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Abstract. This papa describes a family of new Ong-Scbnorr-SLmlr-Fi.1-Sblmlr-like [I] 
identification and signature protocols designed to prevent forgen from using the Pollrrd-Schnorr 
attack [Z]. 

Our first signature scheme (and its associated identification protocol) uses x, which is secret-Gee, as n 
Mnmitment on which k will dcpmd later. Therefore, the original quadratic equation is replaced by 

x - k(x)y2  I m mod n where k(x) is a non-polynomial hrnction of x and since the Pollard- 
Scbnorr algorithm takes as input value k (to output x and y). it becomes impossible to feed d-prion' 
k(x) which is outputdepmdcnt. 

The second signahre method takes advantage of the fact that although attacker cnn generate valid 

OSS signatures (solutions (x.y) of x - k y2 i m mod n). he has no control over the internal 
structure of x and y and in particular. if we restrict the solution space by adding extra conditions on x 
and y, it becomes vay dificult to produce forged solutions that satisfy the new requirements. 

2 

2 

1. Introduction 

In 1985, Ong, Schnorr and Shiunir proposed a digital signature scheme which seemed to be very efficient 
[I]. In their system, the public-key consisted of a couple of integers k and n where n is an RSA 171 modulus Of 
length N (bits) whose fectorisation is kept sccret. 

A signature {x.y) of a message m (hashed value of a primitive file M) was considered valid if : 

x 2 - k y Z - r n m o d n  (1) 

and it was shown by the authors that general S O I U ~ ~ O ~ S  of this equation can be generated by the signer 
provided that he knows a sccret u such that u2 k = 1 mod n. 

U 
m 
n 

Figure 1 : The original OSS scheme 

In 1987. Pollard and Schnorr 121. exhibited a fast probabilistic algoriUun for computing solutions of 
equation (1) and thercby broke OSS. This attack was later extended by Adlcmm, Esta and McCurley (31. 

Figure 2 : Sketch of the attack introduced by Pollard and Schnorr 

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 233-239, 1994. 
0 Springer-Verlag Berlin Heidelberg 1994 
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In this article, we describe a couple of signature methods (and an associated identification protocol which is 
zuo-knowedge if the challenge size is boundad) intended to prevent forgery by this family of attacks. 

The first (standard) signature protocol uses x (which is secret-free) as a commitment on which k will depend 
later. Therefore, the original quadratic equation is replaced by x2 - k(x) y2 I m mod n where k(x) is a non- 
polynomial function of x and since the Pollard-Sehnorr attack takes as an input a value k (to output x and y). 
it is impossible to input in advance k(x) which is outputdependent and not yet known. 

The second (interactive) signature method takes advantage of the fact that the attacker has no control over the 
solutions of the cangrutna x2 - k y2 = m mod n. In particular, it is hard to produce an x such that the sub- 

equation x = r + - mod n admits a solution r with a given internal redundancy. 
m 
r 

- -  
Figure 3 : Our repair strategy 

2. Definitions 

The system aulhorities select and publish a one-way function f hashing N-z bit strings into z bit words. 
Pradcally, we recommend z (.I 160 for N = 5 12 (for instance, SHA or a DES-based hashing). 

As in the case ofthe Fiat-Shamir protocol IS). each user is provided with a set of c secret keys ul, ...& and 
2 the comsponding public keys k1 ,..& (such that u. k. = 1 mod n for all i) are communicated to the 

verifiers by any desired means (for instance, ID-based as suggested by Shamir in 141 but the key transfer 
pmtocol suggtslcd in the original Fiat-Sbamir 151, should be modified as described in [S]). 

1 1  

3. Protocol #1 (Standard Digital Signature) 

m 
I t r  

i 

0 The signer picks t random numbers {ri), computes the set {xi} where : x. = r, + - mod n, hashes 

f({xi})={q} (where each q is of size c) and calculates 

1.1 

@ 
2 x. - y 2  n k , i l m  m o d n f o r i = I  ,..., 1. 
I i e  = 1  J 

i , j  

The signature {{xi},{yi}} is checked by rcamputing f({xi}) = {ei} and verifying that 
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4. Security and Efficiency 

1 
The security level of this protocol is - (with typically tc x 80) but the size of the signature ("multiple 

evidence" that the signer afFmd honestly his signature on m) is 2Nt. 

This yields, (for instance : ~ 1 0 ,  t=8), a system where 8192 bit signatures are generated in average - 
(-48) modular multiplications with an Nc (~5120) bit secret-key. 

The key size and number of multiplications required to implement the new scheme are equivalent to thobe of 
the FIat-Shamir but the computation of modular inverses (by using the extended Euclidean algorithm) is 
much slower than the squaring operation and the size of the resulting signatures is a bit less than the double 
of Fiat-Shamir OMS (llungs are much better for the identifiation protocol of saction 5 which quires  
exactly the same amount oftransmission as a Fiat-Shamir). However, the following variant offers exactly the 
same amount oftransmission as a Fiat-Shamir but qu i r e s  t additional modular quarings : {ri} and {xi) are 

as in &on 5 but {q} is the hashed value of (xf mod n }, the definition of the yi remains unchanged (use 
the new (q) I) and the signature {(q),{yi)} is checked by comparing {q) to 

f({4m+y; n k modn)) 
e. , = I  J 

Note that : 

2lC 

t 0+4 
2 

I 

1.J 

a- 
a- 

a- 

in many pradcal cases is much more powerful than the prover) is described in section 9. 

The new scheme is in public domain (no patents) and CM be freely used and implemented. 
We assume that the verifier checks out trivial weak instances (eg. x= f2 and p 0 in protocol 2 etc.). 

A simple and practical technique for delegating the computation of - mod n to the verifier (which 
m 
r 

5. Protocol #2 (Identification and Security Proof) 

Repeat t times : 

0 
a 

1 
The p m r  picks a random r, computes x = r + - mod n and sends this value to the verifier. 

The verifier replies with a random binary string e, of length c. 

T h e p m r  computesand sends y = n u. r - -  mod n. 

r 

c , = l  ' ( 3 
1 

2 2  @ Andtheverifierchecksif:x -y  n k i = 4  modn. 
e. = 1 

I 

The security of the identification scheme can be proved by transforming any algorithm breaking the protocol 
into a scheme for extracting roots modulo n (For simplicity, we consider the case e-1 since extension to 
bigger challenges is straightfowd) : 

Breaking the algorithm means being able to commit in advance a number x (no matter what its internal 
structure is) such that whatever c will be, both y and y (such that x2 -y2 = 4 mod n and 

x2  - y k = 4 mod n) are efficiently computable. 
I 2 2 
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Y 
Subtracting the two equations, we get y 'k = y2  mod n which yields I & mod n. 

Y1 
1 2  

6. Protocol #3 (Interactive Signature) 

0 
m 

x. = r. + - mod n for i=l. .... t and sends XI, ..., xt to the receiver. 
I i r  

i 

The signer picks t > I random N-z bit numbers hi  ...., ht, computes r. = ZN - f (h . )  + h. and 
1 1  

a 
@ 

@ 
is detected at this point, the signer is rejected and the protocol is aborted. 

a 

The receiver replies with a randomly chosen index 1 s j S t. 

The signer reveals all the hi except hj. 

The receiver checks that all the xi (except xj) are coherent with the above definition and if a fala Xi 

The receiver picks a random binary string e, of length c, and sends it to the signer. 

2 2  The receiver checks that x .  - y ,  
J J e . = 1  1 

@ I'l k, 5 4 m  modn and if this test holds, he accepts the 

interactive signature {x,, yj, e} of the message m. 
I 

7. Security 

If the sender uses the Pollard-Schnorr attack his chances to remain undetected by the receiver are -. 

Therefore, the receiver can convince himself, with any desired probability, that the sender a c h d y  used a 
redundant random to generate xj and yj. 

In case of dispute (the signer pretends that {x,, yj, e) is a forgery). a judge (knowing the prime factors of n) 

can solve X -X x . + mn 0 mod n and check that one of the solutions X presents the redundancy of step 0 

(That is, 3 h such that X -Xx . + m a 0  mod n where X = Z N  - f (h) + h ). 
J 

If yes, the signer is cheating and if not, the receiver used the Pollard-Schaorr method and is falsely accusing 
the signer. 

Note that due to the interactive M~IE of the protocol an attacker is prevented from using pre-processing. The 
practical significance of this observation is a signifcant reduction in the size of the key (parameter c). 

Also, it should be observed lhat although the receiver of the signature is convinced that the signature is valid, 
he cannot transmit this conviction to anybody else (except thc judge). 

I 

t 2c 

2 
J 

2 
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8. Other Possible Research Directions 

3 3 2 3  Except the extension of our scheme to higher degrees (for instance x +k y + k z -3 k xyz = m mod n 
3 3 with keys {rgw} such that u = b  mod n, w =1 mod n and l+w+w2 = O  mod n as suggested by On& 

Scbnorr and Sblmir in IS]), other mono-key OSS-like variants are now being investigated. 

These are based on a solution (for x and r) of the equation : 

When g is a public function. 

Such a scheme should work as follows : 

g ( m  x) 0 

0 Then,hecomputesy=u [ r-- '(: "'1 mod n and sends the signature { x, y} lo the receiver. 

 he signer so~vcs the equation r + - = x mod n for {x, r). 

a The signature is checked by comparing that x2 - ky2 = 4g(m,x) mod n. 

