
A Symbolic Model Checker for ACTL*

A. Fantechi^'^, S. Gnesi^, F . Mazzanti^, R. Pugliese^ and E. Tronci^

' Dip. di Sistemi e Informatica, Univ. di Firenze, Italy
^ Istituto di Elaborazione dell'Informazione, C.N.R. Pisa, Itcily

^ Dip. di Matematica Applicata, Univ. dell'Aquila, Italy

A b s t r a c t . We present SAM, a symbolic model checker for ACTL, the
action-based version of CTL. SAM relies on implicit representations of
Labeled Transition Systems (LTSs), the semantic domain for ACTL for­
mulae, and uses symbolic manipulation cilgorithms. SAM has been re­
alized by translating (networks of) LTSs and, possibly recursive, ACTL
formulae into BSP (Boolean Symbolic Programming), a programming
language aiming at defining computations on booleein functions, and by
using the BSP interpreter to ccirry out computations (i.e. verifications).

1 Introduction

The increasing reliance of many aspects of human society on highly complex
computer systems requires the adoption of innovative validation techniques. In
the validation of software difficulties arise from the discontinuous nature of the
software behaviour. This behaviour is based on sequences of discrete transitions,
with such a high number of possible evolution pa ths and failure modes, tha t ex­
haustive testing becomes impossible. Moreover, testing can provide information
only on the tested paths . Hence, due to the lack of continuity, we cannot infer
the behaviour of untested sequences from tha t of the tested ones.

Formal methods are mathematically based techniques tha t can offer a rig­
orous and effective way to model, design and analyze computer systems. It is
increasingly accepted tha t the adoption of formal methods in the life cycle de­
velopment of embedded systems would guarantee higher levels of dependability.
It appears that , due to the lower costs of training and innovation, industries are
more keen to accept formal validation techniques assessing the quality at t r ibutes
of their products, obtained by a traditional life cycle, rather than a fully formal
life cycle development. However, to achieve an efficient use of formal methods
in industry, such methods need to be bet ter integrated with tradit ional software
engineering. Formal "validation" and "verification" techniques and automated
support tools need to be improved so tha t they could be easily used by non­
expert staff.

Model checking techniques [8] has been defined to verify system properties,
expressed as temporal logic formulae, on finite state models of the behavior

* This work was partly supported by the ESPRIT project GUARDS and by Pro-
getto Coordinato CNR "Metodologie e strumenti di analisi, verifica e validazione
per sistemi softwcire affidabili".

229

of systems. Once a model of a system has been generated, the properties are
automatically verified by model checking tools and therefore these kind of tools
can be easily used also by non-expert users. This in general is not true for
verification techniques based on theorem proving approaches [5]. In this case,
the system state is modeled in terms of set-theoretical structures, and operations
are modeled by specifying their pre- and post-conditions in terms of the system
state. Properties are described by invariants that must be proved to hold through
the system execution by means of a theorem prover, usually with the help of the
user. Due to the above reasons model checking has been preferred in industries,
especially for formal verification of hardware components.

Many "prototipal" verification environments are currently available which
can be used to automatically verify behavioural and logical properties of reactive
and concurrent systems specified by means of process algebrae. Most of these
environments (e.g. [9,10,17,11,4]) use finite state systems to model the systems
under investigation and formulae of temporal logics to express properties [19,26].
Usually, given a system, a so called "generation phase", based on the operational
semantics of the language, allows the corresponding LTS to be derived. When real
world applications are considered a main problem arises due to their extremely
large state-spaces.

To cope with the "state-explosion" in the model generation phase some work
has been recently done for the logic CTL [14], a branching-time temporal logic
whose interpretation domains are Kripke structures. Indeed, the SMV model
checker has been developed [7], which uses symbolic manipulation algorithms
to check the satisfiability of CTL formulae. In SMV the transition relations are
represented implicitly by means of boolean formulae and are implemented by
means of Binary Decision Diagrams (BDDs, [6]). This usually results in a much
smaller representation for the systems' transition relations thus allowing the
maximum size of the systems that can be dealt with to be significantly enlarged.

