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Abstract. We consider the problem of scheduling a sequence of tasks
in a multi-processor system with conflicts. Conflicting processors cannot
process tasks at the same time. At certain times new tasks arrive in
the system, where each task specifies the amount of work (processing
time) added to each processor’s workload. Each processor stores this
workload in its input buffer. Our objective is to schedule task execution,
obeying the conflict constraints, and minimizing the maximum buffer size
of all processors. In the off-line case, we prove that, unless P = NP, the
problem does not have a polynomial-time algorithm with a polynomial
approximation ratio. In the on-line case, we provide the following results:
(i) a competitive algorithm for general graphs, (ii) tight bounds on the
competitive ratios for cliques and complete k-partite graphs, and (iii) a
(∆/2 + 1)-competitive algorithm for trees, where ∆ is the diameter. We
also provide some results for small graphs with up to 4 vertices.

1 Introduction

We consider the problem of scheduling a sequence of tasks in a multi-processor
system with conflicts. The term “conflict” refers to a situation where two or more
processors share common resources that can only be accessed by one processor
at any given time, e.g. specialized human operators, equipment (say, a printer
or a phone line), materials, etc. Conflicting processors cannot process tasks at
the same time. In other words, at any moment in time only a non-conflicting
set of processors can be run simultaneously. At certain times new tasks arrive
in the system, where each task specifies the amount of work (processing time)
added to each processor’s workload. Each processor stores this workload in its
input buffer. Our objective is to schedule task execution, obeying the conflict
constraints, and minimizing the maximum buffer size of all processors.

We model the multi-processor system as an undirected graph G = (V, E),
where V is the set of processors and the edges in E represent conflicts. The

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 862–874, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



The Buffer Minimization Problem for Multiprocessor Scheduling 863

instance of the problem consists of a task sequence and a sequence of task arrival
times. The sequence of task arrival times, denoted t̄ = t1, . . . , tm, is a non-
decreasing sequence of real numbers. The task that arrives at time tk is given
by a task vector τ k = (τk

1 , . . . , τk
n) of non-negative real numbers, and the whole

task sequence τ 1, ..., τm is denoted by τ̄ .
The state of the system at any time is fully described by the load vector

z = (z1, z2, . . . , zn), where zi denotes the amount of work stored in the input
buffer of processor i. Upon the arrival of task τ k, the state changes to z + τ k.
In-between task arrivals, the processors execute the work stored in their buffers.
At any time, an independent set of vertices I can be chosen for processing. If a
processor i executes for σ time units during which no task arrives, it decreases
its load from zi to max {zi − σ, 0}.

A schedule is described by a sequence of independent sets Ij , 0 = 1, . . . , m−1
and an increasing sequence of times θ0 = 0, θ1, . . . , θm. During the time interval
[θj , θj+1), the set of running processors is Ij . The load vector at any time is
computed according to the rules above. A schedule is feasible for a given instance
if θm > tk and the load vector at time θm is the zero vector (i.e., all requests are
processed). The buffer size of a schedule is the maximum of any coordinate in
any load vector over all times. A schedule is called a B-schedule if it is feasible
and its buffer size is at most B.

The buffer minimization problem can be now formulated as follows: given an
instance 〈G, t̄, τ̄ 〉, where G is the conflict graph and t̄, τ̄ are the sequences of
task arrival times and task vectors, find a B-schedule for 〈G, t̄, τ̄ 〉 with minimum
buffer size B.

On-line buffer minimization. An on-line algorithm processes the workload
from the buffers without knowledge of future tasks. In round k it learns the task
vector τ k and determines a schedule that is identical with the current one at all
times up to tk and is feasible in case no further task arrives. This schedule is
executed until the next task arrives, and then the process is repeated.

We evaluate on-line algorithms by comparing their buffer size to that of an
optimal off-line algorithm. An on-line algorithm is c-competitive for a graph G
if, for any task sequence that has a B-schedule, it constructs a feasible schedule
with buffer size at most cB. The competitive ratio of G, denoted buf(G), is the
infimum over all c for which there is a c-competitive on-line algorithm on G.

