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Abstract. This paper shows that nonperfect secret sharing schemes 
(NSS) have matroid structures and presents a direct link between the 
secret sharing matroids and entropy for both perfect and nonperfect 
schemes. W e  define natural classes of NSS and derive a lower bound of 
Iv,l for those ClaSSeS. “Ideal” nonperfect schemes are defined based on 
this lower bound. We prove that every such ideal secret sharing scheme 
has a matroid structure. The rank function of the matroid is given by the 
entropy divided by some constant. It satisfies a simple equation which 
represents the access level of each subset of participants. 

1 Introduction 

Secret sharing schemes are defined by using entropy such as follows. The inputs 
to a secret sharing scheme are a secret S and a random number R. The outputs 
of the scheme are VI through V,, which are called shares. Each Vi is given to  a 
party Pi. We assume that S and R are uniformly distributed. Then, Vi becomes 
a random variable with a certain distribution. We denote the entropy aa H(%). 
In a .’perfect” secret sharing scheme, any subset of parties is an access set or a 
non-access set. If A is an access set, A can recover S. The conditional entropy 
is that  H ( S I A )  = 0. If B is a non-access set, B has absolutely no information 
on S. That  is, H ( S ( E )  = H ( S ) ,  which equals the bit length of S (denoted by 
ISl) hecause S is assumed to  be uniformly distributed. No subset is allowed in 
between. 

Many researchers have investigated perfect secret sharing schemes extensively 
SO far [l]-[lS]. Let’s review the history of perfect secret sharing schemes. An 
access structure r is defined as the family of all access sets. 

1. First, ( k , n )  threshold schemes were proposed by Shamir and Blakley [1][2]. 
2. Later, more general access structures were considered. I t  was shown that  r 

is an access structure of a perfect secret sharing scheme if and only if r is 
monotone [3]. 

The mcariing of monotone is as follows. If A can recover S, then any set A’ which 
coritairis A can also recover S. Formally, r is monotone if A belongs to Z‘ and 
A’ contains A, then A’ also belongs to  r. 
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Further, it was proved that lql 5 IS1 for any & [6](7]. This lower bound W ~ B  

obtained by using entropy. Recently, more tight lower bounds of V; were shown 
for some access structures [6][8][9][11][12]. 

We call a scheme ideal if IV,l = IS[. Brickell and Davenport showed that every 
ideal perfect scheme has a matroid structure by using a combinatorial argument 
[5] .  Matroids play a central role in many combinatorial problems [17]. Many 
subjects can he more clearly understood by using the matroids. No relation is 
known between the entropy and the secret sharing matroids. 

The size of V, should be as small as possible. As we saw, in any perfect 
scheme, IV;l 5 IS[. Therefore, if IV;l < IS[, the scheme must be “nonperfect”. 

A nonperfect scheme consists of not only access sets and non-access sets 
but also semi-access sets. If C is a semi-access set, C has some information on 
S but can not recover S. H ( S I C )  takes a value between 0 and IS/. ( d , k , n )  
ramp schemes shown by Blakley and Meadows which are an extension of (k ,n)  
threshold schemes, are such an example [16]. However, only a little effort has 
been paid for nonperfect schemes. 

Let l-‘l denote the family of access sets, r2 denote the family of semi-access 
sets and rs denote that of non-access sets. 

In [18], we showed the following results. 

Result 1. (F1, r2, r3) has a nonperfect secret sharing scheme if and only if 

Result 2. max IV;l 2 ISl/t(A\C), for any access set A in 

Result 2 shows a possibility that 4 can be smaller by the factor of fl(A\C) than 

In this paper, we will show that nonperfect schemes also have matroid struc- 
tures. We will also present a direct connection between the secret sharing ma- 
troids and the entropy for both perfect and nonperfect schemes. 

for those 
classes. “Ideal” nonperfect schemes are defined based on this lower bound. We 
prove that every such ideal nonperfect secret sharing scheme has a matroid 
structure. The rank function of the matroid is given by the entropy divided by 
some constant. It satisfies a simple equation which represents the access level of 
each subset of the participants in the NSS. 