CTL formulae allow properties of systems to be expressed in terms of their
states. In case of systems which are described in terms of actions and state
changes, such as concurrent (e.g. control) systems, it is more natural to use an
action-based temporal logics to express their properties. For instance, one can
use ACTL [13], the action-based version of CTL. Our effort has then been to
build efficient model checking tools for action-based logics by directly relying
on implicit BDD-based descriptions of systems' state spaces. In particular, we
have built SAM, a symbolic model checker for //-ACTL that relies on implicit
representations of LTSs and symbolic manipulation algorithms. As logic lan­
guage we have used //-ACTL [16] since ACTL, although quite expressive (e.g.
it permits to express safety and liveness properties, as well as certain "cyclic"
properties), lacks of a "real" fixpoint operator which permits to express general
recursive properties (whereas this is possible by using, e.g., the //-calculus [20]).
The symbolic model checker has been realized by translating (networks of) LTSs
and //-ACTL formulae into Boolean Symbolic Programming (BSP, [27]), a pro­
gramming language aiming at defining computations on boolean functions, and
by using the BSP interpreter to carry out computations (i.e. verifications).

230

The integration of SAM in JACK [4], an environment for the specification
and formal verification of concurrent systems that also includes a model checker
for ACTL using explicit state space representation, is in progress. A number
of formal validation projects using SAM are under progress too. In [24] model
checking of a hydroelectric power plant with (potentially) 10^^ states has been
carried out.

2 Background

2.1 JACK

Our starting point has been JACK (Just another Concurrency Kit) [4], that
so far is the only verification environment including an ACTL model checker
(AMC, [18]). JACK is an environment based on the use of process algebrae,
automata and temporal logic formalisms, which supports many phases of the
system development process. The idea behind the JACK environment is to in­
tegrate difi"erent specification and verification tools, independently developed
at different research institutes (I.E.I.- C.N.R. and the University of Rome "La
Sapienza" in Italy, and INRIA in France), to provide an environment in which
a user can choose from several verification tools by means of a user-friendly
graphic interface.

The FC2 format [21], i.e. the common representation format for data, makes
it possible to exchange information among the tools integrated in JACK and to
easily add other tools to the JACK environment, thus extending its potential.
The FC2 format allows a Labeled Transition System (i.e. an automaton) to be
represented by means of a set of tables that keep the information about state
names, arc labels, and transition relations between states. The format allows
nets of automata to be represented as well.

Some of the tools in JACK allow a process specification to be built. This
can be done both by entering a specification in a textual form (i.e. a process
algebraic term) by using MAUTO, or by drawing the automaton that describes
the behavior of the process by using ATG [25]. Moreover, sophisticated graphical
procedures, provided by ATG, allow a specification to be built as a network
of processes (or networks). Hence, a hierarchical approach in the specification
activity is also possible.

Once the specification of a system has been written, JACK permits the con­
struction of the automaton corresponding to the behaviour of the overall system,
by using either MAUTO or FC2LINK and HOGGAR (which is a BDD-based
tool); this is the mode/of the system. Moreover, by using MAUTO or HOGGAR,
automata can be minimized with respect to various (bisimulation) equivalences.
ACTL can be used to describe temporal properties and model checking can be
performed, by using AMC, to check whether systems (i.e. their models) satisfy
the properties.

JACK has been successfully used in several case studies. In [12] JACK was
used to formally specify the hardware components of a buffer system, and to

231

verify the correctness of the specification with respect to some safety require­
ments. In [3] the verification of an interlocking safety critical system developed
by Ansaldo Trasporti v̂ âs presented.

Model checking by using JACK has a major limiting factor, namely the state
space explosion problem. Indeed, AMC can perform model checking only onto a
single automaton (i.e. AMC cannot take a network of automata as a model); thus
it is always necessary to generate the global automaton of the system. SAM, the
extension of JACK presented in this paper, is aimed at solving the state space
explosion problem.

2.2 CCS/Meije

Process algebrae [22] are generally recognized as a convenient tool for describing
reactive systems at different levels of abstraction. They rely on a small set of basic
operators, used to build complex descriptions from more elementary ones, and
on behavioral equivalences (e.g. bisimulation) or preorders (e.g. testing), used
to study the relationships between descriptions of the same system at diff'erent
levels of abstraction (e.g., specification and implementation).