We also consider a slightly weaker definition, where the optimal size of buffers
is fixed in advance. Without loss of generality, B = 1. We say that an on-line
algorithm is weakly c-competitive for G if, for any task sequence that has a 1-
schedule, it constructs a feasible schedule with buffer size at most c. The weak
competitive ratio of G, denoted buf−(G), is the infimum of all c for which there
is a weak c-competitive on-line algorithm on G. Using the doubling technique
to estimate the buffer size, it is quite easy to show that, for any graph G, the
competitive ratio buf(G) is at most 4 times the weak competitive ratio buf−(G).

Some algorithms are easier to describe if we allow them to process a convex
combination of independent sets rather than a single set. For example, instead
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of rapidly switching between two conflicting processors, we can run each of them
at half speed. This generalization does not change the competitive ratio.

Our results. We introduce the buffer minimization problem as a model for
studying various scheduling problems with conflicts. We believe that our model
faithfully captures essential properties of scheduling multiprocessing systems
over long periods of time. Other objectives in multiprocessor scheduling include
fairness, load balancing and makespan minimization. Schedules that minimize
the buffer size also typically perform well with respect to these other measures.

Off-line buffer minimization is closely related to fractional graph coloring. In
fact, in Section 2, we show that it is even harder, namely that it has no polyno-
mial time approximation algorithm with worst case guarantee that is polynomi-
ally bounded in the number n of processors, unless P = NP.

For the on-line case, we provide the following results:
(i) For every graph G, its competitive ratio buf(G) is finite (Section 3).
(ii) The clique Kn has competitive ratio buf(Kn) = buf−(Kn) = Hn where
Hn =

∑n
i=1 1/i is the nth harmonic number. For any complete bipartite graph

Km,n, buf(Km,n) = buf−(Km,n) = 2. Further for complete k-partite graphs the
competitive ratio is between Hk and Hk−1 + 1 (Section 4). These upper bounds
are achieved by a simple greedy algorithm.
(iii) For trees we show that their competitive ratio is at most ∆/2 + 1, where ∆
is the tree diameter (Section 5).
(iv) Finally, we provide bounds on the competitive ratios for graphs with up to
four vertices (Section 6). All these ratios are between 1.5 and 2.5.

Previous work. The general concept of conflicts is not new in scheduling;
in fact, one could argue that the whole area of scheduling is about resolving
various types of conflicts for access to limited resources. In the classical literature
on scheduling, conflicts are modeled by precedence relations between jobs and
machine environments.

A model similar to ours was studied by Irani and Leung [3,2]. They also intro-
duce a conflict graph, but in their work this graph represents conflicts between
individual jobs (not processors), and the objective is to minimize makespan.
They show that even for paths the competitive ratio is Ω(n). They also provide
algorithms that are competitive for general graphs under some assumptions on
the job arrival probabilities.

Similar problems to ours were also studied in relation to resource allocation in
distributed systems, where the conflict graphs is often referred to as the resource
graph [9]. For example, Bar-Noy et al [4] investigate resource allocation problems
with the objective to minimize the average response time, and they provide some
hardness and approximation results. The problems studied in [4] (see also [8]
and the references in [4]) differ from ours in that they are one-shot resource
allocation problems, while in our scenario we have a stream of tasks arriving
over time. Our objective function is different as well. Finally, unlike in [4], where
the allocation problems reduce to various color sum problems for graphs, the
buffer minimization turns out to be closely related to fractional graph coloring.
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Notation. States, or load vectors, will be denoted z, y, etc, possibly with super-
scripts. States of an on-line algorithm will be typically denoted by a. G = (V, E)
denotes an undirected graph with n vertices. We will use the convention that
V = {1, 2, . . . , n}. By N(v) we denote the set of neighbors of a vertex v in G.
Given any non-negative vector w = (w1, . . . , wn), and a vertex set X ⊆ V , we
introduce the following notation:

ΣXw =
∑

i∈X

wi and maxXw = max
i∈X

wi

For any real number x, we define [x]+ = max {0, x}, and for a vector x =
(x1, . . . , xn) let [x]+ = ([x1]+, . . . , [xn]+). For two n-dimensional vectors x and
y, we write x ≤ y to denote that x is component-wise less than or equal to y.