Although still incomplete, we demonstrate this idea with the concrete example g(m, x) = m @ x (where "8" 
stands for a bitwise xor) and argument why we believe that efficient algorithms for solving 

r+-=x modnmayexist. 
mex 

r 

N - 1  i N - 1  i 
Denoting : x = I: 2 x. and m = Z 2 m, , a simple Wick for getting rid of the "W in the sub 

X. @ m. = x . ( l - 2 m . ) + m i .  
I l l  

Replacing this into (2), we get : r + 
i = O  

1 N - 1  i 
or (with R = - r mod n) : r +  Z 2 ( x i ( R - 2 R m , - I ) + R m . ) = O  modn 

i = O  

N - 1  
and finally : Z ~ ~ 2 ~ ( 2 R m . - R + I ) = r + R m  m o d n  (3) 

i = O  

i Defining a.  = 2 (2 R m. - R + 1) and b = r + R m, equation (3) clearly appears as a knapsack problem : 
I I 

N - 1  
Findi i=(xo ,x l  ,..., x suchthat Z x . a ,  = b  modn 

N - l  i = o  1 1 
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for which efficient algorithms may exist (under certain assumptio ns...) for small N (condition that can be 
softened by leaving some liberty to m). 

The idea is that the forger should be unable to "mix" the number-theoretic operations of the Pollard-Scbnorr 
algorithm with the knapsack solution but this is not a sufficient argument for proving d t y  and a couple Of 
open questions still persists : 

I .  Can the linearity in theproposed cuunpk be used by a forger in order to attack the system effmkMb' 7 

2. Give a chcvodrrircaion of the fundons g such thai repairing OSS by solving c + - = x mod n 

is secure and srill compntabk effiienttj. 

g ( m , x )  

r 

9. Delegating the Extended Euclidean Algorithm 

In many cases, the verifier (for instance, a smartcard reader. a terminal or a PC) i s  much more powerful than 
h e  prover (typically a smartcard) and therefore it seems attractive to delegate the computation of the term 

I = -  modn totheverifier: 
m 
r 

0 
a 
a 
Practically, this protocol presents the second advantage of not forcing the signer to keep in memory the whole 
message m : The signer can secretli and randomly sclca a group of 10 bytes in m and check in step a that 
these 10 bytes actually match with those of I r mod n . 

The signer picks a random d, computes and sends s = r d mod n. 
m 

The powerful verifier computes v = - mod n and sends v to the signer 
S 

ThesignerretricvesC=vd modnandchecksthat Ir I m modn. 

Note that : 

The size of d can be reduced to accelerate the multiplications. 
t 

For t>1, tbe computation of the inverse of .n ri allows to retrieve all the mlr i  by inter- 
I = 1  

multiplications. 

Lf r is a (sufficiently big) prime, a second (theoretically) interening delegation protocol is : 

0 The signer picks a big random prime d, computes and sends s = r d 
m 0 The verifier wmputes v = - mod n and sends v to the signer. 

a Thes igner re t r ieva l=vd modnandchccks tha t I r=m modn. 

modulo !). 

S 

10. Implementation 

GcmcnOSS is one of the public key implementations realised by GEMPLUS CARD INTERNATIONAL. 
The whole family includes Guillou-Quiquatcr signature and identification protocols implemented within 
the MIMOSA smarter& a one-time identification scheme with low memory consumption based on the 
authentication tree concept. a superfast version of the DSS 19). trading the modular inverse computation 
against one modular multiplication and the transmission of a few bytes, and an RSA prototype due to be 
issued in the near future. 
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GemenOSS implements our identification scheme with tc = 20 and 1 n I = 512 bits. The verifier (a Compaq 
Deskpro 41661) and the prover (68HCO5 clocked at 4 MHz) communicate via a 115,200 baud interface and 
calculations are done in parallel whenever possible. 

Big numbers are manipulated in a redundant (proprietary) format wherein the number of %-bit by 8-bit 
/ . \  

multiplications in each big modular multiplication grows as log (a+n)' J but transmission is 
n-3.02 & 

polynomial in parameter a. 

The protolypc is expected to complete an identification session in about 1.7 seconds when operating at the 
best a communication / multiplication trade-off point. 

11. Conclusion 

We demonstrated a family of protocols that allow to reuse quadratic equations modulo n for digital signatures. 

The cod of "repairing" the OSS is very acceptable and can be e x p d  differently (various trade-offs are 
possible) in t e r n  of key size, number of modular multiplications and transmission ovcrhcad. 
Due to progress made since the publication of the original OSS scheme, the author strongly encouragM the 
cryptographic community to attack the proposed protocols (#I, #2 and #3) and try to degrade the basic 

security probabilities (respeclively : 2-tc, 2-tc and ZC I t )  obtained by a brutal application of 121 and 131. 
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