In the JACK environment, the process algebra used to define processes is
CCS/Meije [1]. The syntax of the language is based on a set of elementary
and uninterpreted actions that processes can perform and on a set of operators
that permit to build complex processes from simpler ones. The syntax permits
a two-layered design of process terms. The first level is related to sequential
regular terms, the second one to networks of parallel sub-processes supporting
communication and action renaming or restriction. The two-layered structure of
CCS/Meije descriptions is reflected also by the graphical methodology that can
be used in connection with ATG and that will be illustrated in Section 3.2.

For the syntax and the operational semantics of CCS/Meije, we refer the
interested reader to [1].

2.3 M-ACTL

In this section we briefly present the syntax of /i-ACTL [16], an extension of
ACTL [13], the temporal logic used in the JACK environment, with a fixpoint
operator. For the semantics of formulae, we refer the interested reader to [13]
and [16].

/i-ACTL is suitable to express properties of reactive systems whose behaviour
is characterized by the actions they perform and whose semantics is defined by
means of LTS's. The logic can be used to define both liveness (something good
eventually happen) and safety (nothing bad can happen) properties of reac­
tive systems. Moreover, //-ACTL is adequate with respect to strong bisimulation
equivalence, namely if p ~ g, then p and q satisfy the same set of /<-ACTL
formulae.

The definition of//-ACTL relies on an auxiliary logic of action. The collection
AT (ranged over by x) of action formulae over a set of (visible) actions Act

232

(ranged over by a) is defined by the following grammar:
X : : = a h x l x A x .

We write jf for ao A-IQQ, where UQ is some chosen action, # for -^ff and xVx'
for ~'(~'X A-^x')- Intuitively, action formulae express sets of (observable) actions.
Given an action formula x, the set of the actions satisfying x is '«(x) = {ct\a \=
x}.

The syntax of //-ACTL formulae is defined by the following grammar:
^ ::= « I 0 A (/i I -.<?!. I i/TT I ATT I fiY.<l){Y) \ Y

•K ::= X^(f) I Xr(l> \<PxU <l>\ <i> x^x' 'f'
where Y ranges over a set Var of variables, state formulae are ranged over by 4>,
path formulae are ranged over by 7, E and A are path quantifiers, X and U are
the next and until operators indexed by action formulae.

Several useful derived modalities can be defined, starting from the basic ones.
In particular, we will write:

- < X > «!> for E[U ffUx4>] and [x]<l> for -̂ < x > -'<!>•
- EF<j) for E\tt ttU <f>], and AF<p for A[tt ttU (f>]; these are called the eventually

operators.
— EG(f) for -'AF-«^, and AG(f> for -lEF-Kp; these are called the always opera­

tors.
— i'Y.<f){Y) for -i^y.-i(^(-iy); u is called the maximal fixpoint operator.

2.4 Boolean Symbolic Programming (BSP)

BSP is a programming language aimed at defining, possibly fixpoint, computa­
tions on boolean functions [27]. BSP primitives include boolean operations, quan­
tifiers, arithmetic operations (ALU-like). Defining processes just using boolean
operations is a tedious and error prone task. Thus BSP has primitives to define
processes as well. The output of a BSP program is formed by "answers" to BSP
queries. Essentially BSP queries correspond to the usual queries on BDDs. E.g.:
"Is a given boolean function identically 1 (true)?", "Print the set of satisfying
assignments of a given boolean function". Shortly, BSP is a programming lan­
guage to define symbolic computations at a logical level rather than at the BDD
level.

The BSP compiler translates a BSP program into a sequence of calls to BDD
primitives (essentially i f _then_else and compose). This translation is done in
time 0{s) where s is the size of the BSP program being translated. During such
translation some optimization is also carried out (e.g. when possible BDD calls
are moved outside of loops computing fixpoints, BDD calls are rearranged in an
attempt to free BDDs as soon as possible). BSP tries to eflBciently execute a
given symbolic program. However, as for any programming language, it is the
user responsibility to write efficient (symbolic) programs.

Implementations as well as specifications can both be defined using BSP.
E.g.: a netlist of size n can be translated into a BSP program of size 0{n);
a /i-calculus formula of size n can be translated into a BSP program of size

233

0{n) [27]. These features make BSP suitable as a low level language to define
finite state verification tasks. Moreover having implementation and specification
defined using the same language enables the use of rewriting techniques to speed
up verification [27]. Note that BSP is a programming language rather than a
Model Checker. Thus BSP can be used for other purposes as well (e.g. see [28]).

3 The extended version of JACK

In this section we comment on the architecture of the extended version of JACK,
which is depicted in Figure 1, by especially pointing out the new features intro­
duced with respect to JACK. Then, by means of a simple example, we will show
how the new environment can be used as a support for the specification and
verification of reactive systems.

Graphic Spec.

CCS

Algebraic Spec.

TRB

Tabular Spec.

JACK

Autograph Hoggar FC2 link

FCE

Mauto ^C2 Spec. AMC

BSP

Translator BSP Spec. Translator

BSP SAM

HCTL

ju ACTL form.

M

liCalculus form.

Fig. 1. The circhitecture of the extended version of JACK

234

3.1 The a rch i t ec tu re

The user can use three different formalisms for defining the reactive systems
used as models for checking logical properties. A part from textual (CCS/Meije)
and graphical (ATG) representations, that both are translated first into the FC2
format and then into BSP, a tabular representation can be used as well, that is
directly translated into BSP.

Tabular representations have the same overall structure of FC2 specifications
(i.e. the description of a system is composed of the descriptions of the system
components and of the descriptions of their synchronizations), but have simpli­
fied syntax and semantics so that the structure of systems is described in a more
straightforward way. The tabular representation aims at helping the user to bet­
ter understand system descriptions as well as to make the user able to generate
by himself system descriptions directly without using graphical representations.

The user can express logical properties that must be checked as /^-calculus
and //-ACTL formulae.

Both the formalisms for specifying processes, basically FC2 and tabular rep­
resentations, and the formalisms for specifying properties, namely ^-calculus and
fi'ACTL, are translated, in linear time complexity, into BSP. Therefore, checking
whether a reactive system s verifies a property p consists in querying the BSP
interpreter if the boolean function "tr(s) implies tr(p)" is identically one, where
tr(s) is the BSP program that represents s and tr(p) is the BSP program that
represents p.

3.2 Symbolic mode l checking in prac t ice

System specification

Let us consider a level crossing that can be crossed at a given time either by a
train or by at most two cars. A train asks for the permission to cross by using
action approachingjt and signals that it has crossed by using action leavingj t .
A car behaves similarly but uses actions approaching_c and leaving-C, respec­
tively. These are the only visible actions of the system. Normally, the barriers
are kept open, thus cars can cross. The railway signal allows a train to proceed
only if the barriers can go down safely, namely when no car is crossing. After a
train has crossed, the barriers will go up again.

The specification of the system is a net, called crossing, composed of two
automata, bar r ie r representing the controller of the barrier and signal repre­
senting the controller of the railway signal. Figure 2 shows their graphical ATG
representations. While the two component automata (top of Figure 2) should be
self-explicative, here we comment on the network that describes the overall sys­
tem (bottom of Figure 2). Boxes (e.g. ba r r i e r and signal) can be processes or
networks, thus allowing a top-down approach in the specification activity. Ports
at the border of boxes are their interconnection places. If two boxes are drawn
at the same level, they can synchronize via the actions that label linked ports.
In addition to CCS/Meije, a multiway synchronization operator, called wedge, is

235

available: more than two processes can synchronize by executing an action (e.g
barrier and signal synchronize on approachingjt which labels a wedge). As
in the case of a textual specification, the behaviour of a graphical specification
can be defined in terms of an LTS.

Files I Uindou I ObjectsEdit I Label | Globals | Placing | Defaiig | Attributes | Options | abstractflction | Help

leavinq_t

Signal

IOTiroaching_t

Fig. 2. The level crossing: a pictoricJ representation

Once the FC2 representation of crossing has been obtained by using ATG
and FC2LINK, we can construct the corresponding tabular representation by
using the utility totab.

