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Abstract. BSPIlab is a simulation environment for studying the interplay be-
tween hardware and software in parallel computing. It offers the BSPlib parallel
programming library and is based on Bulk Synchronous Parallel (BSP) comput-
ing [1], [2]. BSPlab contains a set of high-level performance models of parallel
architectures. It can be used as a tool for architectural level design space explo-
ration of BSP computers both in research and teaching. The paper introduces
BSP, BSPlib and BSPlab. Then it presents the architectural models and their pa-
rameters, and discusses how they can be used to make experiments that show
how the different aspects of a computer affect the performance of an application.

1 Introduction

Although it has been claimed an ongoing convergence in parallel computer architecture
[3] O understanding the interplay between hardware and software in parallel comput-
ing is still difficult. This understanding is crucial both for developing efficient parallel
applications on contemporary supercomputers and for designing competitive high-
performance parallel computers. An important way of studying the HW/SW interplay
in such complex paralel computing systemsis by simulation. The BSPlab environment
was developed for use in research and teaching of parallel computer architectures as
well as for performance studies of parallel applications.

BSPlab offers parallel application development using BSPlib that is a standardised
library for paralel programming based on the BSP (Bulk Synchronous Parallel) model
[4]. Libraries such as PYM and MPI have a larger user community, but we believe the
simplicity of BSPlib and the generality of BSP makes it more suitable for developing
applications that are portable to a large variety of paralel computer architectures with-
out rewriting code to maintain efficiency. BSPlab contains architectural performance
models for evaluating the efficiency of such portable software.

The paper starts by giving a short introduction to the BSP model and the BSPlab
environment in Section 2. Section 3 gives a thorough presentation of the parametersin
the set of architectural models available in BSPlab. This gives the background for
understanding what kind of architectural experiments are possible. In Section 4 we
summarise briefly the status of BSPlab with respect to test programs and conducted



experiments. Section 5 ends the paper by presenting experience, current work and a
few concluding remarks.

2 A Short Introduction to BSP and BSPlab

Ledie Valiant proposed the Bulk Synchronous Parallel (BSP) model in 1990 [1]. The
BSP model is a theoretical framework outlining how parallel computations can be
organised in away that bridges the gap between the needs of the programmers and the
computing hardware offered by the computer architects and designers.

The model is defined as the combination of three attributes: i) a number of compo-
nents performing processing and/or memory functions, ii) a router that delivers mes-
sages point to point between pairs of components, and iii) a synchronisation facility
that is able to synchronise all or a subset of the components at regular intervals. A
computation is described as a sequence of supersteps. During a superstep, the compo-
nents perform computations asynchronously, and the synchronisation facility guaran-
tees that al components have finished the current superstep before they proceed to the
next one.

William F. McColl has been central in bringing the BSP theory to practical pro-
gramming. His paper on Bulk Synchronous Parallel Computing [2] describes how the
performance of BSP computers can be characterised by only four parameters. Infor-
mally these are processor speed (s), number of processors (p), synchronisation cost (1)
and global computation/communication balance (g). Hill has reported the values of
these parameters for the most popular supercomputers [5]. The BSP parameters are
central in algorithm analysis for BSP applications, and make it possible to develop
parallel programs with portable efficiency.

BSPlab is an environment for experimenting with BSP programs on arich variety of
paralel computer architectures. Parallel applications, benchmarks or specialised per-
formance testing programs are written in C or C++ using BSPlib for communication
and synchronisation. The user may select among various predefined parallel computer
architecture models or might define her own architecture. The BSP programs are then
debugged and executed in the BSPlab environment to achieve the measures specified
by the user to support the current foci of the performance study. A typical goal can be a
better understanding of the interplay between the selected BSP-architecture and the
parallel program. In short, BSPlab can be regarded as an experimental tool for archi-
tectural level design space exploration of BSP computers.

BSPlab uses the standard Microsoft Developer Studio for the C++ programs. A con-
seguence is that it has a good programming environment that also can be used for de-
veloping BSPlib applications that are targeted for real parallel computers.