2 Buffer Minimization and Fractional Chromatic Number

We now exploit the relationship between the fractional chromatic number and
the buffer size to show that the minimum buffer size is hard to approximate.

As usual, the chromatic number of a graph G is denoted by χ(G), and its
clique number by ω(G). Consider a weight vector w indexed by the vertices of
V , with wj ≥ 0 denoting the weight of vertex j ∈ V . The weighted fractional
chromatic number χf (G, w) is the optimal objective value of the following linear
program, where we use I to denote independent sets in G:

χf (G, w) = min
∑

I xI

s.t.
∑

I3j xI = wj for j ∈ V

xI ≥ 0 for each I

(1)

If w = 1 (the vector of all 1’s) and if the variables xI are restricted to integral
values, then the optimal solution of the resulting integer program is just the
ordinary chromatic number χ(G): Every independent set I with xI = 1 forms a
color class, the n equations in (1) enforce that every vertex is contained in some
color class, and the objective is to use the minimum number of color classes.

The fractional chromatic number χf (G) equals χf (G,1). The chromatic num-
ber and the fractional chromatic number are closely related; see [1]. For instance,
the chromatic number χ(G) is at most log |V | times χf (G).

The connection between the buffer scheduling problem and the fractional
chromatic number is as follows: Suppose that G is the conflict graph, and that
the current load vector is w. Then the minimum time needed to empty all
the buffers (without any new tasks arriving) equals χf (G, w). The variables xI

indicate the amount of time for which I should be run in this schedule.
Using this connection and amplifying the hardness of coloring over time, we

show that the minimum buffer size cannot be efficiently approximated. Thus we
should not hope that simple greedy-type (on-line or off-line) algorithms will have
good worst case ratios on all graphs.
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Theorem 2.1. For any c > 0, the buffer minimization problem cannot be ap-
proximated within an O(nc) factor in polynomial time, unless P = NP.
Proof. We use the following theorem of Lund and Yannakakis [6]: There is a
c > 0 for which the fractional chromatic number χf (G) of an n-vertex graph
G cannot be approximated within an O(nc) factor in polynomial time, unless
P = NP. (Stronger results are known for coloring, but using them would not
improve the theorem.)

Suppose that there exists a polynomial-time approximation algorithm A for
buffer minimization with worst case guarantee anc. We can use A to design a
polynomial-time decision procedure D for the following problem: Given a graph
G = (V, E) and a positive integer F , decide whether F < χf (G) or χf (G) ≤ 2F
(when F < χf (G) ≤ 2F then both answers are correct outputs). By repeatedly
calling D for G and the values Fj = 2j , we can sandwich χf (G) in polynomial
time between two consecutive powers of two. This would yield a polynomial time
2-approximation algorithm for computing the fractional chromatic number, and
then the result of Lund and Yannakakis [6] would imply P = NP.

How do we design this procedure D? We construct a special instance of the
buffer minimization problem on G. At every time jF , for j = 0, 1, 2, . . . , anc+1,
a task 1 arrives. The size of the task sequence t̄, τ̄ is polynomially bounded in
the size of G. We feed this instance 〈G, t̄, τ̄ 〉 into A. Denote by BA the buffer size
computed by A. If BA ≤ anc, return “χf (G) ≤ 2F”, else return “χf (G) > F”.

To justify the correctness of D, suppose first BA ≤ anc. The total work
assigned to each node is anc+1, and right after the last task arrives at time
Fanc+1 the workload in all buffers of A is at most anc. Thus in time Fanc+1 each
node processed work at least anc+1 −anc. Therefore χf (G) ≤ Fanc+1/(anc+1 −
anc) ≤ 2F (without loss of generality, we assume n ≥ 2).

On the other hand, if BA > anc then the optimal buffer size is greater than 1.
Thus it is not possible to process the workload 1 in time F , and thus χf (G) > F .

3 The Online Problem for Arbitrary Conflict Graphs

Let G = (V, E) be an arbitrary but fixed conflict graph. In this section we show
that buf(G) < ∞. The main idea is the following. Since an on-line algorithm
does not know the current state of the off-line algorithm, it tries to choose states
that would be good for every possible state of the off-line algorithm.

For two states z and z′, define π(z,z′) = χf (G, [z − z′]+), that is, π(z,z′)
is the minimum processing time needed to reach a state z′′ ≤ z′ from z. A state
y is called off-line feasible at time t, if there exists an off-line 1-schedule for all
the requests seen till time t which is in state y at time t. A state z is called
α-universal at time t if, for any off-line feasible state y at time t, π(z,y) ≤ α. In
other words, from an α-universal state we can reach any possible off-line feasible
state within α time units. An algorithm is α-universal if at each point in time
its state is α-universal. From the definition of α-universality we immediately get
the following lemma.
Lemma 3.1. Any α-universal on-line algorithm is weakly (α + 1)-competitive.
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A linear programming lemma. Let I range over the independent sets of
G. We formulate a linear program with the following intended meaning of the
variables: The vector a is a state of the on-line algorithm. In the proof we think
of a as the vertex weights for which we seek an optimal fractional coloring. For
any feasible solution, the variables xI define a fractional coloring of (G, a). The
variables uI describe a change of this coloring that gives a fractional coloring of
(G, a − ε) in which the number of colors decreases by δ. Finally, d is a crucial
parameter which says that if a color was used heavily in the original coloring, it is
also used in the modified coloring. All variables except the uI are non-negative.

Let W be the set of all tuples (a,x, ε, δ, d, u) satisfying the following linear
constraints:

0 ≤
∑

I3j

xI = aj for each j ∈ V

0 ≤
∑

I3j

uI = εj ≤ 1 for each j ∈ V

0 ≤
∑

I

uI = δ ≤ χf (G,1)

[u]+I ≤ xI and [u]+I ≤ d for each I

The key step in the proof is to show that it is never necessary to use large
values of d. This implies that if we have a coloring for the current weights and
change the weights a little, we can also bound the change in the coloring. In the
next lemma we give show that such a bound exists.

Lemma 3.2. Define f(a,x, ε, δ) = min {d | (∃u)(a,x, ε, δ, d, u) ∈ W}. There
exists a constant D such that the function f is upper bounded by D on all points
where it is defined (i.e., finite).

Proof. The set of tuples (a,x, ε, δ, d) such that (a,x, ε, δ, d, u) ∈ W for some
u is a polytope, since this is simply a projection of W . Thus function f , being
a value of a linear program, is piecewise linear on its domain. Moreover, its
domain consists of a finite number of regions in which f is linear. Consequently,
it is sufficient to verify that f is bounded on any infinite feasible ray (halfline)
in variables (w,x, ε, δ).

Since feasible values of ε and δ are bounded, they are also bounded along
any feasible ray. Since a and x are non-negative, they must be non-decreasing
along any feasible ray.

Now take any two points (w,x, ε, δ) and (w′,x′, ε′, δ′) on the same feasible
ray, so that the second one is farther away from the origin of the ray. This
means that ε′ = ε, δ′ = δ, a′ ≥ a, and x′ ≥ x. Let (a,x, ε, δ, d, u) ∈ W and
(a′,x′, ε, δ, d′,u′) ∈ W be the corresponding feasible vectors with the minimal
values of d and d′. We claim that (a′,x′, ε, δ, d, u) ∈ W as well. We have x′

I−uI ≥
xI − uI ≥ 0 by the feasibility of the first vector. All the other constraints follow
directly by the feasibility of one of the two vectors. By minimality of d′, we
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have d′ ≤ d. Consequently, along any infinite ray, the minimal feasible value of
d cannot increase.

