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Abstract. In this paper we define an optimal authentication systems as 
a system whose minimum probability of deception is k / M ,  k and M being 
the number of source states and cryptograms respectively, and satisfies 
information theoretic bounds on the value of impersonation and substi- 
tution games. We wil l  characterize order-1 perfect systems and C-perfect 
systems and prove their optimdity when E,  the number of encoding 
rules, satisfies certain bounds. We will show that both types of systems, 
in this case, also have best game theoretic performance. Thia will be used 
to prove that optimal systems exist only if E 2 M 2 / k 2  and for less value 
of E probability of deception is always greater than k / M .  We will prove 
that doubly perfect codes are optimal systems with minimum value of E 
and perfect systems are not optimal. Characterization of doubly perfect 
systems follows from characterization theorems mentioned earlier. We 
give constructions for each class. 

1 Introduction 

In this paper we will study authentication systems (A-systems) with optimum 
performance and characterize two classes of such systems. In an A-system the 
enemy has the option of playing impersonation game (I-game), substitution game 
(S-game) or combined game (C-game). Values of these games are PI,  Ps and 
Pc. Defining optimality for an A-system is not straight forward. It is important 
to note that minimizing value of the games does not ensure efficient use of 
redundancy added during coding process. For any A-system Pc is at least equal 
to probability of success in randomly selecting a cryptogram from cryptogram 
space. We define optimality of an A-system by requiring the system to satisfy an 
information theoretic bound on the value of I-game, a same kind of bound on the 
value of S-game and having Pc = k / M  where k is the number of source states and 
M is the number of cryptograms. For impersonation game the only information 
theoretic bound is due to Simmons [8]. Maasey [3] and Sgarro [2] gave shorter 
proofs of the bound and necessary and sufficient conditions for achieving the 
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bound with equality. For substitution game we have two such bound; Simmons- 
Brickell bound is derived in [l] and later extended by Stinson [ll] where he 
gives necessary conditions on A-systems that satisfy the bound with equality. 
The second bound for substitution is by Pei [5] (we give a sketch of the proof 
of this bound in appendix 7.3). Pei gives necessary and sufficient conditions 
for systems satisfying the bound with equality. We transform Pei’s conditions 
into equivalent ones which are similar to necessary and sufficient conditions of 
Simmons’ bound when substitution game is played, Hence the bound can be 
considered as the counterpart of Simmons’ bound for substitution. We define 
order-1 perfect systems as systems for which PI satisfies Simmons’ bound and 
Ps satisfies Pei’s bound. Similarly C-perfect A-systems are those for which PI 
and Ps satisfy Simmons’ bound and Stinson’s bound respectively. We will prove 
that for E 2 Eo = M(M - l)/(k(k - 1)) order-1 perfect systems are optimal 
and for M 2 / k 2  5 E 5 Eo, C-perfect systems are optimal. Moreover in each case 
the value of I-game, S-game and Cgame is minimal, that is, optimal systems 
have best game theoretic performance too. We give a complete characterization 
of the two classes and list properties of them. Next we define &doubly perfect 
systems as A-systems that are C-perfect and have minimum value of E for a given 
6, that is, E = 6M2/k2. For 6 = 1 we have doubly perfect system of Brickell 
which is in fact the optimal system with minimum possible E. This implies 
that for E < M2/k2 the value of the combined game is always greater than 
k / M .  Application of our characterization theorems, mentioned earlier, gives a 
Characterization of doubly perfect A-systems, not known before. We also examine 
properties of perfect A-systems, as defined by Simmons, and show that they are 
not optimal as the value of substitution game does not satisfy any information 
theoretic bound. Finally we give some construction for each clasa and present 
some concluding remarks. 

2 Preliminaries 

We consider an authentication system in which a transmitter wants to send the 
states of a source to a distant receiver over a public channel. An encoding rule 
is a mapping from the set S, IS1 = k, of source states into the set M,  IMI = M, 
of codewords (cryptogram). An authentication code (A-code) is a collection & of 
mappings (encoding rules), indexed by key information, such that each mapping 
specifies one (or a number of) cryptogram for every s E S. We assume the code 
is without splitting, that is, a source state and a key uniquely determines a 
cryptogram. We use s (e ,  m) to denote the source state which is mapped into m 
by key e and P,(e ,  m) to denote its probability. We define the incidence rnatrizof 
an A-code to be a zero-one matrix A, the rows of which correspond to encoding 
rules and columns to cryptogram, and 