BSPlab was developed at NTNU in Trondheim, Norway, as the diploma work of
Dybdahl and Uthus [6]. It is built upon the process-oriented discrete event simulation
package C++SIM [7]. Some ideas and methods were aso found in MultiSim++ [8].
Thisis asimulation package for simulating processing elements connected in different
networks. BSPlab is available from www. i di . nt nu. no/ bspl ab.



3 BSPlab Architectures and its Parameters

This section describes the BSPlab models of different parallel computer architectures.
When BSPlab starts execution, it loads an architecture definition file that selects a
model and gives the values of its parameters. Knowing the parameters is necessary for
understanding what kind of experiments the models can be used for.

3.1 Overview of Available Architectures

BSPlab currently includes models of two abstract architectures and three real archi-
tectures. The abstract architectures are useful for teaching BSP programming, and for
studying performance of applications running on parallel machines that give little and
therefore easy-to-understand influence on the measured performance. Experiments on
such simplified architectures may provide a useful step for understanding the more
complex effects that more realistic architectures have on application performance.

The main difference between the three real architectures is their communication
medium and interface for exchanging information between the processors. The distrib-
uted shared memory architecture uses a shared bus, the tightly coupled multiprocessor
architecture uses dedicated communication links and the NOW architecture uses a
computer network such as Ethernet.
¢ Null machine This abstract machine models an ideal parallel computer machine

where both communication and synchronisation is free. However, the computation

time used by the processors can be modelled in several ways. See Section 3.2.
¢ Simple machine The simple machine model extends the null machine by offering

simple means of representing the time used for communication and synchronisation.

It isfurther described in Section 3.3.

» Distributed shared memory (DSM) This architecture is functionaly like a multi-
processor with the processors connected through a single common bus to a shared
memory. The logically shared memory is physically distributed among the proces-
sors. Each processor can access datain own local memory, in shared memory stored
locally, or in shared memory stored in other processors. The parameters for this ar-
chitecture models the speed of the common bus and the method of synchronising the
processors. The model is further described in Section 3.4.

e Tightly coupled multiprocessor (TCM) This is a family of architectures where
the processors are interconnected through one of a set of different network topolo-
gies. Parameters are available for specifying topology, network size, the communi-
cation between the processor and the network, and methods and performance of
communication by messages. It is elaborated in Section 3.5.

* Network of workstations (NOW) This model represents a set of workstations or
PCs interconnected in a local area network (LAN). The Ethernet is chosen as net-
work standard and the model contains 10 parameters that specify the BSPlab
Ethernet implementation. In addition, it has parameters for specifying the simulation



of the network traffic generated by other applications using the same network. This
BSPlab model is given abrief description in Section 3.6.

* User defined machines The original BSPlab documentation [6] contains a short
description of how the advanced user may implement other architectural models
than the preimplemented ones. That possibility will not be elaborated here.

3.2 Null Machine

When executing BSP applications on the null machine both inter-processor communi-

cation and synchronisation "takes no time”. Still, the model deasral parameters

that make it useful for learning fundamental aspects of parallel application perform-
ance. These are summarised in Table 1.

A fundamental choice in BSPlab is between manual and automatic timing. With
Manual timing the programmer manually inserts “hold-calls” into the program to
specify the time consumption of various program segments. It corresponds to advanc-
ing the simulation clock in discrete event simulations. It is useful in experiments where
you want to highlight the performance effects of certain parts of an algorithm, or when
using coarse grained time modelling. An example is cases where you want to verify
analytically derived performance expressions by simulation experiments [9].

Automatic timing means that the BSPlab environment measures the time used to
execute the various parts of the program. The programmer is then relieved from the
burden of inserting the hold calls. In addition, the time modelling will be more accurate
and realistic. When discussing timing in BSPlab it is important to distinguish the proc-
essor speed of thértual processors in the BSP computer being simulated from the
real executing processor in the PC executing the simulation model. A problem with
automatic timing is that running the same BSPlab experiment on a fast executing proc-
essor will give better performance results than on a slower one. There are cases where
this is unpractical, and the parameters InternalCPUbenchmark and ThisCPUSpeed can
be used to avoid it.

Internal CPUBenchmark! is a parameter that turns on a small benchmark program
that is run initially to estimate the speed of the executing processor.