This construction, shown in Figure 3, is not needed and has been done only
to give a fiavor of what the tabular representation is. In this representation, all
the possible actions that an automaton or a net can do are explicitly enumer­
ated. The tabular description of an automaton, other than the possible actions,
specifies the possible transitions that the automaton can do. In defining the
transitions, action indexes are used in place of action names. More specifically,
transitions are specified as triples of numbers of the form: nO: n l -> n2. Such a
triple indicates that the automaton can evolve from state n l to state n1 by per­
forming action nO. The tabular description of a net with n components specifies

236

Networks: 3
Main: 1

System: 1 "crossing"
Actions: 4
1: approaching_t
2: approaching_c
3: leaving_c
4: leaving_t
Components: 2 3
Synchronizations:
1: 1 1
2: 2 2
3: 0 3
4: 3 0

Automaton: 2 "barrier"
Actions: 3
1: go_down
2: up
3: go_up
States: 2
Initial: 1
TrEinsitions:
2: 1 -> 1
1: 1 -> 2
3: 2 -> 1

Automaton: 3
Actions: 3
1: go
2: busy
3: free
States: 3
Initial: 1
Transitions:
1: 1 -> 1
2: 1 -> 2
2: 2 -> 3
3: 2 -> 1
3: 3 -> 2

"signal'

Fig. 3. Tabular representation of crossing

the structure of the global system by means of the n-uple of numbers follow­
ing the keyword Components. This n-uple indicates the templates of automata
that constitute the system. In the case of crossing, the tuple 2 3 says that
the system is composed by one instance of the automaton 2, i.e. barrier and
one instance of the automaton 3, i.e. signal. The synchronizations among the
components are specified as n-|-l-uple of numbers. Hence, in our case we have
triples of numbers. A triple of the form nO: n l n2 indicates that if the first com­
ponent can perform action n l and the second component can perform action
nl then the system can perform action nO. A 0 value for ni means that the
corresponding component does not take part into the synchronization. The ma­
jor simplification with respect to FC2 specifications is that both the transition
definitions and the synchronization definitions use "plain" action indexes rather
than generic expressions with action indexes as operands.

Both the FC2 and the tabular representations can be given as an input to
the utility tobsp that returns a BSP program that represents the system.

BSP program of the specification

The BSP program that represents the barrier is given in Figure 4. Hereafter,
we explain the main features of the language BSP. Examples refer to Figures 4,
5 and 7.

Comments are C-like, i.e. started with /* and ended with */.
A declaration of the form (def id (array n)) defines the identifier id to be

a vector of n boolean variables. We will refer to an identifier declared in this way
as an array. Thus arrays denote vectors of boolean variables. For example, (def
C l ^ (array 2)) , (def Cl_px (array 1)) declare arrays ranging, respectively,
on actions and present states of Cl_. Boolean variables are represented with

237

(def Cl_a (array 27)
(eniim 2 0 (Cl.aO Cl_al Cl_a2 Cl_a3))
(def Cl_px (array D)
(def Cl_nx (array 1))
(enum 1 0 (Cl_sl Cl_s2))
(def C1_S (eqv Cl_px Cl_s l))
(def C1_R

(defprocess

(p resen t_s ta te Cl_px)
(nex t_s ta te Cl_nx)
(t r a n s i t i o n

(update Cl_px)
(eqv Cl_px Cl_sl)
(eqv Cl_a Cl_a2)
(eqv Cl.nx C l_s l))

(t r a n s i t i o n
(update Cl_px)
(eqv Cl.px Cl_s l)
(eqv Cl_a Cl_al)
(eqv Cl_nx Cl_s2))

(t r a n s i t i o n
(update Cl_px)
(eqv Cl_px Cl_s2)
(eqv Cl_a Cl_a3)
(eqv Cl.nx C l_s l))))

Fig . 4. BSP program of bar r ie r

BDD variables. Unless otherwise instructed BSP uses as BDD variable ordering
the ordering in which boolean variables (arrays) are declared. It is possible to
override this behaviour by instructing BSP to follow a user given BDD variable
ordering.

A declaration of the {ovm (def id (r e c o r d Xi . . . X „)) defines identifier
id as the vector of boolean variables obtained by concatenating the vectors of
boolean variables Xi ... Xn • We will refer to an identifier declared in this way
as a record. Note tha t no new BDD variable is created by such declaration.
For example, (def px (r e c o r d Cl_px C2_px)) gives name px to the vector of
boolean variables formed by the variables in Cl_px or in C2_px.