The algorithm. Now we define an on-line algorithm as follows. Let α = qD,
where q is the number of independent sets and D is the constant from Lemma 3.2.
Suppose that a is the current state of the algorithm, and let x be an optimal
fractional coloring of a. Process an arbitrary independent set I with xI > D for
time xI −D. If no such set remains and there exists a vertex with non-zero load,
we process any set containing such a vertex.

Theorem 3.3. For any graph G = (V, E), buf(G) is finite.

Proof. We claim that the above algorithm is α-universal. By Lemma 3.1 it then
follows that buf−(G) ≤ α + 1, and using doubling we obtain buf(G) ≤ 4α + 4.

By the definition of the algorithm, if the load vector is non-zero, some non-
trivial set is processed. Thus on any finite request sequence the zero load vector
is eventually achieved and a feasible schedule is generated.

It remains to verify that the algorithm is in an α-universal state at any time.
It is clearly true at time 0. When a task arrives, off-line and on-line loads change
by the same amount. So if the algorithm was in an α-universal state right before
a task arrival, it will also be in an α-universal state afterwards. Thus we only
need to verify that the schedule remains in an α-universal state when processing
an independent set during an interval when no task arrives.

If there is no set with weight larger than D in x, we can reach 0 in time at
most qD = α, thus the current state and any following state (before arrival of
the next task) is trivially α-universal.

The remaining case is when an independent set I with weight wI ≥ D + β
is processed for some time β > 0. Suppose that during this time the algorithm
changes its state from a to a′, while the adversary changes its state from y to
y′. We need to verify that π(a,y) ≤ α implies π(a′,y′) ≤ α.

Trivially, π(a,y′) ≤ π(a,y) + π(y,y′) ≤ α + β. To conclude the proof it is
sufficient to show that there exists an optimal fractional coloring of [a − y′]+

with weight of I at least β. For if we have such a coloring and decrease the
weight of I by β, we obtain a coloring of [a′ − y′]+. Since a′ is obtained from a
by processing I for time β, this coloring of [a′ − y′]+ has weight at most α.

Let ε = a − [a − y′]+, that is εi = min {ai, y
′
i} for each i. Choose u such

that x − u is an optimal fractional coloring of a − ε, and define δ = χf (G, a) −
χf (G, a − ε). Clearly, 0 ≤ ε ≤ 1 and δ ≤ χf (G, ε) ≤ χf (G,1). By inspection of
the linear program, if d is sufficiently large then (a,x, ε,u, δ, d) ∈ W . Lemma 3.2
implies that there are u′ and d′ ≤ D for which (a,x, ε, δ, d′,u′) ∈ W . Then x−u′

is also an optimal fractional coloring of a−ε and xI −u′
I ≥ xI −d′ ≥ xI −D ≥ β.

4 The Online Problem on Complete k-Partite Graphs

At each step, a scheduling algorithm needs to determine an independent set I
of processors that should execute their tasks. Algorithm Greedy determines I
in the most obvious way: it iteratively chooses the processor with highest load,
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and eliminates its neighbors. To define Greedy formally, we need to be a bit
careful, as the time is continuous and ties need to be appropriately resolved.
Denote Greedy’s load vectors by a. We view the computation as being divided
into ε-steps, with ε → 0. At each such ε-step, Greedy determines I as follows:
Start with I = ∅. Iteratively pick v with maximum av, add v to I, and remove
v and its neighbors from G. Stop when G = ∅. Then, for all v ∈ I, decrease av

by ε. Consider a time interval [t, t′] in which no tasks are issued. Divide it into
intervals of length ε. Determine the state of Greedy at time t′, and take its limit
for ε → 0. For complete k-partite graphs this limit is always well-defined. For
such graphs, if there are j color classes that contain a node with maximum buffer
size, then Greedy will process the buffers of all nodes in these color classes at
speed 1/j.

Throughout this section, by a subgraph X we mean the subgraph of G induced
by X. By z we denote an off-line state, and by B the optimal buffer size. Since
Greedy does not depend on B, we can assume that B = 1.

Smooth subgraphs. If X is a vertex set, then denote N(X) =
⋃

v∈X N(v)−X.
We say that X is smooth if all vertices in X have the same neighbors outside X
that is, N(v) − X = N(X) for v ∈ X.

Greedy’s behavior on smooth subgraphs is easy to characterize. Suppose X
is a smooth subgraph with neighborhood L = N(X), and assume that there are
no tasks issued between the current time t and some time t′ > t. If maxXa >
maxLa then, when Greedy chooses its independent set I, it will always pick at
least one vertex from X, namely one that realizes the maximum maxXa, and
it will not include any vertices from L. So maxXa will keep decreasing while
maxLa will stay the same. On the other hand, if maxXa ≤ maxLa, then this
inequality will remain true until time t′, since, by the previous statement, for
any choice of ε-steps, maxXa cannot exceed maxLa by more than ε.

Lemma 4.1. Suppose K ⊆ V is a smooth clique in G with N(K) = L. Then

ΣKa ≤ ΣKz + |K|maxLa. (2)

Proof. That (2) is preserved when tasks are issued is obvious. So consider task ex-
ecution. If maxKa ≤ maxLa then ΣKa ≤ |K|maxKa ≤ |K|maxLa, so (2) holds.
Further, if maxKa = maxLa, then this equality will be preserved throughout
until the next task arrives. If maxKa > maxLa then, at the next infinitesimal
ε-step, the independent set I used by Greedy contains exactly one node from
K and is disjoint with L. Then the left-hand side of (2) decreases by ε and the
right-hand side cannot decrease by more than ε.

Lemma 4.2. Suppose that X ⊆ V is a smooth, complete k-partite subgraph of
G with color classes J1, . . . , Jk and N(X) = L. Then

k∑

i=1

maxJi
[a − z]+ ≤ max { k maxLa , k − 1 } (3)
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Proof. Inequality (3) is preserved when tasks are issued, so it is sufficient to
consider task execution. If maxXa ≤ maxLa, then the left-hand side is at most∑k

i=1 maxJia ≤ k maxXa ≤ k maxLa. Further, if maxXa = maxLa then this
equality will remain true throughout task execution. Suppose now maxXa >
maxLa. In the next ε-step Greedy will use an independent set I such that
I ∩ (X ∪L) = Jj for some Jj that maximizes maxJj

a. We have two sub-cases. If
av ≤ zv for all v ∈ Jj then av ≤ 1 for all v ∈ X. So the jth term on the left-hand
side is 0 and the other terms are at most 1. Overall, the left-hand side is at most
k − 1. Finally, suppose that av > zv for some v ∈ Jj . All positive av ∈ Jj will
decrease by ε, decreasing the left-hand side by ε. There can only be one j′ for
which some zv ∈ Jj′ decreases, increasing the left-hand side by at most ε. So the
left-hand side cannot increase and the right-hand side does not change.

Theorem 4.3. For the complete graph Kn, buf(Kn) = buf−(Kn) = Hn.

Proof. (Lower bound) The adversary strategy consists of phases. Before phase p
starts, the following invariant holds: there is a set X of n−p+1 processors such
that zi = 0 for i ∈ X and ΣXa ≥ (n−p+1)(Hn−Hn−p+1). The adversary creates
task 1 for processors i ∈ X and waits for time n − p. The new buffers satisfy
ΣXa′ ≥ ΣXa+(n−p+1)− (n−p) = ΣXa+1. Pick j for which a′

j is minimum
and let X ′ = X − {j}. Then ΣX′a′ ≥ n−p

n−p+1 (ΣXa + 1) ≥ (n − p)(Hn − Hn−p).
The adversary can zero all zi for i ∈ I ′. Thus the invariant is preserved.

In phase n, the only processor in X will have workload at least ai = Hn − 1
in the buffer, so after adding 1 to processor i, the workload will reach Hn.
(Upper bound) We prove that Greedy is Hn-competitive. Order the processors
so that a1 ≥ a2 ≥ ... ≥ an. By (2), for each j we have

∑
i≤j ai ≤ j+jaj+1, where

for j = n we assume that an+1 = 0. Multiply the jth inequality, for j < n, by
1/j(j + 1), multiply the nth inequality by 1/n, and then add all the inequalities
together. We get a1 ≤ Hn, and the upper bound follows.