Table 1. Parameters for the null machine BSPlab model

Parameter name Informal description
NumberOfProcessors No. of processors in BSP computer
AutomaticTiming Turns on automatic timing of code
ManualTiming Turns on manual timing of code
InternalCPUBenchmark Estimate speed of executing processor
ThisCPUSpeed Set speed of executing processor
Virtual CPUSpeed Set speed of virtual BSP-processors

1 The origina name for this parameter is AutomaticCPUTiming [6]. However we have changed
it to better reflect its meaning and to avoid confusion with AutomaticTiming.



If a BSPlab user has a set of completed experiments and upgrades to a more powerful
PC, she might run an experiment with the Internal CPUBenchmark parameter set and
write down the reported speed of the new executing processor. By using this value for
the ThisCPUSpeed parameter she might carry on with new experiments using auto-
matic timing that are comparable with the older results. More details on this can be
found in Line’s Diploma Thesis [10].

The parameteYirtual CPUSpeed is used to specify the speed of the virtual proces-
sors relative to a 100MHz Intel 486. The parameter is useful for scaling the time mod-
elling so that it is representative for the BSP computer we have in mind. As an exam-
ple, when we are modelling a BSP computer using 500MHz Pentium llls as computing
nodes the parameter should be set to 4.2.

Automatic timing can also be combined with manual timing. In the first stage,
automatic timing may be used in repeated experiments to produce average values that
can be used as good estimates for realistic time consumption in the main program
segments. In the second stage, we switch to manual timing with these values used as
parameters to hold-calls. Then we might in many cases obtain both the realism of
automatic timing and repeatedness and faster execution characteristic for manual tim-
ing.

The null machine contains few and only very basic parameters. However, studies of
non-trivial applications should often start with simple experiments with only a few
parameters being varied. Also, the ideal computer offered by the null machine, with
free communication and synchronisation, gives an easy way to derive an upper limit
for the performance that can be obtained by a given parallel program.

3.3 Simple Machine

As the name indicates, tlsmple machine BSPlab model is also an unrealistic ma-
chine model that simplifies a lot. As all BSPlab models, it contains the parameters of
the null machine. In addition, it has the two parameters shown in Table 2 for specify-
ing a linear time model for synchronisation or communication. The BSPlab user sets
both to appropriate floating-point values. The parameters have the prefix "Simple_" to
indicate that it is only available for this model. The three more realistic models have
more comprehensive ways of specifying the cost of communication and synchronisa-
tion.

If the parameteSimple_TimeToSynchroniseOneProcessor is set to a non-zero value
the BSP-processor will first perform a free barrier synchronisation, and then all the
processors used, assume the numbier ¥8aits by doing a “hold” of N multiplied with
the value of the parameter. This means that the time used on the synchronisation is
constant for a givefl. A barrier synchronisation will often depend on the distribution
of the “arrival times” when the various processors start on the synchronisation process.
A consequence is unpredictable synchronisation time. However, the linear cost model
used in the simple machine eliminates this unpredictability and might therefore make it
easier to understand the performance of complex parallel programs.



Table 2. Parameters for the simple machine BSPlab model

Parameter name Informal description
Simple_TimeToSynchroniseOneProcessor Linear synchronisation cost
Simple TimeToSendOneByte Linear communication cost

Similarly, the parameter Smple_TimeToSendOneByte is a floating-point value mul-
tiplied with the number of bytes sent by a processor to calculate the time used to per-
form the send operation. Note that the time used is independent of what any of the
other processors are sending. Again, thisis asimplification since many communication
structures will reach a point of saturation where communication is slowed down by
other traffic.

If further simplifications are needed to increase understandability, an option is to set
one of the parameters to zero. For instance, the experimenter can focus entirely on the
communication of an application by letting synchronisation and computation be free.
Note also that BSPlab offers more than 20 logging parameters that are used for re-
porting. As examples, the experimenter may log the execution time used by a super-
step, the time used on synchronisation, and the number of bytes communicated by
BSMP or DRMA.? The values may be reported by superstep and by processors, as
average values and as grand totals. The logging parameters are available for all BSPlab
machine models [6].

A general linear communication cost model can be expressed as T = a+ b xn
where T is the communication cost, a is the startup cost, b is the time used to send one
byte, and n is the number of bytes sent. The linear model used in the BSPlab simple
machine has a = 0 and thus fails to model the startup cost that is typical for many
communication mechanisms. Section 7.7 in [6] describes how to make a user defined
machine model with this extension and how to specify an alternative way of modelling
the time used on synchronisation.

3.4 Distributed Shared Memory (DSM)

The BSPlab model for Distributed Shared Memory (DSM) machines has 10 parame-
ters, see Table 3. We start by explaining the first five parameters that are common for
the DSM, Tightly Coupled Multiprocessor and the Network of Workstations. The
parameter Bytes|nGetMessage specifies the size of the message that implements a call
to the BSPlib routine bsp_get . A processor uses this routine to request data from a
remote processor. Similarly, BytesinSyncMessage is the size of one synchronisation
message. The processors send a multitude of such messages to perform a barrier syn-
chronisation. BSPlib offers two modes of communication called Direct Remote Mem-
ory Access (DRMA) and Bulk Synchronous Message Passing (BSMP) [4]. In BSMP
the message must be marked and the extra number of bytes used for this is given by
BSVIPMessageMarkS ze.

2BSMP and DRMA are two ways of communicating in BSPlib, see Section 3.4.



In the DSM, TCM and NOW modelsit is assumed that the processor is transferring
the data to a communication controller in the same node before this controller dispatch
it on the communication medium. TimeToStartPacketizing and TimeToPacketizeOne-
Byte implement a linear communication cost model of the kind discussed at the end of
the previous section. In addition to this comes the time used for transmitting the data
on the shared bus which performance is modelled by three parameters. Processor-
Bus Width givesits width in bits and gives together with ProcessorBus_Freguency (in
Hz) the bandwidth of the bus. The parameter ProcessorBus_ArbitrationGap specifies
the time used to specify who is the next processor to have control of the shared bus.

Table 3. Distributed Shared Memory (DSM) architecture parameters

Parameter name Informal description

ByteslnGetM essage Size of bsp_get message
ByteslnSyncM essage Size of synhronization message
BSMPMessageMarkSize Extra message overhead with BSMP
TimeToStartPacketizing Fixed overhead of comm. controller
TimeT oPacketizeOneByte Overhead pr. byte of comm. controller
ProcessorBus_Width Width in bits of shared bus
ProcessorBus_Frequency Speed of shared bus
ProcessorBus_ArbitrationGap Time used for bus arbitration

Bus BarrierTreeFanin No. of childrenin sync. reduction tree
Bus BarrierTreeFanOut No. of children in sync. broadcast tree

The DSM architecture performs synchronisation by a two step procedure. In the
first step, the processors are organised in a reduction tree and messages are sent from
the children towards the root to signalise that a processor or a subset of the processors
has entered the synchronisation call. The parameter Bus BarrierTreeFanin gives the
fan-in of this tree. When all processors have done the call O the root node knows this
and initiates step 2. This involves notifying all the processors that they may proceed —
and is done by sending messages from the root node to the leaf nodes in a broadcast
tree. Bus BarrierTreeFanOut specifies the width (fan-out) of this tree. Mellor-
Crummey and Scott found that the values 4 (fan-in) and 2 (fan-out) might be optimal
for these parameters under certain conditions [11]. A detailed study of performance
effects of varying these two parameters has been done by Leikvoll [9].

3.5 Tightly Coupled Multiprocessor (TCM)

The tightly coupled multiprocessor model in BSPlab models a network of computing
nodes connected by dedicated communication links. The paraNebiark Topology
specifies the topology of the multiprocessor and the current options are 2D mesh, 3D
mesh, 2D torus and hypercube of any dimension. As table 4 shows, there are parame-
ters for determining the size and dimension of a topology.