H(X) denotes the entropy of X (see [19] or Appendix). flX denotes the 
cardinality of a finite set X. 1x1 k log, flX. A \ B & {z(z E A but z $ B}. 2 p  
denotes the family of all subsets of P. 2 denotes the set of nonnegative integers. 
r- denotes the family of minimal sets of a family r. 

is monotone and rl U r, is monotone. 

set C in F3, where fl(A \ C) denotes the cardinality of A set minus C. 
and any non-access 

PI. 

We define natural classes of NSS and derive a lower bound of 

2 Perfect and Nonperfect Secret Sharing Scheme 

1. P = {PI,. . . , Pn} denotes a set of participants. 
2. s denotes a secret uniformly distributed over a finite set S ( H ( S )  = IS!). 
3. v, is the share of Pi distributed over a finite set V,. V = { V l , . . .  , V,}. A 
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Usually, access structures are defined as a subset of 2 p .  For convenience, we 
define them as a subset of 2v. We use P, and interchangeably such as follows. 
f'; denotes a subset of 2 p .  r, denotes a subset of 2v. (Kl,---,Vik) E r; iff 
(&I, * - , Pik) 6 pi. (The index set in pi and that in r; are the same.) 

Definition 1. (n, S, V) is a secret sharing scheme (SS) if I7 is a mapping: S x 
R + V1 x V2 x x V,, where R is a set of random inputs. 

Dednition2. Let I' E 2v. We say that an  SS is a perfect SS (PSS) on r if 
(1) H(S1A)  = 0 
(2) H ( S I C )  = H ( S )  

for VA E r. 
for VC g r. 

Remark. 

1. A is called an access subset. (1) means that A can recover S. 
2. C is called a non-access subset. (2) means that C obtains absolutely no 

information on S. 

Definition 3. A family I' is said to be monotone if A E r, A C A' =$ A' E r . 
Proposition4. [3][4/ There exists a PSS on r if and only if r i s  monotone. 

Proposition5. [6] IKl 2 IS1 f o r  any i in PSSs af Vi E 3A E r-. 
Definition 6. Suppose that rl 
is a nonperfect SS (NSS) on (r1, r2) if 
(1) H(S1A) = 0 
(2) 0 < H(SIB)  < H ( S )  
(3) H(SJC) = W ( S )  otherwise. 

2v, r2 C 2', F1 n r2 = 4. We say that an SS 

for VA E TI. 
for VB E r2. 

The authors showed the following results in [18]. 

Proposition?. [IS] Suppose that # S  is not a prime. There ezists an NSS on 
(rl, r2) if and only if r1 is monotone and rl u r' i s  monotone. 

Proposition 8. [IS] 

where l', g2v \ (r1 u rz). 
Proposition 8 shows a possibility that IV,l can be smaller by the factor l/#(A\C) 
than IS]. 
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3 Matroid 

A matroid M = (W,Z) is a finite set W and a collection Z of subsets of W such 
that (11) .- (13) are satisfied [17]. 

(11) 4 E 2. 
(12) If X E 2 and Y 
(13) If X and Y are members of Z with flX = fly +1, then there exists x E X \ Y  

such that Y U {x} E Z. 

We show an example. Let W be a finite vector space and let Z be the collection 
of linearly independent subsets of vectors of W. Then, such a pair of W and Z 
is a matroid. 

The elements of W are called the points of the matroid and the sets Z are 
called independent sets. A base of M is a maximal independent subset of W .  
The rank function of a matroid is a function p : 2w --* 2 defined by p(A)  = 
max(flX : X E A , X  E Z). The rank of matroid, denoted by p ( M ) ,  is the rank 
of the set W. 

X ,  then Y E 2. 

There exists an equivalent axiom of a matroid baaed on the rank function. 

PropositionS. A function p is  the rank function of a matroid on W if and 
only if for X C W, y , z  E W ,  

(RO) p ( X )  takes a value of a non-negative integer. 
(R1) ,441 = 0. 
(R2) P ( X )  I P(X UY) I P(X)  + 1. 
(R3) If p(X  U y) = p ( X  u z )  = p ( X ) ,  then p ( X  U y U z )  = p ( X ) .  

4 Overview 

4.1 Background 

The background of our problem is summarized as follows. In a perfect scheme, 
it is known that IKI 2 IS( (6][7]. This was proved by using entropy. If they are 
equal for all i, the scheme is called ideal. On the other hand, an ideal perfect 
scheme has a matroid structure [5].  No relation between the matroid and the 
entropy is known. 

Now, we ask 

(1) Do the matroids have any relation with the entropy ? 
(2) Suppose that I71 and I72 are two ideal perfect schemes for the same access 

structure r. Then each Iri has a matroid structure. What is common between 
the two matroids? 

(3) Does an ideal nonperfect scheme also have a matroid structure (if “ideal” 
is properly defined for nonperfect schemes) ? 

This paper gives answers to  these questions. 
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4.2 Perfect SS 

Our observation is as follows. 
In a PSS, froin Definition 2, 

Define b(A) its 

Then, from eq.( l), we obtain that 

We will prove that, in an ideal PSS, b ( A )  so defined is the rank function of a 
matroid. 

Note that eq.(2) gives a direct connection between the secret sharing matroid 
and the entropy. This is an answer to our problem 1. 

Also note that eq.(3) depends only on r, not on each scheme. Thus, this is 
an answer to our problem 2. 

It will be proved that our b satisfies the conditions (RO)w(R3) of Proposition 
9. The proof will be given in Section 6 in a more general form. 

4.3 Nonperfect SS 

In a nonperfect scheme, H(S1A) can take a value bet,ween 0 and IS[. As an 
example, let’s assume that 

H(S(A) = H ( S A )  - H(A) = 0, H(S)/3, 2H(S)/3 OT H ( S )  

Let 

Then, we have 

b(SA) - @(A) = 0,1,2,  OT 3 . 
We will prove that in an ideal nonperfect scheme, b(A)  so defined is the rank 

function of a matroid. 
This is an answer for our problem 3 if “ideal nonperfect” is defined. However, 

we have not yet defined “ideal nonperfect”. In Section 5 ,  we will give a definition 
of “ideal nonperfect” . 
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5 “Ideal” Nonperfect Secret Sharing Schemes 

5.1 Access Hierarchy 

In this subsection, we will define a natural class of nonperfect schemes. 

Definition 10. Let d be a positive integer. We say that an SS (n, S, V) has a 
level d access hierarchy ( Eo, El, . . . , Ed) if 

d u Ci = Z V ,  C; n Ej = 4 (i # j )  and 
i=O 

H ( S ( A )  = ( k / d ) H ( S )  for V A  E Ek 

Theoremll. Suppose that US = qd for some positive integer q .  There ez- 
ists an SS which has a level d access hierarchy (Eo, ,El, - ,  Ed) zf and only 
if dk k uiz0 z; i s  monotone fov 0 5 Vk 5 d - 1. k 

Proof. ‘.Only if” part is clear. We prove “if” part. The secret s can be expressed 
as (SO, - - , 8 d - 1 )  such that si E (0, .. . , q - 1). From Proposition 4, there exists 
a Pss Tk on each dk. Apply Tk to Sk for 0 5 V k  5 d - 1, independently. Then, 

0 it is easy to see that the above scheme has a level d access hierarchy. 

5.2 Lower Bound of lV,l 

This subsection will derive a lower bound of 
a lower bound of the “max”lKl). 

(Note that Proposition 8 gives 

Theorem 12. If an SS has a level d access hierarchy (Eo, El, . . . , E d )  and zf 
V, E A E E i  for some A and some k ( 5  a! - l), then 

PTOOf. 
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5.3 Definition of “Ideal” 

Based on Theorem 12, we will define “ideal” as follows. 

Definition 13. We say that an SS of a level d access hierarchy is ideal if 

pq = H ( % )  = H ( S ) / d ,  V K  E v . 
Theorem 14. If an SS has a level d access hierarchy (Eo, El,. - - , E d )  and if 
the SS i s  ideal, then for VA E &,VC E Ej, 

f l ( A \ C ) > j - i  ( j > i ) .  

Proof. 

(1) First we assume that 8 = (A \ C). Then, 

qs; BIC) = H(SIC)  - H ( S ( C B )  
= H ( B ( C )  - H ( B ( S C )  

I H(BIC) I H ( B )  I c H(K) * 

ViEB 

Therefore, 

n(A \ c ) w ) / ~  = C w) 
ViEB 

1 V I C )  - H(SIA) 
= (j - i ) H ( S ) / d  . 

Hence, 
fl(A\C) 2j - i  . 

h 
(2) Next we a..sume that C @ A. Let A’ = CUA,A’ E Cb. It is clear that k 5 i. 

Then, from (1) of this proof, 

f l (A\C) = fl(A’\C) 2 j - l c z j - i .  
0 

5.4 Mixed Access Hierarchy 

NOW, we will define a slight variation of Definition 10. 

Definition 15. Suppose that S = Sl o S2 o ... o Sd and lSil = IS(/d for all i 
(0  means concatenation). Let W = { 4,. - , s d ,  5,  - , Vn}. We say that an SS 
(IT, S, V) has a level d mixed access hierarchy (Eo, 21, * - - ,2,) if 

A 

d 

u 2 i = 2 w ,  k i n t j = 4 ( i # j )  and 
i=O 

H(S(A) = ( k / d ) H ( S )  for VA E kk . 
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Remark. 
1. Many examples of NSS in [16] have mixed access hierarchies. 
2. A PSS has a level 1 mixed access hierarchy. 

The following theorem clearly holds. 

Theorem 16. If an SS has a level d mazed access hierarchy (&,&, - 
has a level d accesa hierarchy ( ~ 0 ,  ~ 1 ,  . * - , ~ d )  such that Ek = 2 k  n 2v. 

Therefore, Theorem 12 also holds for an SS of a level d mixed access hierarchy. 

Definition 17. We say that an SS of a level d mixed access hierarchy is ideal if 

, &), at 

la1 = H ( u )  = H ( S ) / d ,  Vu E W . 
Theorem 18. If an SS has a level d mized access hierarchy (go, 21, - - , &) 
and if the SS is ideal, then for VA E &,Vc E 2j, 

f l ( A \ C ) Z j - i  ( j > i ) .  

The proof is similar to Theorem 14. 

6 Ideal NSS and Matroid 

In this section, we will show that each ideal nonperfect SS (in the sense of 
Definition 17) has a matroid structure. The rank function of the matroid is 
given by the entropy divided by some constant. It satisfies a simple equation 
which represents the access level of the subset. This property also holds for ideal 
perfect SSs. 

6.1 Ideal NSS and Matroid 

Theorem 19. Suppose that 

I .  An SS has a level d mized access hierarchy (&I,&,. - - , k,j) and the SS is 

2. For va E v such that { a }  E &, there ezzsts B E fii-l such that a E B .  

Then, t h e  esists a rnatroid on W 4 (S1, - . - ,  Sd, V1, - - , Vn} with a rank func- 
tion p such that 

(N1) p(& * * * s d )  = d .  
(N2) p(s1 - .*sdx)  - p(x) = k i fx  E ck, Where ck = 2 k  n 2v. 

ideal. 

To prove the Theorem, we define 

ifX=q5 
b(x)  ' { k(X) x (d/ lSl )  otherwise . 

We will prove that is the desired rank function. We have to show that @ satisfies 
(RO)-(R3) of Proposition 9 and (Nl) ,  (N2) of Theorem 19. The proof of (RO) 
will be given in the next subsection. 
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Lemma 20. p satisfies (R0)~(R3), (Nl) and (N2).

Proof. (Rl) and (Nl) are clear.

(R2) H(X) < H(X Uy)< H(X) + H(y) = H(X) + \S\/d. Hence,

dH(X)/\S\ < dH(X U y)/\S\ < dH(X)/\S\ + 1 .

(R3) H(X UyUz) = H(X) + H(y\X) + H{z\yX).
Suppose that

H{X Uy) = H(X U z) = H(X) .

Then,
H{y\X) = H{X U y) - H{X) = 0 . ,

Similarly,
H(z\X) = 0 .

Since 0 < H(z\yX) < H(z\X) = 0,

H(z\yX) = 0 .

(N2) If XeEk,

(k/d)\S\ = H(S\X)
= H(SIX)

= H(S • • • X) - H(X) .
a

As a special case of Theorem 19, we have the following corollary.

Corollary 21. For a perfect ideal SS, there exists a matroid on {S, Vj, • • •, Vn}
with a rank function p such that

1. P(S) = 1.
9 (<^Y\ , y\ _ f 0 if X is an access subset

' \l if X is a naccess subset

6.2 H(X) = (|S|/d)xInteger

Lemma 22. If X £ Ei+1 and (XUy) € Ei, then H{y\X) = \S\/d,H(y\XS) = 0.

Proof.

I(y;S\X) = H(S\X)-H(S\Xy)

= H(S)/d .

On the other hand,

I(y;S\X) = H(y\X)-H(y\XS) .
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Then. 

0 5 H(y(XS) = H(y1X) - H ( S ) / d  <_ H(y)  - H ( S ) / d  = 0 

H ( y ( X S )  = 0 . 

H(yJX) = H ( S ) / d  = ISl/d . 

Therefore, 

Hence, 

Proof. It is clear from Theorem 18. 0 

Lemma24. For 0 5 Vz 5 d - 1, af u E B C A E &i, (A \ {u}) E -Ci and 
B E 2 * ~ ,  then H ( ~ I ( A  \ {u))) = 0. 

Proof. Choose C C ( A  \ { a } )  such that C E 2;. Let D 2 ( B  \ {u}). 
S i n c e C r  C U D C C U B C A a n d C E  E';,AE -C , , t henCUDE-C ' ; ,CUBE~i .  
Therefore, 

H(S1CD) = H(S1CB) . 
On the other hand, 

H(aS1CD) = H(a1CD) + H(S1CB) = H(S1CD) + H(a1SCD) . 

Then, 

0 5 H ( a l ( A  \ { a } ) )  <_ H(alCD) = H(u1SCD) 5 L ' ( u ~ S D )  = 0 

(from Lemma 22). 
0 

~emma25. FOT vx E g d ,  H(X) = ( IS l /d )x in teger .  

Proof. Let X be a minimal set such that 

x E g d  and H ( X )  # ( I S I / ~ )  x integer . 
Claim26. Vy E X, 

Proof. Let X \ {y}  = { a l , .  . . , al} .  From the minimality of X ,  

H ( X  \ {y} )  = (fix - l}lSl/d. 

a 
qi = H ( a l . . . a i )  = ( IS l /d )  x integer . 

Therefore, 

t i  &H(a,lnl  . . .a;-l) = qi - qi- l  = ( IS l /d )  x integer 
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On the other hand,
0 < U < H(a.i) = \S\/d .

Hence.
U = 0 or \S\/d .

If U = 0,
H(at\X\{ai})=0

because
0 < H{ai\X \ {an}) < H(ai\ai • • • Oi_i) = 0 .

Then.
H(X) = H(X \ {at}) + H(ai\X \ {ai}) = H(X \ {a{}

This contradicts the minimality of X. Therefore,

U = \S\/d for 1 < i < I .

Hence,
H(X \ {y}) = H(ai) + h + • • • + t< = (IX - l)\S\/d .

D

Claim27. There exists Y = {yu • - •, yk} € td such that (X U Y) G ̂ - x and

Proof. From the assumption of Theorem 19,

Va e l , 3B € X7_1( s.t. a& B .

Clearly, B\X e Ed- Let F C (B\X) be a minimal set such that (XUY) € £d-\-
ID

Claim28. VZ C X, /f(Z UY) = H(Z)

Proo/. Let

Then.
t*< < H(yi) = \S\fd .

On the other hand,

ui>H(yi\(XuY)\{yi}) =

The equality comes from Lemma 22. Therefore,

m = |S|/d .

Hence
U Y) = H(Z) + Ul + • • • + uk = H(Z) + W\S\jd .

D
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Claim29. H(X U Y) # [Slldxinteger.  

Proof. From Claim 3, 

H ( X  u Y )  = H ( X )  + nrlsl/d , 

~la im30.  ~a E X, (X u Y )  \ { u }  E . 

Proof. Suppose that 

3aEX, (XUY)\(a}E.&. 

H(al(X u Y )  \ { a ) )  = I W d  . 

Then, from Lemma 22, 

Therefore, 

The second line comes from Claim 3. The third line comes from Claim 1. This 
is against Claim 4. 0 

(Proof of Lemma 25). Choose B E 
From Claim 5 and Lemma 24, 

such that B s (XUY). Let a E ( B n X ) .  

H ( a ( ( X  u Y) \ { a } )  = 0 . 
Then, from Claim 3 and Claim 1, 

H(X u Y )  = H ( ( X  u Y) \ { a ) )  + H(al(X u Y) \ { a ) )  
= H(X \ (4) + nYISl/d 
= (UX - 1 + f l Y ) ( S ( / d  . 

This is against Claim 4. 0 

Theorem31. FOT 0 5 Vk 5 d ,  

VA E kk, H ( A )  = ( S l / d  x integer . (4) 

Proof. We will prove by induction on k. When k = d ,  (4) holds from Lemma 25. 
Suppose that (4) holds for k 2 i + 1 .  Let A be a minimal set such that 

A E -I?,, H ( A )  # (ISl /d)  x integer. 
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(1) Assume that 
+ € A ,  A \ { u } @ z i .  

Fkom Lemma 23, 

Then, from Lemma 22, 

A\ {a} E &+I 

H ( 4 A  \ { a } )  = I W d  * 

H ( A )  = H ( A  \ { a } )  + H(alA \ {a)) = H ( A  \ (4) + ISl/d 

Hence 

From the hypothesis of the induction, 

H ( A  \ {u}) = ISl/d x integer . 
This is a contradiction. 

(2) Assume that 
VU € . A ,  A\{u}  E & . 

Choose B E 2; such that B A.  Let b E B .  From Lemma 24, 

H(blA \ { b } )  = 0 . 
Then, 

This contradicts the minimality of A. 
H ( A )  = H ( A  \ { a } )  + H(blA \ { b ) )  = H ( A  \ { b ) )  * 

Therefore, 
VA E &, H ( A )  =  IS(/^ x integer 

6.3 Other Theorems 

Theorem32. Under the assumption of Theorem 19, let Y be any maximal in- 
dependent set contained in X .  Then, X E & if and only i f  Y € .%. 
Proof. Let X = Y U 2. Because Y be a maximal independent set, 

H ( X ) = H ( Y )  . 

H(X) = H(Y)  + H ( Z ) Y )  . 

H ( Z I Y )  = 0 . 

0 5 H(Z1YS)  5 H ( Z I Y )  = 0 . 

On the other hand, 

Therefore, 

Here, 



Hence, 

Then, 
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H ( Z ] Y S )  = 0 . 

qs; ZIY) = H ( Z I Y )  - H ( Z 1 Y S )  = 0 = H(SIY)  - H(S1Y.Z) . 

H ( S I Y )  = H(S1Y.Z) = H ( S I X )  . 
Now, we have 

Theorem33. If there e&ts a representable matroid over a finite field GF(q)  
on W which satisfies (N1) and (N2), there exists an SS which has a level d mixed 
access hierarchy (&,&, - , &d)  and is ideal. 

Proof. There exist a vector space D over G F ( q )  and a mapping 4 : W 4 D ,  
which preserves rank. Let +(Si) = ai and 4(K) = pi. a; and pi are column 
vectors. For a secret s = (s1, , S d )  (si E GF(q)) ,  choose a vector 7 such that 

s i = a : * ~  ( l s i s d )  

at random, where - means inner product. We can do this because the rank of 
(a1,. . a ,  ad} equals d. Then, compute each share vi as 

?J;=p:*r ( l l i l n ) .  

It is easy to  see that the above scheme satisfies the desired condition. 0 

Remark. Let E {z1,22,. . . , zn}, where zi is a random variable. It is known 
that (E, H )  is a polymatroid [20]. The rank function of a polymatroid takes a 
value in nonnegative real numbers. It doesn’t have to be integer valued, while 
the rank function of a matroid must be integer valued. Generally, H(X) is not 
integer valued. Our contribution is to show that H ( S )  is integer valued in ideal 
secret sharing schemes (for both perfect and nonperfect.) 

7 Summary 

This paper has shown that nonperfect secret sharing schemes (NSS) have matroid 
structures and has presented a direct link between the secret sharing matroids 
and entropy for both perfect and nonperfect schemes. We have defined natural 
classes of NSS and have derived a lower bound of lvil for those classes. “Ideal” 
nonperfect schemes are defined based on this lower bound. We have proved 
that every such ideal secret sharing scheme has a matroid structure. The rank 
function of the matroid has been given by the entropy divided by some constant. 
It satisfies a simple equation which represents the access level of each subset of 
participants. 



140 

Acknowledgement 

We would like to  thank Prof. S.Ueno of Tokyo Institute of Technology for useful 
discussion. 

References 

1. G.R.Blakley : Safeguarding cryptographic keys. Proc. of the AFIPS 1979 National 

2. AShamir : How to share a secret. Communications of the ACM, 22, ( l l ) ,  pp.612- 

3. M.Itoh, A.Saito, T.Nishizeki : Secret sharing scheme realizing general access struc- 

4. 3 .C.Benaloh, J .Leichter : Generalized secret sharing and monotone functions. 