A declaration of the form (enum size offset (ido . . .idk-i)) defines iden­
tifiers ido ...idk-i to be vectors of size boolean values. Identifier id^ is the
boolean representation of offsetmod2''"^, id\ is the boolean representation
of (offset + l)mod2'"^, etc. For example, (enum 2 0 (Cl_aO C l ^ l C 1 J I 2
C 1 ^ 3)) assigns to CIJSLO, C l ^ l , C 1 ^ 2 , Cl_a3 respectively the vectors [0 0],
[1 0], [0 1], [1 1] (note: the leftmost bit is the least significant bi t) .

A term of size n is a vector of n boolean expressions. For example, Cl-a,
Cl_s l , px, are terms of size, respectively, 2, 1, 3. More complex terms can be

238

built using boolean operators and quantifiers. For example, if a is a record or an
array and R and F_0F_1 are terms of size n then the following are terms of size n:
(and R F_0F_1) (semantics: bitwise and of R and F_0F_1), (ex i s t s a (and R
F_0F_1)) (semantics: (3 a (R A F_OF_l))). If <i, <2 are terms of size n then (eqv
ti ^2) is a term of size 1 evaluating to 1 iff terms <i, 2̂ are bitwise equal.

A definition (def id t) assigns to id the value of term t. For example, C1_S
denotes a boolean function which is 1 (true) iff Cl_px is bitwise equal to Cl_sl.

A ierm of the form (def process . . .) is used to define the transition relation
of a process (LTS). For example, C1_R is a boolean function which is 1 iff in the
LTS Cl_ there is a transition labeled with C l ^ from state Cl_px to state Cl_nx.

The transition relation for the parallel composition of two LTSs is obtained
by defining in BSP the semantics of the parallel composition operator. For each
automaton constituting the system (i.e. barrier and signal), a boolean function
modeling its set of transitions is constructed. Similarly, the global system (i.e.
crossing) transitions are modeled as a boolean function constructed starting
from the transitions of the system components. Part of the BSP program that
represents the crossing is given in Figure 5.

The properties

We have verified the following properties:

1. if a train leaves the level crossing (event leavingjt) then, first, it has to
approach to the level crossing (event approachingjt);

2. if a train approaches to the level crossing then it must immediately leave the
level crossing;

3. if a car approaches the crossing (event approaching_c) then no train can
approach the crossing until a car leaves (event leaving_c) the crossing;

4. it is possible to have any number of cars approaching and leaving the cross­
ing.

The ;<-ACTL formulae that correspond to the previous properties are shown in
Figure 6.

BSP p rograms of the properties

The translation from p-ACTL to BSP is done by defining with BSP the seman­
tics of ^-ACTL formulae. The translation of a single ^-ACTL formula into a list
of boolean function occurs in two steps. First the //-ACTL formula is translated
into the /iz-calculus. Then, the resulting ^-calculus formula is compositionally
translated into a list of boolean functions (BSP program). The standard trans­
lation from ^-ACTL to /z-calculus can be found in [16]. Figure 7 shows the
(simplified) BSP translation of the first formula in Figure 6.

239

/ * d e f i n i t i o n of missing components */
(def a (array 3))
(emjm 3 0 (aO a l a2 a3 a4))
(def px (record Cl_px C2_px))
(def nx (record Cl_nx C2_nx))
(def aa (record Cl_a C2_a))
(def S (and C1_S C2_S))
(def R (or

(e x i s t s aa (cmd
(eqv a a l)
C1_R
(eqv Cl_a Cl_al)
C2_R
(eqv C2_a C2_al)))

(e x i s t s aa (cind
(eqv a a2)
C1_R
(eqv Cl_a Cl_a2)
C2_R
(eqv C2_a C2_a2)))

(e x i s t s aa (and
(eqv a a3)
(eqv Cl_px Cl_nx)
C2_R
(eqv C2_a C2_a3)))

(e x i s t s aa (and
(eqv a a4)
C1_R
(eqv Cl_a Cl_a3)
(eqv C2_px C2_nx)))))

F ig . 5. Part of the BSP program of crossing

R e s u l t s of m o d e l c h e c k i n g

Once that the BSP programs of the specification and of the logical formulae
have been produced, for each formula that must be checked, i.e. for each boolean
function F_*_i, a query of the form

(def check_fun_ i (f o r a l l px (imp S F _ * _ i)))
(i s o n e check_ fun_ i)

is added to the file containing the translations, and the BSP interpreter is called
on the file. The BSP te rm (i s o n e check J u n _ i) asks BSP to check whether the
boolean function check J u n _ i is identically 1, in tha t case the formula is true.
The results of the model checking of the formulae in Figure 6 are in Figure 8.
Note that all the formulae are true.

240

(EF <" approaching_t> <leaving_t> t r u e) .

AG ([approaching_t] AX { l e a v i n g . t } t r u e) .

AG ([approaching_c] A [true{~approaching_t} U {leaving_c} t r u e]) .

nu FORM : <approaching_c I leaving_c> FORM.

Fig. 6. M-ACTL formulae

(def F_3FFB_1 (e x i s t s nx (e x i s t s a (and R (eqv a a 4)))))

(def F_2FF_1 (e x i s t s nx (cind (e x i s t s a (cind R (not (eqv a a l))))
(compose F_3FFB_1 px n x))))

(def F_1F_1 (or F_2FF_1 F_0E_1))
(def F_0E_1 (exists nx (and (exists a (suid R bl)) (compose F_1F_1 px nx))))

(def F_3F_1 (not F_0E_1))

Fig. 7. BSP translation of the first formula in Figure 6

4 Conclusions

We have presented a symbolic model checker, SAM, for an action-based temporal
logics tha t directly performs verification over Labeled Transition Systems. To
our knowledge, this is the first a t t empt in this direction, since previous symbolic
model-checkers have been defined for state-based temporal logics such as CTL.

SAM is currently used in a number of formal validation projects, among which
we recall, in particular, the validation of fault tolerance mechanisms defined for
an architecture for dependable systems, developed inside the european project
GUARDS [2]. Three fault-tolerant mechanisms (namely, Inter-Consistency algo­
r i thm, Fault-Treatment mechanism and Multi-Level Integrity mechanism), have
been modeled using the tools of the JACK environment; the possible occurrence
of faults has been modeled by introducing explicit "fault" actions in the model,
and different fault assumptions have been modeled, in order to s tudy the be­
haviour of the mechanism under different fault hypotheses. The satisfaction of
some critical properties of the mechanism, both in presence of faults or not, is
the object of the on-going validation effort. In a first phase of the project, we
were able to verify the properties of the Inter-node consistency algori thm when
designed for a three node GUARDS architecture. The model exhibited (after
some abstraction) around 70000 states and was affordable by AMC, the tradi­
tional model checker for ACTL. When the algorithm for a four-node GUARDS
architecture has been considered in the next phase of the project, it turned out
tha t it was no more tractable by AMC, since the size was grown to 10^ states.
The fault t reatment mechanism is the largest model we have generated inside

241

isone checJt_l:un_l AutVarUrd "checJc_l:un_l"
funct ion check_fun_l i s i d e n t i c a l l y 1

isone check_fun_2 AutVarOrd "check_fun_2"
funct ion check_fun_2 i s i d e n t i c a l l y 1

isone check_fun_3 AutVarOrd "check_fun_3"
funct ion check_fun_3 i s i d e n t i c a l l y 1

isone check_fun_4 AutVarOrd "check_fun_4"
funct ion check_fun_4 i s i d e n t i c a l l y 1

F ig . 8. Answers of the BSP interpreter

this project, amount ing to 2*10^ states. Verification of critical properties is now
in progress using SAM.

The integration of SAM within the JACK environment is under development,
together with a friendly user interface.

A c k n o w l e d g m e n t s We thank Cinzia Bernardeschi and Antonella Santone for
interesting discussions about the realization of this tool.

The development of SAM has seen at its beginning the contribution of Gioia
Ristori, who has recently left us for a better world. She will however remain with
us for ever.

References

1. D. Austry, G. Boudol. Algebre de processus et synchronization, Theoretical Com­
puter Science, 1(30), 1984.

2. C. Bernardeschi, A. Fantechi, S. Gnesi. Formal Specification and Verification of the
Inter-Channel Consistency Network, GUARDS Esprit project, TechniccJ Report
D3A4/6004C, 1997.

3. C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Mongardi, D. Romano. A
Formal Verification Environment for Railway Signaling System Design, in Formal
Methods in System Design 12, 139-161, 1998.

4. A. Bouali, S. Gnesi, S. Larosa. The integration Project for the JACK
Environment, Bulletin of the EATCS, n.54, pp.207-223, 1994. (see also
http://repl.iei.pi.cnr.it/projects/JACK.)

