Biomedical Research, 22 (1989), pp. 461–
473.

240 Jesper Jansson and Andrzej Lingas

5. P.A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. The
MIT Press, Cambridge, Massachusetts, 2000.

6. F. Preparata and M.I. Shamos. Computational Geometry. Springer-Verlag, New
York, 1985.

7. D. Sankoff and J. Kruskal (Eds). Time Warps, String Edits, and Macromolecules,
the Theory and Practice of Sequence Comparison. Addison Wesley, Reading Mass.,
1983.

8. J.C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing Company, Boston, 1997.

9. B. Shapiro. An algorithm for comparing multiple RNA secondary structures. Com-
put. Appl. Biosci. (1988) pp. 387–393.

10. K.C. Tai. The tree-to-tree correction problem. J. ACM 26 (1979), pp. 422-433.
11. R.E. Tarjan and U. Vishkin. Finding biconnected components and computing tree

functions in logarithmic parallel time. SIAM Journal of Computing 14, 4 (1985),
pp. 862–874.

12. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing 18, 6 (1989), pp. 1245–
1262.

	Introduction
	d-Relevant Pairs
	d-Relevant Pairs of Subforests

	Constructing the d-Relevant Pairs
	The Fast Algorithm
	Final Remarks