Theorem 4.4. If G is a complete k-partite graph then buf(G) ≤ Hk−1 + 1.

Proof. We prove that Greedy is (Hk−1+1)-competitive. Let the color classes of
G be J1, J2, . . . , Jk. Let Ai = maxJi

a, for all i. Reorder the color classes so that
A1 ≥ A2 ≥ ... ≥ Ak. Then, (3) implies that

∑j
i=1 Ai ≤ max {jAj+1, j − 1} + j

for each j = 1, . . . , k. Pick the smallest l ≤ k for which lAl+1 ≤ l − 1. For
j = 1, . . . , l − 1, multiply the jth inequality by 1/j(j + 1), multiply the lth
inequality by 1/l, and then add the first l inequalities together. We get

l−1∑

j=1

1
j

j∑

i=1

Ai −
l−1∑

j=1

1
j + 1

j∑

i=1

Ai +
1
l

l∑

i=1

Ai ≤
l−1∑

j=1

1
j + 1

Aj+1 + Hl−1 + 1,

which yields A1 ≤ Hl−1 + 1 ≤ Hk−1 + 1, and the theorem follows.

Our analysis of Greedy in Theorem 4.4 is tight. For the lower bound, we use
a complete graph with one edge missing, say G = Kk+1 −{(1, n)}. Suppose that
we have a configuration a = (α, β, β, . . . , β) and z = 0, where α ≤ β ≤ 1 − 1/k.
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Initially, α = β = 0. Create task (0, 1, 1, . . . , 1), process for time k − 1, then
create task (1, 0, 1, . . . , 1), and process for time k. The adversary can zero all his
buffers. At the end Greedy will be in configuration (β′, α′, β′, . . . , β′), where
α′ = β − (1 − 1/k)(1 − 1/k − β), β′ = β + (1 − 1/k − β)/k. Note that α′ ≤ β′ ≤
1 − 1/k. We can now repeat the process with the nodes 1 and n switched. Thus
in the limit, β will converge to 1 − 1/k. Then we can use the strategy for Kk to
increase the buffers size to Hk + 1 − 1/k = Hk−1 + 1.

The next theorem shows that the upper bound achieved by Greedy on
complete k-partite graphs is tight within a small additive factor. Note that as a
special case of this lower bound, we obtain that buf−(P3) ≥ 2. The proof involves
a somewhat tedious adversary argument, and is omitted in this abstract.

Theorem 4.5. Consider a complete k-partite graph G in which µ of the in-
dependent sets in the k-partition consist of a single vertex, whereas the re-
maining k − µ independent sets all have at least two vertices. If µ = 0, then
buf−(G) ≥ Hk−1 + 1. If µ ≥ 1, then buf−(G) ≥ Hk−1 + (k − µ)/(k − 1).

5 The Online Problem on Trees

In this section we prove that the strong competitive ratio for trees of diameter
∆ is at most 1 + ∆/2. In particular, buf(Pn) ≤ (n + 1)/2.

Let G = (V, E) be a graph and A an on-line algorithm for an induced sub-
graph H of G. The greedy extension of A, denoted GE(A) is an algorithm for G
that works like this: if A processes a set I at a given step, then GE(A) chooses
greedily (that is, choosing nodes with largest buffers) a maximal independent
set J ⊆ V − I − N(I), and processes I ∪ J .

For certain graphs G and its subgraphs H, we can estimate the relationship
between the competitive ratios of A and GE(A).

Lemma 5.1. Suppose that G is constructed from H by adding a number of new
vertices of degree 1, each connected by a new edge to some vertex in H. Then
buf(G) ≤ buf(H) + 1 and buf−(G) ≤ buf−(H) + 1.

Proof. Let A be c-competitive on H (the proof for weak competitiveness is the
same). Let B be GE(A). We can assume the buffer size is B = 1, since B does
not use the information about the off-line buffer size, unless A does so.

