Skip to main content

Finite-State Dimension

  • Conference paper
  • First Online:
Book cover Automata, Languages and Programming (ICALP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2076))

Included in the following conference series:

Abstract

Classical Hausdorff dimension was recently effectivized using gales (betting strategies that generalize martingales), thereby endowing various complexity classes with dimension structure and also defining the constructive dimensions of individual binary (infinite) sequences. In this paper we use gales computed by multi-account finite-state gamblers to develop the finite-state dimensions of sets of binary sequences and individual binary sequences. Every rational sequence (binary expansion of a rational number) has finite-state dimension 0, but every rational number in [0; 1] is the finite-state dimension of a sequence in the low-level complexity class AC0. Our main theorem shows that the finite-state dimension of a sequence is precisely the infimum of all compression ratios achievable on the sequence by information-lossless finite-state compressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. É. Borel. Sur les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo, 27:247–271, 1909.

    Article  MATH  Google Scholar 

  2. J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. Journal of Computer and Systems Sciences, 49:605–619, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. H.G. Eggleston. The fractional dimension of a set defined by decimal properties. Quarterly Journal of Mathematics, Oxford Series 20:31–36, 1949.

    Google Scholar 

  4. K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.

    Google Scholar 

  5. M. Feder. Gambling using a finite state machine. IEEE Transactions on Information Theory, 37:1459–1461, 1991.

    Article  MathSciNet  Google Scholar 

  6. F. Hausdorff. Dimension und äusseres Mass. Math. Ann., 79:157–179, 1919.

    Article  MathSciNet  Google Scholar 

  7. D. A. Huffman. Canonical forms for information-lossless finite-state logical machines. IRE Trans. Circuit Theory CT-6 (Special Supplement), pages 41–59, 1959. Also avalaible in E.F. Moore (ed.), Sequential Machine: Selected Papers, Addison-Wesley, 1964, pages 866-871.

    Google Scholar 

  8. Z. Kohavi. Switching and Finite Automata Theory (Second Edition). McGraw-Hill, 1978.

    Google Scholar 

  9. A. A. Kurmit. Information-Lossless Automata of Finite Order. Wiley, 1974.

    Google Scholar 

  10. Lathrop and Strauss. A universal upper bound on the performance of the Lempel-Ziv algorithm on maliciously-constructed data. In SEQS: Sequences’ 97, 1997.

    Google Scholar 

  11. J. H. Lutz. Dimension in complexity classes. In Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity, pages 158–169. IEEE Computer Society Press, 2000.

    Google Scholar 

  12. J. H. Lutz. Gales and the constructive dimension of individual sequences. In Proceedings of the 27th Colloquium on Automata, Languages and Programming, pages 902–913. Springer Lecture Notes in Computer Science, 2000.

    Chapter  Google Scholar 

  13. B. Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of Information Transmission, 22:170–179, 1986.

    MATH  MathSciNet  Google Scholar 

  14. B. Ya. Ryabko. Algorithmic approach to the prediction problem. Problems of Information Transmission, 29:186–193, 1993.

    MathSciNet  Google Scholar 

  15. B. Ya. Ryabko. The complexity and effectiveness of prediction problems. Journal of Complexity, 10:281–295, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. P. Schnorr and H. Stimm. Endliche automaten und zufallsfolgen. Acta Informatica, 1:345–359, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Computation, 102:159–194, 1993.

    Article  MathSciNet  Google Scholar 

  18. L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems, 31:215–229, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Ziv. Coding theorem for individual sequences. IEEE Transactions on Information Theory, 24:405–412, 1978.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E. (2001). Finite-State Dimension. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds) Automata, Languages and Programming. ICALP 2001. Lecture Notes in Computer Science, vol 2076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48224-5_83

Download citation

  • DOI: https://doi.org/10.1007/3-540-48224-5_83

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42287-7

  • Online ISBN: 978-3-540-48224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics