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Abstract. A Boolean function is said to be correlation immune if its 
output leaks no information about its input values. Such functions have 
many applications in computer security practices including the construc- 
tion of key stream generators from a set of shift registers. Finding meth- 
ods for easy construction of correlation immune functions has been an 
active research area since the introduction of the notion by Siegenthaler. 
In this paper we study balanced correlation immune functions using the 
theory of Hadamard matrices. First we present a simple method for di- 
rectly constructing balanced correlation immune functions of any order. 
Then we prove that our method generates exactly the same set of func- 
tions as that obtained using a method by Camion, Carlet, Charpin and 
Sendrier. Advantages of our method over Camion et al's include (1) it 
allows us to calculate the nonlinearity, which is a crucial criterion for 
cryptographically strong functions, of the functions obtained, and (2) it 
enables us to discuss the propagation characteristics of the functions. 
Two examples are given to illustrate our construction method. Finally, 
we investigate methods for obtaining new correlation immune functions 
from known correlation immune functions. These methods provide us 
with a new avenue towards understanding correlation immune functions. 

1 Introduction 

The  main component of a stream cipher is a key stream generator which produces 
from a random seed a sequence of pseudo-random bits. These pseudo-random bits 
are added modulo 2 to bits in a plaintext and the resulting stream, a ciphertext, 
is sent to a receiver. The  receiver can recover the plaintext by adding modulo 2 
to the ciphertext the output of the stream generator with the same seed. 
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A common method for obtaining key stream generators is to combine a set 
of shift registers with a nonlinear function. Blaser and Heinzmann [l] observed 
that if the combining function leaks information about its component functions, 
then the work needed in attacking the cryptosystem can be significantly reduced. 
This idea was further developed by Siegenthaler in [S] where a new concept called 
correlation immune functions was introduced. Since then the topic has been an 
active research area and correlation immunity has become one of the central 
design criteria for stream ciphers based on shift registers [4, 51. 

For practical applications, finding methods for easy construction of corre- 
lation immune functions is of most importance. In [8] Siegenthaler presented 
the first method for constructing (balanced) correlation immune functions. His 
method is recursive in nature and hence not very satisfactory in practical appli- 
cations. Camion et a1 studied correlation immune functions from the point view 
of algebraic coding theory, and presented a method for constructing correlation 
immune functions of any order [2]. 

In this paper we study correlation immune functions using the theory of 
Hadamard matrices. First we present a method for directly constructing balanced 
correlation immune functions of any order. We then prove that our method 
generates exactly the same set of correlation immune functions as that obtained 
using Camion et al’s method. Advantages of our method over Camion et al’s 
include that, in addition to their orders of correlation immunity and algebraic 
degrees, it gives the nonlinearity and propagation characteristics of the functions 
obtained. We also study methods for constructing correlation immune functions 
on a higher dimensional space by combining known correlation immune functions 
on a lower dimensional space. The nonlinearity of functions thus constructed is 
also investigated. 

The organization of the rest of the paper is as follows. Section 2 introduces 
notations and definitions that are needed in the paper. Section 3 reviews the 
previous construction methods for correlation immune functions. Our new con- 
struction method is described in Section 4.  In the same section we also prove 
that the new construction method generates exactly the same set of correla- 
tion immune functions as that by Camionet al’s method. Section 5 discusses 
the algebraic degree, nonlinearity and propagation characteristics of functions 
obtained using the new method. Two examples are shown in the same section. 
Section 6 is devoted to the combination of known correlation immune functions. 
Three combination methods are shown in the section, among which the first 
one can be viewed as an extension of the new construction method described in 
Section 4. The paper concludes with some remarks in Section 7. 

2 Preliminaries 

We consider Vm, the vector space of rn tuples of elements from GF(2) .  Note that 
there is a natural one to one correspondence between vectors in Vm and integers 
in [0, 2m - 11. This allows us to order the vectors according to their corresponding 



183 

integer values. For convenience, we denote by a, the vector in V,,, whose integer 
representation is i. 

Let f be a function from Vm to GF(2) (or simply a function on Vm). Since 
f can be expressed as a unique polynomial in m coordinates 21 ,  2 2 , .  . . , Zm, 

we will identify f with its unique multi-variable polynomial f (2)  where 2 = 
(21, 2 2 ,  . . . , t m ) .  To distinguish between a vector of coordinates and an individual 
coordinate, the former will be strictly denoted by w ,  2 ,  y or z ,  while the later 
strictly by w,, zi, p i ,  zi or u ,  where i is an index. The algebraic degree o f f  is 
defined as the number of coordinates in its longest term when it is represented 
in the algebraic normal form. f is called an a f i n e  funct ion if it takes the form 
of f ( 2 : )  = a l z l @ .  . . @ amtm @ c, where a,, c E G F ( 2 ) .  In particular, f is called 
a l inear function if c = 0. 

. . ., ( - l ) j ( a a m - l ) ) ,  and the truth table off  is a (0 , 1)-sequence defined by (f (ao), 
f ( a I ) ,  . . ., !(apt-1)). f is said to be balanced if the truth table o f f  has 2"-' 
zeros (ones). 

The following notation will be used in this paper. Let a = (al ,  . . . , am) and 
p = ( b l , .  . . , bm) be two vectors (or sequences), the scalar product of a and p, 
denoted by (a, p) ,  is defined as the sum of the component-wise multiplications. 
In particular, when a and P are from V,, (a,/?) = albl  @ .. .  @ ambm, where 
the addition and multiplication are over G F ( 2 ) ,  and when a and p are ( 1 ,  -1)- 
sequences, (a,@) = ELl aibi, where the addition and multiplication are over 
the reals. 

Now we introduce the concept of correlation immune functions,  the central 
topic treated in this paper. Let f be a function on V,. Let X be a random 
variable taking on values 2: E Vm with uniform probability 2-", let Xi be the 
random variable corresponding to  the ith coordinate value 2 ,  E GF(2) ,  and let 
Y be the random variable produced by the function f ,  i.e., Y = f (X) .  f is 
said to  be a kth-order cornlat ion immune funct ion if the random variable Y is 
statistically independent of any subset Xilr X i 2 ,  . . ., X i ,  of k coordinates [8]. 

Xiao and Massey gave an equivalent definition for correlation immunity in 
terms of Walsh transformations [3]. The Walsh transformation of a function 
f on V, is defined as the real-valued function 

The sequence off on Vm is a ( I !  -1)-sequence defined by ((-l)f(ao), ( - l ) f (a l ) ,  

m = c f ( 2 : ) ( 4 P J ) !  
Z€V, 

where p E Vm. Note that in the sum, f (z) and (p ,  2 )  are regarded as real-valued 
functions. 

Definitionl. Let f be a function on Vm. f is a kth-order correlation immune  
funct ion if its Walsh transformation satisfies j ( p )  = 0 for all p E Vm with 
1 5 W ( p )  5 k ,  where W ( p )  indicates the Hamming weight of, i.e., the number 
of the nonzero components in, a vector 0. 

A relevant topic, correlation immune functions with memory, was studied 
in [4]. The next lemma is useful for constructing correlation immune functions 
with a view to using Hadamard matrices. 
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Lemma2. Let g be a function on V, and let q be its sequence. Also let z = 
(ZI , 2 2 , .  . . , zm). Then g is a hth-order correlation immune function if and only 
i f  (q ,!)  = O for  any t ,  where P is the sequence of a linear function h ( z )  = ( a , ~ )  
on V, constrained by  1 W ( a )  5 k. 

Proof. Note that 

= -2 i (a ) .  

Thus (q , ! )  = 0 if and only if g(a) = 0 (See also Section 4.2, [2]). 0 

The order k of correlation immunity of a function on V, and its algebraic 
degree d are constrained by the relation L+d 5 m. The only functions on Vm that 
achieve the maximum (m - 1)th-order correlation immunity are g(q, . . . , z m )  = 
+1 @ . . . @ 2, and g(z1 , . . . , 2,) = z1 @ . - @ zm @ 1 , both of which are affine. 
For balanced functions, if k # 0 or m - 1, the relation becomes k + d 5 m - 1 

Next we introduce a fundamental combinatorial structure, the Hadamard 
mairiz. Properties of Hadamard matrices will be very useful in our constructions 
of correlation immune functions. A (1,-1)-matrix H of order m is called a 
Hadamard matrix if H H T  = ml,,,, where HT indicates the transpose of H 
and Zm is the identity matrix of order m. It is well known that the order m 
of an Hadamard matrix is 1, 2 or divisible by 4 [9, 61. In this paper we will 
use a special kind of Hadamard matrices called Sylvester-Hadamard matrices or 
Walsh- Hadamard matrices. A Sylvester-Hadamard matrix (or Walsh-Hadamard 
matrix) of order 2,, denoted by H,, is generated by the following recursive 
relation 

PI. 

where @ denotes the Kronecker product. Note that H, can be written as H ,  = 
H , @ H t  for any nonnegative integers s and 1 with s+t = m. Sylvester-Hadamard 
matrices are closely related to linear functions, as is shown in the following 
lemma. 

Lemma3. Write H ,  = [" ] where e, i s  a row of H, .  Then l ,  is the 

sequence of a linear function hi = ( a i , z ) ,  where z = (21, ..., z,) and i s  
a vector in V, as defined in the first paragraph of this Section. Conversely the 
sequence of any linear function on V, is a row of Hm. 

&--1 
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A proof for the first half of the lemma can be found in [7]. The second half is 
true by noting the fact that Hm has 2" distinct rows and that there are exactly 
2m distinct linear functions on V ,  . Thus the rows of kHm comprise all the afine 
sequences of length 2'". 

Next we introduce a notation which is used throughout the rest of the paper. 
Given any vector 6 = ( i l l  .. . , i,) E V,, we define a function on V, by 

D8 (El) = (Y1 @ &)  ' * . (?h @ i )  
where y = (y1,. . . , y,) and i = 1 @ i indicates the binary complement of i. Note 
that since Da(y) = 1 if and only if y = 6,  a function f on Vl+t can be expressed 
a8 

f(P, 2) = @ Da(P)f 
6€Vs 

where t = (q, . . . , z t ) .  

Lemma4- Let f ( y ,  .) = $&v D6(Y)f6(2) and g(Y, 2) = $&v, ~a(~)ga(z) 
whew y = (yl, . . . , y , ) ,and x = ( 8 1 , .  . . , ti). Then f = g if and only if fa = ga 
for all 6 E V,. 

Proof. f = g if and only if f(6,z) = g(6,z) for all 6 E V,. Note that since 
Da(y) = 1 if and only if y = 6, we have f(6,z) = f6(t) and g(6,z) = ga(t) for 
all 6 E V,. 

The following lemma can be found in [7]. 

Lemmas. Let t i  il...ip, ( i i , .  . . , i p )  E Vp, lie the sequence Ofafunctionfj, ... i,(zl,. . . , t q )  

on V,. Let ( be the concatenation of ( 0  ...o 0 ,  &...01, . . ., &. . .11 ,  namely, 4 = 
(<o ... oo,(o...ot, ... ,&...11). Then < i s  the sequence of a function on V9+p given 
by 

f ( ~ 1 9  + * ~ p p ,  2 1 ,  . , t q )  = @ oil.. ip(Y1, ... r ~ p ) f i l . . . i ~ ( l l , - . . ,  ~ p ) .  

( i ,  .. .i,)EV, 

Let a = (at, a2,. . . ,an) E Vn and /3 = (61 , b a , .  . . , bm) E V,. The Kronecker 
product of cr and /3, denoted by a@p, is defined as a@p = (alP,az/3,. . . ,amp). 
The following lemma will be used in the rest of the paper. 

Lemma6. Jet ( be the sequence (or truth table) ofa function f on V,, and q be 
the sequence (or truth table) of a function g on V,. Then ( @ 9 is the sequence 
(or truth table) of the function ~ ( y , z )  = f(y) @ g ( t )  on Vn+m. 

Proof. For any fixed y = a E V,, we have cp(a,z) = f(a) @I g(z). 0 

The propagation characteristic is another nonlinearity measure for crypto- 
graphic functions. A function satisfies the propagation criterion of order k if 
complementing k or lees input coordinates results in the output being com- 
plemented half the times over all input vectors. The formal definition For the 
propagation criterion follows. 
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Definition7. Let f be a function on Vn. We say that f satisfies 

1. the propagation criterion with respect to a non-zero vector a an Vn if f(z) @ 

2. the propagation criterion of degree k if it satisfies the propagation criterion 
f(z @ a) is a balanced function. 

with respect to  all a E Vn with 1 5 W ( a )  5 k. 

3 Previous Constructions 

Siegenthaler presented a recursive construction in his pioneering work [S]. Let fi 
and f2 be kth-order correlation immune functions on V, . Then the concatenation 
of their sequences results in a new correlation immune function, namely, 

f (u ,  2) = (u G3 l)fl(.) @ U f Z ( 2 )  (1) 

is a kth-order correlation immune function on Vm+ll where u is a variable on 
GF(2) and z = (21 ,22 , .  . . , zm). 

Camion et a1 [2] observed that in Siegenthaler's construction, if the Walsh 
transformations of fl and fi satisfy the condition 

.fl(X) + .fz(X) = 0,for all X E Vm with W(X) = k, 

then the order of the correlation immunity off is improved to  k+1. In particular, 
they show the following two pairs of functions satisfy the condition: 

1. g(t) and 1 $g(z); 
2. g(z) and g(Z), where Z. = (1 G3 ~ l , l @  22,. . . , l  @ z m ) ;  

where g is a kth-order correlation immune function on V,. Note that 1 G3 g(2) 
complements the output, while g(Z) complcments the input. Therefore, both 

f(z) = (u @ l)s(.) @ 4 1  a3 !7(z)) = @ g(z) (2) 

(3) 

and 

f(.) = (. l)g(z) @ u g ( i )  = g(z) @ u(g(z) a3 g ( 4 )  

are (k + 1)th-order correlation immune functions on V,+l. 
In the same paper, Camionet a1 also discovered a method for direct con- 

struction of correlation immune functions. Let rn and n be positive integers with 
rn > n. Let r and pi ,  j = 1,2 , .  . . , n be arbitrary functions on V,-,,. Also let 
2 = ( t i r*2 , .  . . ,zn)  and Y = (yi ,y2, .  . . ,Y,-~).  Set 

Then the function f defined in (4) is a balanced kth-order correlation immune 
function on Vm, where k is an integer satisfying k 2 min{W(P(y))Jy E V k n ) -  
1, and P(Y) = (Pl(Y),PZ(Y), ' .  . ,Pn(Y)). 
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4 A New Construction 

Let rn and n be positive integers with m > n. Suppose that @m,n = ((00 ... 0 ,   PO...^, . . . , ~1 ... 1) 

is a set containing linear functions on Vn, each is indexed by a vector in 
Vm-n. @m,n can be a multi-set and hence a linear function is allowed to appear 
more than once in @m,n. Let E = ( 1 1 ,  z~,. . . ,cn),  y = (y l , yz , .  . . ,ym-n) and r 
be an arbitrary function on V,-,. Set 

The following corollary is a consequence of Theorem 9 and Corollary 10 to 
be stated below, though it can be proved directly. 

Corollaryt?. The function g defined in (5) is a balanced kth-order correlation 
immune function on V,, where I: i s  an integer satisfying k 2 min(W(y6)lG E 
Vm-n} - 1, @5(z) = (ya,z) E @m,n and 76 E K. 

Theorem9. The constructions (4)  and (5) express the same set of functions. 

Proof. Let S1 be the set of functions generated by (4) and Sz the set of functions 
generated by (5 ) .  

Sz by showing that a function obtained by (4) can 
always be represented in the form of ( 5 ) .  Let 

First we prove that Sl 

n 

f(3, E )  = @ zjpj (3) @ r ( ~ )  
j=1 

be a function in 4. For any 6 E Vm-” we have 
n 

f ( 6 ,  = @ Z j p j  ( 6 )  ~ ( 6 )  
j=1 

Since pj(6) E GF(2),  j = 1, .  . . , n ,  
let 

tjpj(6) is a linear function on Vn. NOW 

n 

V 6 ( z )  = @zjpj(6), 
j=1 

and let 
d Y >  2) = @ Da(Y)’Pa(z) a3 r(y). 

6EVm-m 

Note that Da(y) = 1 if and only if y = 6. Thus we have 

g(6, .) = cpdz) @ 4 6 )  = f (4  $1. 

f ( Y , . )  = 9(Y, E ) .  

Since 6 is arbitrary, by Lemma4 we have 
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Consequently, f (y ,  z) 
s1 c SZ. 

Next we show that 
of (4). This will prove 

can be represented in the form of (5 ) .  This means that 

a function obtained by ( 5 )  can be represented in the form 
that S2 & S1. Let 

g(Y, z) = @ D6(Y)96(z) @ 
6€V,- ,  

be a function in S2. Let 6 be an arbitrary vector in V,-,, and let 

cpa(z) = a6, lz le  . * .  @ a6,nxn 

~ j ( 6 )  = a6,j 

for all 6 E Vm-n. Also let P = ( p l ,  . . . ,pn) he a mapping from V,-,, to V, such 
that 

(6) 
NOW let Pj, j = 1,2, .  . . , n, be a function on Vm-n such that 

P(6) = ( ~ 1 ( 6 ) , . . . , ~ n ( 6 ) )  (7) 

~ ( Y , z )  = @zjpj(Y) @.(Y). 

for all 6 E Vm-n, Now we define a function on Vm in the following way 
n 

j=1 

Again since D6 ( y) = 1 if and only if y = 6,  we have 

9(6,.) = cp&) @ 4). 
By (6) and (7) we have 

n n 

f ( 6 , z )  = @zjPj(6) @ .(a) = $zjab,j CB .(a) = pa(%) e .(a) = g(6,z). 
j=1  j=1 

Since 6 is arbitrary, by Lemma4 we have 

dY1.1  = f(Y, 2). 

This implies that g(y, z) can be presented in the form of (4) and thus S2 G SI. 
0 This completes the proof that S1 = S2. 

Corollary 10. In the proof of Theorem 9 

min{W(P(y))ly E Vm-n} - 1 = min{W(-ya)16 E Vm-n} - 1. 

where pa(%) = (ra,z) = a6,121@ ... @ a6 ,n~n  and 7 6  =   ad,^,. . . ,aa,n) 
same aa an the proof of Theorem 9. 

Proof. From (7) we have P(6)  = (a6,1,. . . ,a6,n), and from (6) we have pa(%) = 
a6,1~1@...$a6,~~~,= (-y6,z).Thuswe have P ( 6 )  = 76 and hencemin{W(P(y))(y E 

0 

the 

Vm-n} - 1 = rnin{W(ya)lG E Vm-n} - 1. 
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5 Applying the New Construction 

For integers k and n with 0 5 k < n, let Qk,n denote the set of linear functions 
on Vn that  have k + 1 or more non-zero coefficients, namely 

Ok,n = {'p)'p(z)= ( P , z ) , P  E v n , w ( b )  >_ k +  1) (8) 

where x = (XI,. . . ,zn).  This set of functions will be used in our constructions 
of correlation immune functions. 

5.1 

Given two integers m and k with m 2 3 and 1 5 k < m - 1, balanced kth-order 
correlation immune functions on V, can be constructed in the following way. 

Balanced Functions with Given Immunity 

1. Fix an integer n such that k < n < m. 
2. Create a set @,,,,,, by selecting linear functions strictly from Ok,n. Note that 

3. Construct a function by using the method ( 5 ) .  
the size of @,,,, is 2"'-", and repetition is permitted in the selection. 

By Corollary 8, we have 

Theoremll. A function constructed according to the above thrre steps i s  a 
balanced klh-order correlation immune function on V,. 

5.2 Algebraic Degrees 

Let k and m be integers with k 2 1 and m 2 k + 2. As mentioned in Section 2, 
the algebraic degree of a balanced kth-order immune correlation functions on 
Vm is at most m - k - 1. We are interested in constructing balanced kth-order 
correlation immune functions having the maximum algebraic degree rn - k - 1. 

In order to discuss their algebraic degrees, we construct functions in the 
following three steps. 

1. Fix an integer n such that rn > n 2 k + 2. 
2. Choose a multi-set @,,n = { ' p b  : V, -+ GF(2))6 E Vm-n} of linear functions 

in such a way that it satisfies the following threv conditions: 
( c1 )  If 'p E @m,n then 'p E Qk,,,, where Qk,n is defined in (8), 
(C2) @m,n contains a t  least two distinct functions, 
(C3) there is a variable zj that appears in an odd number of functions in 

@,,,,,,. Note that the repetition of functions is counted by the number of 
appearance. 

3. Employ the set @m,n in the construction (5). 

Since @,,n is a multi-set, the condition (Cl)  can be satisfied. On the other 
hand, since n 2 k + 2 and Rk,n contains more than two functions, the condi- 
tion (C2) can also be readily satisfied. 
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Once the conditions (Cl)  and (C2) are satisfied, we check @m,n to  see if i t  sat- 
isfies the condition (C3). If not, we modify @m,n in the following way. Since @m,n 

satisfies the condition (C2), there are two distinct functions cpal(z),cpa,(z) E 
@m,n. Thus there exists some zj that appears in cpb,(z) but not in pa,(.). NOW 
we replace cpa,(z) by cpa,(z). In this way we can modify the function set @m,n so 
that it satisfies the condition (C3). When the condition (C3) is satisfied, there 
is a term y1 . . .yrn- , , t ,  that appears an odd number of times in a function g 
constructed according to the above three steps. This term survives in the final 
algebraic normal form representation of g. In other words, the algebraic degree 
of g is m -  n +  1. 

From Theorem 11 and the above discussions, we know that g is a balanced 
kth-order correlation immune function of algebraic degree m - n + 1. Thus we 
have proved 

Theorem 12. Let k, n and m be integers with k 2 1 and m > n 2 k + 2. Then  
a function constructed according t o  the above three steps as a balanced kth-order 
correlation immune function on V, of algebraic degree rn - n + 1.  When n is 
chosen as n = k+2, the function achieve the maximum algebraic degree m-k-1. 

5.3 Nonlinearity 

Given two functions f and g on V,, the Hamming distance between f and 
g is defined as d ( f l g )  = W(f(z) @ g(z)). The nonlinearity of g is defined as 
Nf = min+o,l, . ,2...+1 -1  d( f ,  p) where pol pl,  . . ., p2m+1-1 comprise all the affine 
functions on V,. It has been proved that N ,  5 Zm-' - 2 9 - l  for any function 
f on V, [7]. Nonlinearity is an crucial criterion for cryptographic functions and 
it meaures the ability of a cryptographic system using the functions to  resist 
being expressed as a set of linear equations. If the system could be expressed as 
linear equations, it would be easily breakable by various attacks. 

Let f1 and f2 be functions on V,, €1 and €2 be the sequences of f1 and f2 

= 2, - 2 4  f , 9). This proves the following result which is very useful in the study 
of the nonlinearity of functions. 

respectively. Then (€, I € 9 )  = c,(+)=g(F) 1 - C,(z)#g(+) 1 = 2* - 2 C , ( z ) f g ( z )  1 

Lemma13. Let f and g be functions on V, whose sequences are and tg 
respectively. Then the distance between f and g can be calculated by d( f ,  g )  = 
2-1 - L(< 

2 f 1<9). 

Now we calculate the nonlinearity of correlation immune functions constructed 
by (5). 

Theorem 14. Led m and n be integers with m > n > 2, and lei g be a function 
constructed by (S). Denote b y  ta the number of times a linear function cpa appears 
in  @m,n, and let t = max(tal6 E Vm-,,). Then the nonlinearity of g satisfies 
Ng 2 2-1 - t2"-1.  
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Proof. For convenience a vector 6 E V,-, will be denoted by its corresponding 
integer between 0 and 2"-" - 1. In this way, a linear function $76 E @m,n indexed 
by 6 is rewritten as pj and t 6  is rewritten as t j ,  where t 6  is the number of times 
$76 appears in @m," and j is the integer representation of 6. We first consider the 
case when r(y) = 0 in the construction (5), namely 

where vj E flk,", y = (yl,. . . ,ym-,), z = ( 2 1 , .  . . ,z,), and Dj l . . .jm-n is defined 
in Section 2. 

Let h be any affine function on V,. By Lemma 3, the sequence of h, denoted 
by L, is a row of fH,. Since H, = Hm-, @ H,, L can be expressed a8 L = 
fL' Be'', the Kronecker product of t' and C' , where 1' is a row of Hm-n while t'' 
is a row of H,. Write !' as 1' = ( C O , C ~ , .  . . , c~ . , , - . -~) .  Then L can be rewritten 
as L = (coe", cl!'',. . . , ~ 2 m - n - ~ t ' ' ) .  Note that by Lemma 3, C' is the sequence of 
a linear function. We denote the linear function by 9''. 

Now let C,j be the sequence of p,, j = 0,1,. . . ,2m-n - 1. By Lemma 5, 
q = ( C o , C l , .  . . , C p - n - 1 )  is the sequence of g defined in (9). On the other hand, 
since the rows of an Hadamard matrix are mutually orthogonal, we have the 
following result: 

2", if 'pj = $7'' 
(cj,af') = { 0, otherwise. 

Now we discuss ( q , L )  in the following two cases: 
Case 1: there exists a j such that 'pj = $7'' ; since 9, appears t i  times in 

Case 2: there exists no j such that $7, = $7"; in this case we have I(q, L)I = 0. 
Summarizing Cases 1 and 2, we have l(q, L)l 5 12". By Lemma 13, d(g, h) 2 

Zm-' - t2"-' .  Since h is arbitrary, we have Ng 2 2"-' - t2"-'. 
Now consider the more general case when r(y) # 0 in the construction ( 5 ) .  

Since r is a function of y but not z, the sequence of g takes the form of q = 
(e&,elC1,. . . ,e2m-n-1C,2m-n-1), where e i  = ( - l ) r ( p s )  and a, is a vector in 
Vm-, whose integer representation is i .  By a similar discussion to  the case when 
r(y) = 0, we have 1(9,L)l 5 t2" for any affine sequence L, and hence Ng 1 
2m-1 - t2n-l. 0 

djrn,,, the total number of times when $7, = $7'' is also ij.  Thus I(q,L)I 5 l j2". 

5.4 Propagat ion Characteristics 

This section discusses the propagation characteristics of functions obtained by (5). 
For convenience, the construction method is repeated here: 

g(Y,z) = @ D 6 ( Y ) $ 7 6 ( z )  @ r ( y )  
a€vm-. 

In the following discussion, we assume that all linear functions $76 in the con- 
struction are distinct. 
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It is easy to  prove that 

Let z = (y, 2). Also let E V,-,, a E Vn and y = (p ,  a). Then 

Set Q = 6 @ B, we have 

and hence 

Note that for any fixed y = 0 

Consider the case when p # (0,. . . ,O). By assumption (p4(z) and 'pnep(z) 
are distinct linear functions. Hence pa(+) @ pPa@p(+ @ a)) = pa(.) @ (~,,ep(z) @ 
$76@8(a) is a non-constant affine function which is balanced. This shows that 
g ( z )  @ g ( z  @ y )  is balanced for any y = (p, cr) with p # (0,. . . ,O). Thus we have 
proved 

Theorem 15. In the construction (5), i f  all 976 are distinct linear functions on 
Vn, then g satisfies the propagation criierion with respect to a l l y  with y = (p ,  a), 
b E Vm-n, a E V, and p # 0 .  

Note that there are 2"'-" - 1 choices for p # 0 and 2" choices for all a E Vn. 
Therefore the total number of vectors with respect to  which the function g 
satisfies the propagation criterion is at least- (2"'-" - 1)2" = 2" - 2". 
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5.5 Examples 

Theorem 12 gives us a general method to construct balanced correlation immune 
functions having any given immunity. The construction method allows us to 
easily calculate the algebraic degree and the nonlinearity of the functions, which 
is very desirable in designing cryptographic systems. Two concrete examples 
follow. 

Let n = 4 and k = 2. Then 

O2,4 = { d ' d z )  = ( P , Z ) , P  E h, w(P) 2 3) 
= (21 @ 2 2  @ 23, 21 @ 2 2  @ 2 4 ,  21 @ 23 @ 2 4 ,  2 2  @ 23 @ 2 4 ,  21 @ 2 2  @ 23 @ 2 4 } .  

where c = (21,22,23,24). 

Example 1. We construct a balanced 2nd-order immune function f on V7, which 
achieves the maximum algebraic degree of 4. We also calculate the nonlinearity 
of the function. 

Set 

'PZ(Z) = 21 @ 1 2  @ 24, 9 6 ( 2 )  = pZ(z) 

94(2) = 2 2  @ 23 @ Z4r 96(z) = 93(x) 
'P3(2) = 21 @ 23 @ 24r 'p7(2) = 93(2) 

and 

@7,4 is a multi-set whose elements are all taken from L?3,4. In addition, it con- 
tains four different functions, and 21 appears in seven functions. Thus the three 
conditions (Cl) ,  (C2) and (C3) are all satisfied. 

@7,4 = (911 92, 931 'P4195,  9 6 ,  971  9s) .  

To complete the construction, let 

f ( Y ,  2) = DOOO(Y)(ol(~) @ DOOl(Y)92(z) @ DOlO(Y)(pQ(Z) @ DOll(!/)'P4(2) @ 

DlOO(Y)(p5(2) @ DlOl(Y)(p6(Z) @ DllO(y)'p7(2) @ Dlll(y)98(2) 

= (1 @ @ Yl&?Y3)21 @ (1 @ u2 @ YZY3 @ Yl&Y3)22 @ 

(1  @ 313 @ Y2m)Z3 @ (Y2 @ v3 @ Y2!/3)24 

where Y = ( ~ 1 ~ ~ 2 ~ ~ 3 )  and 2 = (Zlr22,Z3,24)- 
By Theorem 12, f is a balanced 2nd-order correlation immune function on 

V7 of algebraic degree 4. To calculate the nonlinearity of the function, note that 
93 = 9 7  = cps and hence t = max{tj l j  = 1,. . . ,8} = 3. By Theorem 14, we have 
Nj 2 27-1 - 3 . 24-' = 40. Note that the upper bound of the nonlinearity of 
balanced functions on V7 is 56 (see Corollary 17 of [ I .  
Example 2. In this example, we construct a balanced 2nd-order immune function 
g on v6. Let 

'Pl(2) = 21 @ 22 @ 23, 

9 2 ( 2 )  = 21 @ 2 2  @ 24, 

9 3 ( % )  = 2l @ 23 @ 2 4 ~  
(p4(2) = 21 @ 22 @ 23 @ 24, 
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and 
@6,4 = {PI I 9 2 1  9 3  8 'p4). 

Obviously &,4 satisfies the three conditions (Cl), (C2) and (C3). 
Let 

where Y = ( 9 1 , ~ ~ )  and = (21, 2 2 , 2 3 1  24). 
g is a balanced 2nd-order correlation immune function on VS. It satisfies the 

propagation criterion with respect to all (Y = (a1,a2,a3,a4,a5,a6) E V6 with 
a1 # 0 or a2 # 0. The algebraic degree of g is 3 and the nonlinearity of g is 
NB 2 26-' - 24-' = 24. For comparison, note that the upper bound for the 
nonlinearity of balanced functions on v6 is 26 (see (71). 

6 Combination of Correlation Immune Functions 

The construction ( 5 )  described in Section 4 presents a method for directly con- 
structing correlation immune functions of any order. In this section we discuss 
three methods for constructing correlation immune functions on a higher dimen- 
sional space from existing such functions on a lower dimensional space. 

6.1 An Extension of the New Construction 

The construction ( 5 )  can be extended. Let rn, n, k and 8 be positive integers, 
where rn > n > k, and let w = (y ,z ,z ) ,  y = (yl, ..., ym-,), 2 = (21 ,..., z,) 
and z = (21,. . . , z , ) .  Also let Gm,,, = {pol.. . Ip2m-..-1} be a set of linear 
functions on Vn, each of which is selected from a&,,,. Repetition is permitted in 
selecting the linear functions. Set 

gl(Y,z) = Do...o(y)po(z) @ ' * .  @ Dl...l(Y)V2-.-1(4 @ I.l(Y) (10) 

where rl is an arbitrary function on Vm-n. By Corollary 8, g1 is a balanced 
hth-order correlation immune functions on V, . 

be a set of pth-order correlation immune functions 
on V,. Functions in the set need not be mutually distinct. Set 

Now let {fo, . . . , 

where r2 is an arbitrary function on Vm-,,. We further set 
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Theorem16. The function g(y,c,z) = g1(y,c)@g2(y,z) i s  a balanced ( h + p +  
1)th-order correlation immune function on Vm+#. The nonlinearity of g satisfies 

N P -  > 2m-1 - t .2"(2+l-  N )  

whew t = m={tj IJ' = O, I , .  . . , Zm-" - I}, t j  denotes the number of t imes that 
'pj appears in @m,n, and N = min{Nj, Ij = 0,1,. . . , Zm-" - 1). 

d y ,  2 , ~ )  = DO...O(Y)(CPO(Z) CB fo(.)) CB . . . CB D 1 . . . 1  (y)( (02a-n - 1 ( ~ )  @ fa--- - I(.)). 

Proof. We first consider the case when r(y) = rl(y) $ rz(y) = 0. Note that 

Since each 'pj is balanced, each 'pi(")$ f,(z) is also balanced (see Lemma 20 of 
[7]). Hence g(y, I, z )  is balanced. 

NOW we show that g is a (k+p+  1)th-order correlation immune function. Let 
cj and <j be the sequences of 'pj and fj respectively, j = O , 1 , .  . . , 2m-" - 1 .  By 
Lemma6Cj@[j isthesequenceof'pj(r)$fj(z),andq= ( C o @ t o ,  . . . , & = - n -  I @  
e 2 n - n - 1 )  is the sequence of g(y, c, z )  (see Lemma 5). 

Let h be a linear function on Vm+3. By Lemma 3, the sequence of h,  denoted 
by L, is a COW of Hm+r .  Since Hm+# = H,,,-,, @ H,, @ H , ,  L can be expressed 
as L = L1 8 l 2  8 l 3 ,  where is a row of H,,,-+,, 45 is a row of H n ,  and l 3  
is a row of H3. Write el = ( c o , c ~ ,  . . . , ~ ~ m - n - ~ ) .  Then L can be rewritten as 
L = ( ~ 0 1 2  63 &,. . . , ~ 2 m - n - l l 2  @ 13) .  Let q be the sequence of g. Then 

(7, L )  = co (CO 8 €0, e 2  e3) + . . . + c2m-n - 1(<2-- n -1 8 t2m-n - 1 ,  f 2  8 &) 
= CO (cool e2) (€0 , 13)  + ' ' * + C2m- n - 1 (C2m-n - 1 e 2 )  (t2m-n - 1, a ) -  

Write h ( w )  = ( 7 , ~ )  = (@,Y)@(~,+)@(u,z), where y =  (@,a,u), @ € Vm-n, 
a E Vfl and u E V,. By the definition of the sequence of a function, e l , &  and l 3  
are the sequences of (@, p), (a, c )  and (0, z )  respectively. 

Suppose that W(y) 5 h + p + 1. Since W(y) = W(@)  + W ( a )  + W(u) ,  
we have W ( a )  + W ( u )  5 & + p + 1, which implies that either W ( a )  5 h or 
W ( U )  5 p .  Recall that pj E at,,. If W ( a )  5 h,  cj and .!?2 must be orthogonal, 
and hence ( c j , t 2 )  = 0. Otherwise if W ( 0 )  5 p, (€j,&) = 0, since each fj  is a 
pth-order correlation immune function. Thus (q ,  L) = 0. By Lemma 2, g(y, c ,  z )  
is a (h  + p + 1)th-order correlation immune function on Vm+s. 

To obtain the nonlinearity of the function g, we assume that in the above 
discussion h is an arbitrary affine function on Vm+#. Then L, the sequence of h ,  
can be expressed as L = *ll8 e 2  @ &, and hence 

(9, L )  = *(cO(CO I [2)(<0 I e3) + ' ' ' + c p - n -  1 (C2--n- 1 ~ 4 2 )  ( t2m-n-1 ,  &))- 
By Lemma5 

(t j , t3) 5 23 - 2 ~ / ,  5 28 - I ~ N .  

On the other hand, since the rows of an Hadamard matrix are mutually 
orthogonal, we have the following result: 
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When there is a j such that cj = 1 2 ,  we havtt l(q, L)l 5 t .2"(2$ -2N). Otherwise 
if there is no j such that (j = Lz, [ (q ,  L)I = 0. In summary, we have l(ql L)l 5 
t - 2"(2' - 2N). By Lemma 5, d ( g , h )  2 2"+' - t . 2"(2'-' - N). Since h is 
arbitrary, N ,  2 Zm-' - t .2^(2*" - N). 

By a similar discuasion as in the last part of the proof of Theorem 14, the 
theorem is true for the more general case when r(y) = rl(y) @ rz(y) # 0. 0 

The construction (12) can be considered as an extension of the construc- 
tion ( 5 ) ,  in the sense that if s = 0 and each function fj is defined as a constant, 
the former is reduced to the latter. 

6.2 

Lemma 17. Let fi be a klth-order cornlalion immune function on V,, , fz be 
a kzth-order correlation immune function on Vna. Then g(z, y) = fl(z) 63 f2(y) 
as a (k1 + ka + 1)th-order cornlation immune function on Vnl+na, where'z = 
( ~ 1 ~ 2 2 ,  - - .  , xnl)  and tl = ( ~ 1 ,  ~ 2 1 .  

Proof. Let €1 and €2 be the sequences of fi and f~ respectively. Then by Lemma 6, 
q = €1 @<2 is the sequence of g. 

Let 'p be a linear function on Vnl+na. Then cp can be written as cp = (71 Z )  = 
( a , ~ )  @ ( P , Y ) ,  where * = (z,Y),y = (a,@) E VnI+na, a E Vn, and P E Vna- 
Now let L be the sequence of cp. By Lemma3, L is a row of Hnl+nla Since 
Hnl+nl = H n ,  @ H n , ,  L can be expressed 88 L = 11 @&, where ti is a row Of 
Hnl and 12 is a row of Hna. 

Now we show that t 1  matches the sequence of ( a , z ) ,  and t 2  matches the 
sequence of (p, y). Assume that 4 is the sequence of (a, z), and 1; is the sequence 
of (P,  y). By Lemma 6, C3 4 is the sequence of cp. Thus L = ! I@ !a = & C3 4. 
By Lemma 3, 
and l z  = 4. Put it in another way, 1, is the sequence of (a ,z ) ,  and 12 is the 
sequence of (p,y). 

Now consider 7 with W ( 7 )  5 L 1 +  Ez+ 1.  In this case we have either W ( a )  5 
kl  or W(P) 5 kz. Thus 

Direct Sum of Two Correlation Immune hnctions 

8 Yna). 

is a row of Hnl and 4 is a row of Hn2. This means that t 1  = 

( b L )  = (€1 @€Z,tl  8 4 2 )  = ( € l J l ) ( € Z , ~ Z )  = 0. 

Vn 1 +na - 0 
By Lemma 2, g is indeed a (k1+ kz + 1)th-order correlation immune function on 

Lemma 18. Let f1 be a function on Vn, and fz be a function on Vna. Suppose 
ihai their nonlinearities u7-e Njl = dl  and N j l  = dz respectively. Then the 
nonlinearity o f g ( z ,  y) = fl(z) @ fz(y) satisfies N p  1 d12"~  + dz2"l - 2dldz. 

Proof. Let €1, €3, q ,  L,  t1 ,  l a ,  'p be the same as in the proof of Lemma 17. Let 
cpl = (a, 4 and cpz = (Pl Y). 

By Lemma 13, we have 

1 
di = N j ,  L d(fi,vi) = 2"I-l- i (€ i , l i ) .  
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Thus 

( € l , t l )  52"' - 2 4 .  

Similarly 

( € 2 , t 2 )  5 2n2 - 2d2. (14) 

Note that the right sides of (13) and (14) are both positive. Thus 

( q , L )  = ( € 1  @ € 2 , t 1 @ 4 2 )  = ( ( 1 , t 1 ) ( t z , t 2 )  C - (2"' - 2 d 1 ) ( 2 " ~  - 2 4 ) .  (15) 

Again by Lemma 13, 

1 
2 

d (g ,  'p) = 2n'+n'-1 - -(v, L) 2 d12"' + d22"' - 2dld2. 

It  is easy to see that the right side of (15) is also positive. Thus if L is an afine 
sequence (i.e. 9 is an af€ine function) (15) still holds. Since 'p is an arbitrary 
affine function we have 

Ng 2 d12"' + d22"' - 2dld2. 

Therefore the lemma is true. 0 

Combining Lemmas 17 and 18 and using Lemma 20 of [7] we have 

Theorem 19. Let fi  be a klth-order cornlation immune function on Vn, and f 2  
be a kzth-order correlation immune function on Vn2. Also suppose that NI, = dl 

and Nla = d2. Then g(z, y) = f l ( z )@ f&) ia a ( k l  + k2 + 1)lh-order correlation 
immune function on Vnl+na whose nonlinearify satisfies 

Np 2 d12"' + d22"' - 2dld2, 

where z = ( ~ 1 ~ 2 2 , .  . . , z n l )  and y = ( y l ,  yz,. . . ,ha). I n  particular g is balanced 
if either f1 or fz i s  balanced. 

6.3 

This section show that from four correlation i m m n e  functions, we can obtain a 
new functions that achieves a higher order of correlation immnity.  

Theorem20. Lei fl and fi be pth-order cornlation immune functions on V,, 
and let hl and ha be qth-order correlation immune functions on Vn. Lei € 1 ,  €2, 

q1 and q 2  be the sequences of f i ,  f 2 ,  hl and ha respecfiuely. Lei C be a (1,-1)- 
sequence obtained from € 1 ,  € 2 ,  q1 and 92 in the following way: 

Combination of Four Correlation Immune Functions 

(16) 
1 1 

2 c = +€l  + € 2 )  8 rll + -(€1 - t z )  @ rl2 

when + denotes the component-wise integer addifion and @ denotes the Kro- 
necker product. Then the function cornspondtng to  c is a ( p  + q + 1)fh-order 
cornlation immune function on Vm+n. 
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Proof. Similarly to the proof of Lemma 17, we let 'p be a linear function on Vm+n 
and L be the sequence of cp. By Lemma 3, L is a row of Hm+n. In addition, cp can 
be written as 'p = (y,z) = ( a , z ) $ ( p , y ) ,  where y = (a, p) E Vm+n, a E V,, P E 
Vn, x = ( 2 i r . .  ., t m , y i . . . , y , ) ,  = (z1,zz ,... l zm)  and Y = ( Y ~ , Y Z , . . . , Y ~ ) .  
Since Hm+n = H, @ Hn L can be expressed as L = t1@ Qz , where .t', is a row of 
H,, and f ? ~  is a row of H,. By the same reasoning as in the proof of Lemma 17, 
it can be shown that f?, is the sequence of (a, z), and t z  is the sequence of ( P ,  9). 
Thus we have 

For y E Vm+n with W(y) 5 p + q +  1, we have either W ( a )  5 p or W ( p )  5 q. 
This implies that either of the following two situations occurs: (1) (&,t1) = 0 
and ( € 2 ,  t i )  = 0, and (2) ( ~ 1 ,  t z )  = 0 and ( ~ 2 ,  t z )  = 0. A s  a consequence, we have 
(C ,L )  = 0. 0 

Note that a similar technique to the construction (16) has been used in ob- 
taining higher order Hadamard matrices from lower order Hadamard matri- 
ces [6]. 

7 Conclusion 

We have studied correlation immune funct ions using the theory of Hadamard 
matrices. In particular, we have presented a new method for directly construct- 
ing correlation immune functions. It is shown that the method generates the 
same set of functions as that by a method of Camion et al. The new method is 
more convenient for use in practice since it allows one to calculate the nonlinear- 
ity of functions obtained and to discuss the algebraic degrees and propagation 
characteristics of the functions. Three methods for obtaining correlation immune 
functions on a higher dimensional space from known correlation immune func- 
tions on a lower dimensional space are also presented. We believe that these 
various methods of generating correlation immune functions, by direct construc- 
tion or by combining known correlation imniune functions, will find a wide range 
of applications in computer security. 
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