5. R.S. Boyer, J.S., Moore. "A Computational Logic", ACM Monograph Series, Aca­
demic Press, 1979.

6. R.E. Bryant. Graph Based algorithms for boolean function manipulation, IEEE
Transaction on Computers, C-35(8), 1986.

7. J.R. Burch, E.M.Clarke, K.L. McMillan, D. Dill, J. Hwang. Symbolic Model Check­
ing 10^° states and beyond, in Proceedings of LlCS, 1990.

242

8. Clarke, E.M., Emerson, E.A., Sistla, A.P., "Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specification," ACM Transaction on
Programming Lcinguages and Systems, 8(2):244-263, 1986.

9. R. Cleaveland, J. Parrow, B. Steffen. The Concurrency Workbench, in Proc. of
Automatic Verification Methods for Finite State Systems, LNCS 407, pp. 24-37,
1990.

10. R. Cleaveland, S. Sims. The NCSU Concurrency Workbench, in Proc. of Computer
Aided Verification, LNCS 1102, pp. 394-397, 1996.

11. R. De Nicola, A. Fantechi, S. Gnesi, G. Ristori. An action-based framework for
verifying logical and behavioural properties of concurrent systems. Computer Net­
works and ISDN Systems, 25(7):761-778, 1993.

12. R. De Nicola, A. Fantechi, S. Gnesi, G. Ristori. Verifying Hardware Components
within JACK, in Proceedings of CHARME '95, LNCS 987, pp. 246-260, 1995.

13. R. De Nicola, F. W. Vaandrager. Action versus State based Logics for Transition
Systems, Proceedings Ecole de Printemps on Semantics of Concurrency, LNCS 469,
pp. 407-419, 1990.

14. E.A. Emerson, J. Halpem. "Sometime" and "Not never" revisited: On branching
versus linear time temporal logic, 7̂ 4 CAf 33:151-178, 1986.

15. E.A. Emerson, C. Lei. Efficient Model Checking in Fragments of the Propositional
Mu-Calculus, in Proceedings of LlCS, pp. 267-278, 1986.

16. A. Fantechi, S. Gnesi, G. Ristori. From ACTL to ^-Calculus, ERCIM Workshop
on Theory and Practice in Verification, Pisa, December 9-11, 1992.

17. J.C. Fernandez, H. Caravel, A. Kerbrat, L. Mounier, R. Mateescu, M. Sighireanu.
CADP: A Protocol Validation and Verification Toolbox, CAV'96, LNCS 1102, pp.
436-440, 1996.

18. G. Ferro. "AMC: ACTL Model Checker. Reference Manual", lEl-lnternal Report
B4-47, December 1994.

19. M. Hennessy, R. Milner. Algebraic Laws for Nondeterminism and Concurrency,
JACM 32:137-161, 1985.

20. D. Kozen. Results on the Propositional /i-calculus. Theoretical Computer Science,
27:333-354, 1983.

21. E. Madelaine, R. de Simone. The FC2 Reference Manual, Available by ftp from
cma.cma.fr:pub/verif as file fc2refman.p3.gz, 1993.

22. R. Milner. Communication and Concurrency, Prentice-Hall International, Engle-
wood Cliffs, 1989.

23. G.D. Plotkin. A Structural Approach to Operational Semantics, Technical Report
DAIMI FN-19, Aarhus University, Dep. of Computer Science, Denmark, 1981.

24. R. Pugliese, E. Tronci. Automatic Verification of a Hydroelectric Power Plant.
FME'96, LNCS 1051, pp. 425-444, 1996.

25. V. Roy, R. De Simone. AUTO and Autograph, in Proceedings of the Workshop on
Computer Aided Verification, LNCS 531, 65-75, 1990.

26. C. Stirling. An Introduction to modal and temporal logics for CCS, In Concurrency:
Theory, Language, and Architecture, LNCS 391, 1989.

27. E. Tronci. Hardware Verification, Boolean Logic Programming, Boolean Functional
Programming, in Proceedings of LlCS, 1995.

28. E. Tronci. On Computing Optimal Controllers for Finite State Systems, Proc. of
the 36th IEEE Conf. on Decision and Control, 1997.