Table 4. Tightly Coupled Multiprocessor (TCM) architecture parameters

Parameter name Informal description
Network_Topology Topology of interconnection network
Network_Xsize,...Ysize,...Zsize  Size of network, X, Y and Z dimension
Network_Dim Number of dimensionsin hypercube
Network_PortModel Channels between processor and router
Network_OutPortPriority Priorityalgorithm for outgoing message
Network_TransTime Communication cost pr. byte
Network_StartUpL at Communication startup cost

Network RoutingM ethod Way of sending msg through network

The TCM model assumes that each processor is connected to arouter that interfaces to
the communication links. Network PortModel lets the experimenter choose between
having one physical communication channel between the processor and the router, or
as many channels as there are external links from and to the router. If there is only one
channel there must be some mechanism for choosing which of the outgoing messages
should first get the channel. Network OutPortPriority decides this and the options are
FIFO or random. FIFO is most fair, but random might be useful for breaking up trou-
blesome access patterns. In addition, the TCM model is using a linear communication
cost model for the physical links, given by Network SartUpLat and Net-
work_TransTime. There are several strategies for sending messages through a network.
The parameter Network RoutingMethod offers a choice between store-and-forward,
wormhole routing and two-phase randomised wormhole routing [1].

3.6 Network of Workstations (NOW)

The BSPlab model of network of workstations (NOW) contains 12 parameters and
models an Ethernet with 10 or 100 Mbit/s bandwidth. Most of the parameters are from
the Ethernet standard and the model is given a detailed treatment including recom-
mended parameter values in the original BSPlab documentation [6]. In addition to the
standard, the model is based on the Ethernet model in Smulation Computer Systems by
MacDougall [12]. For brevity, we will not go into detail here.

The NOW model has two parameters for specifying the “noise” generated by other
applications using the same communication cable. When switched on, “competing”
messages of random length to random processors are sent as a Poisson process. Dyb-
dahl and Uthus validated the NOW model by doing several tests. One of these was a
comparison with Lams analytical model [13] of an Ethernet. This shows the normal-
ised delay as a function of the throughput, and the BSPlab experiments demonstrated

performance very close to the analytical model.



4 Status and Example Experiment

During development, BSPlab was tested on the test programs following the BSPlib
standard and a few simple BSP applications. Lilleaas did a thorough testing of BSPlab
where he defined 25 different BSP architectures and tested these on 18 different test
programs. Very few problems were found [14]. Leikvoll used the BSPprobe program
developed by Hill [5] to measure the BSP-parameters s, | and g for the BSPlab simple
machine. Among his findings was that BSPprobe was able to measure | and g very
accurately on this machine. He also found similar results using the BSP-bench program
included in BSPPACK from Bisseling [15].
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Fig. 1. Performance of 6 different message passing implementations (from [13])

Figure 1 summarises the performance that Lilleaas found running a message-
passing test on some of the topologies in the BSPlab TCM model. 2D mesh, 2D torus,
3D mesh and hypercube are tested with wormhole routing and store and forward mes-
sage passing. The test program does 100 iterations letting a processor send a large
message to a random destination and measures the message latency. The time used is
plotted as function of the network size with values up to 12. Here the network size is
the diameter of the network, which equals the maximum number of hops a message
must travel. As expected, the time used by wormhole routing is nearly independent of
network size while store and forward has a time consumption that is nearly linear in
the number of hops. Further details and many other experiments were documented by
Lilleaas [14].

5 Concluding Remarks

Using BSPlab, we have experienced the importance of not varying to many parameters
in the same experiment. The interplay between HW and SW in parallel applicationsis



complicated and a systematic approach starting with simple and understandable ex-
periments is recommended.

Several student projects have been done on testing BSPlab, and we have seen that it
is working well. Validation of the performance models in BSPlab is still going on. In
this context, we have realised that it is a good tool for demonstrating well known as-
pects of relations between algorithms, applications and architectures. We are therefore
planning to use it as a central part in the teaching of a new course in parallel computer
architecture. A step by step text introducing parallel computing aspects and perform-
ance effects using BSPlab as demonstration tool is under development. This might also
be useful in teaching of BSP programming and paralelism in genera. In addition,
BSPlab can be used as a research tool in the field of portable and efficient software. Its
source code is available from its website and the author appreciates comments on its
use and possible improvements.
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