5. E.F.Brickell, D.M.Davenport : On the classification of ideal secret sharing 

6. R.M.Capocelli, A.De Santis, L.Gargano, U.Vaccaro : On the size of shares for 

7. E.D.Karnin, J.W.Green, M.E.Hellman : On secret sharing systems. IEEE ‘Ikans. 

8. E.F.Brickell, D.R.Stinson : Some improved bounds on the information rate of 

9. C.Blund, A.De Santis, D.R.Stinson, U.Vaccaro : Graph decomposition and secret 

10. Y .Frankel, Y .Desmedt : Classification of ideal homomorphic threshold schemes 

11. C.Blund, A.De Santis, L.Gargano, U.Vaccaro : On the information rate of secret 

12. D.R.Stinson : New general bounds on the information rate of secret sharing 

13. A.Beime1, B.Chor : Universally ideal secret sharing schemes. Crypt’92 (1992) 
14. W.A.Jackson, K.M.Martin : Cumulative arrays and geometric secret sharing 

15. M.Bertilsson, 1.Ingemarsson : A construction of practical secret sharing schemes 

16. G.R.Blakley, C.Meadows : Security of ramp schemes. Crypto’84, pp.242-268 

17. D.J.A.Welsh : Matroid theory. Academic Press (1976) 
18. W.Ogata, K.Kurosawa, S.Tsujii : Nonperfect secret sharing schemes. Auscrypt’92 

19. R.G.Gallager : Information Theory and Reliable Communications. John Wiley & 

20. S.Fujishige : Polymatroidal dependence structure of a set of random variables. 

Computer Conference, vo1.48, pp.313-317 (1979) 

613 (1979) 

ture. Proc. of IEEE Globecom ’87, Tokyo, pp.99-102 (1987) 

Crypto’88, pp.27-36 (1990) 

schemes. Journal of Cryptology, vo1.4, No.2, pp.123-134 (1991) 

secret sharing schemes. Crypto’91, pp.101-113 (1991) 

IT-29, No.1, pp.35-41 (1982) 

perfect secret sharing schemes. Crypto’SO, pp.242-252 (1990) 

sharing schemes. Eurocrypt’92, pp.1-20 (1992) 

over finite Abelian groups. Eurocrypt’92, pp.21-29 (1992) 

sharing schemes. Crypto’92 (1992) 

schemes. Crypto’92 (1992) 

schemes. Auscrypt’92 (1992) 

using linear block codes. Auscrypt’92 (1992) 

(1984) 

(1992) 

Sons, New York, NY, (1968) 

Information and Control 39, pp.55-72, (1978) 



141 

Appendix 

Given a probability distribution { P ( Z ) } ~ ~ X ,  the entropy of X is defined as 

Z E X  

It holds that 
0 5 H(X) s log, ttx = 1x1 1 

where H ( X )  = 0 if and only if there exists z E X such that p ( z )  = 1; H ( X )  = 
1x1 if and only if p ( z )  = l / f l X ,  for Vz E X. 

Given two sets X and Y and a joint probability distribution { p ( z ?  Y ) } ~ E X , ~ E Y  
on their Cartesian product, the conditional entropy H ( X 1 Y )  is defined its 

From the definition of conditional entropy, it is easy to  see that  

H(X(Y) 2 0 * 

H(XY) = H(X) + H(Y1X) = H(Y) + H(X)Y) . 
The entropy of the joint space X Y  satisfies 

The mutual information between X and Y is defined by 

I ( X ; Y )  H ( X )  - H ( X I Y )  . 
The mutual information has the following properties: 

I(X; Y )  = I(Y; X )  , 
I ( X ; Y )  2 0 . 

From the above inequality, one gets 

H ( X )  2 H(XIY) ' 
The condition,al mutual information is defined by 

I ( X : Y ( Z )  e H(XIZ) - H(X(Y2) . 

I( X; Y 12) satisfies the following properties. 

I(X;YIZ) 2 0 7 

I(X; YIZ) = I(Y; XlZ) , 
I(X; Y Z )  = I(X; 2 )  + I ( X ;  Y I Z )  . 
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