By the definition of B, its behavior on H is exactly the same as that of A.
In particular, the buffer size of any vertex of H is at most c at any time.

Consider v ∈ G − H, and let w be its unique neighbor in H. Let a and z be
the states of B and the optimal off-line algorithm, respectively. We claim that
the following invariant holds at all times:

av + aw ≤ zv + zw + c − 1. (4)

This inequality must be true whenever av = 0, since otherwise, by putting load
1 − zw at w we would contradict the c-competitiveness of A on G. If a new task
arrives, both sides of (4) increase by the same amount, thus the inequality is
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preserved. If some independent set is processed for time ε while av > 0, then the
left-hand side of (4) decreases by ε, by the definition of the algorithm B, and
the right-hand side cannot decrease by more than ε. Thus (4) is preserved. Since
zv, zw ≤ 1, we obtain av ≤ av + aw ≤ zv + zw + c − 1 ≤ c + 1.

Theorem 5.2. For any tree T with diameter ∆, buf(T ) ≤ 1 + ∆/2. In partic-
ular, buf(Pn) ≤ (n + 1)/2.

Proof. By iteratively adding leaves, in ∆ steps we can obtain any tree with
diameter 2∆ from K1, and any tree with diameter 2∆ + 1 from K2. The bound
follows by iterating the lemma and noting that buf(K1) = 1 and buf(K2) = 1.5.

Note that Theorem 5.2 gives another 2-competitive algorithm for P3: If there
is any load on the middle vertex, run this vertex, otherwise run the two endpoints.

6 The Online Problem on Small Graphs

In this section we discuss competitive ratios of the ten connected graphs with up
to four vertices. By Theorem 4.3, the complete graphs K1, K2, K3, and K4 have
competitive ratios 1, 3

2 , 11
6 , and 25

12 , respectively. By Theorems 4.4 and 4.5, the
complete bipartite graphs K1,2 (= P3), K1,3, and K2,2 (= C4) have competitive
ratio 2. All these bounds are attained by algorithm Greedy. The corresponding
weak competitive ratios are the same. Thus for all these graphs the problem is
completely solved.
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Fig. 1. The connected graphs with at most four vertices.

The three remaining graphs are the path P4, the triangle plus an edge K3+e,
and “diamond graph” K4−e, see Figure 1. Since all these graphs contain P3,
their weak competitive ratio is at least 2. For these graphs, we can prove the
following bounds (the proofs will appear in the full version of the paper):

2 ≤ buf−(P4) ≤ buf(P4) ≤ 5
2

13
6 ≤ buf−(K3+e) ≤ buf(K3+e) ≤ 5

2

2 = buf−(K4−e) ≤ buf(K4−e) ≤ 5
2
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7 Final Comments

The main open problem is to establish tighter bounds on the competitive ratios
for general graphs. The first step may be to either give a polynomial upper bound
or a super-logarithmic lower bound, if any of these is possible.

For trees, we were unable to prove any lower bound better than 2. We suspect
that there may be an algorithm for paths, and possibly for trees as well, with a
constant competitive ratio (independent of n).

All algorithms we presented in the paper are memoryless, that is, they don’t
keep track of the past history. The behavior of such an algorithm depends only on
its current buffer loads. We believe that algorithms that use information about
possible adversary configurations can achieve better competitive ratios. Using
the history, for any B, we can compute all possible adversary configurations
that can be reached with buffer size up to B. However, the question of how to
represent and use this information appears itself to be a difficult problem (in
fact, we proved that maintaining this information is NP-hard). Perhaps, instead
of keeping track of the whole history, it is sufficient to maintain only some lower
bounds on the buffer sizes. It is quite easy to define lower bounds using complete
subgraphs, for example.

A natural starting point for the above investigations would be to analyze
the competitive ratios for small graphs, and for P4 in particular. We made some
progress in this direction, but many questions remain open. A complete analysis
of small graphs would give good insight into the problem and may provide new
ideas for the general case.
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