1 m is authentic under key ei  
0 otherwise. aem = 

Let E(m) denotes the subset of keys that are incident with m E M and M ( e )  
the subset of cryptograms incident with the key e E C. The communicants se- 
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cretly choose the encoding rule e.  Enemy can use an impersonation attack in 
which he/she attempts to find an m E M ( e )  or a substitution atfack in which 
he/she intercepts a cryptogram m E M and wants to substitute it with another 
cryptogram m’ E M ,  where M ,  = M \ m. We also refer to these attacks as 
order zero and one attack respectively. Let E(m, m’) = {e : e E E(m) n E(m‘)). 
Simmons showed that A-systems can be modeled using game theory [7, 91. En- 
emy has the choice of playing impersonation game (I-game), substitution game 
(S-game) or combined game (C-game) whose game matrix is the concatenation of 
the game matrices of I-game and %game [9]. Let PI,Ps and Pc denote the value 
of the game in each case. Communicant’s strategy is always a probability distri- 
bution I = ( X I ,  ~ 2 ’  ..., X E )  on the encoding rules but enemy’s strategy depends 
on the kind of game that he/she plays. In general we have Pc 2 maz(P1, Ps) 
but if the best strategy of the communicants’ is the same for I-game and S-game 
( which implies the same best strategy for Ggame) then Pc = maz(PI,Ps) 
and enemy’s best strategy reduces to his/her best impersonation or substitu- 
tion strategy. Game matrix of I-game is the incidence matrix of the A-code. For 
S-game payoff of replacing m by m’ is, 

E 

where P,(ei, m) is the probability of s(e,, m) and, 

An authentication system provides perfect protection for impersonation if en- 
emy’s best strategy is random selection from M. Probability of success in this. 
case is equal to k / M .  An A-code provides perfect protection for substitution if 
for all m E M enemy’s best strategy, when m is intercepted, is random se- 
lection from Mm. His/her probability of success is equal to (k - l)/(M - 1). 
Stinson gave the characterization of A-systems that provide perfect protection 
for impersonation and the ones that provide perfect protection for substitution 
(Theorems 2.1 and 2.4 in [13]). Perfect protection for impersonation depends 
only on the incidence matrix of the A-code and is independent of the source. 
However perfect protection for substitution depends on the incidence matrix of 
the code and the probability distribution of the source. 

3 Bounds on Probability of Deception 

3.1 Simmons-Pei bound 

The first (and the only) information theoretic bound on PI is due to Simmons 
PI. 
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Theorem 1. For an A-code without splitting, 

Equality holds if and only if, 

1. the A-code provides perfect protection for impersonation; 
2. P,(ei,m) is independeni of ei and P,(ei,m) = P,(m), that is, all the source 

Hence to obtain equality in (l), one must use an A-code whose incidence matrix 
accords with theorem 2.1 of [13] with asource whose first order statistics matches 
(in the sense of condition 2) the A-code. Pei’s bound for substitution is the 
counterpart of Simmons bound for impersonation attack. We give the sketch of 
the proof of this bound, first presented in Asiacrypt ’91, in appendix 7.3. 

siates that map t o  a cryptogram m hove the same probability. 

Theorem2 Pei, [5]. 

and equality holds if and only if 

is independent of m,m‘,e, for all m,m’ E M(e). 

In proposition 5 we show that condition (3) can be transformed into two con- 
ditions similar to theorem 1. We need the following generalization of perfect 
protection for substitution. Let C, denotes the set of the cryptograms rn’ that, 
when substituted for m, have non-zero probability of success, i.e., C, = {m’ E 

Definition3. An A-code provides near-perfect protection for substitution if the 
enemy’s best strategy, when a cryptogram m is received, is random selection from 

Near-perfect protection is weaker than perfect protection as enemy’s strategy is 
random selection from Cm for which Nm = lCml 5 M - 1 = IMml. Although 
probability of success depends on the intercepted cryptogram it is easy to see 
that for an A-code with near-perfect protection for substitution, for all m E M ,  

M : E(m, m‘) # 0) and ICml= Nm.  

Cm 

we have 
k - 1  
Nm 

Vs(m) = -. 
Corollary 4. An A-code provides perfeci protection for substitution if and only 
if it provides near-perfect protection for substitution and Nm = M - 1. 

Near-perfect protection can be defined for higher order attacks but for im- 
personation it reduces to perfect protection if we assume that every cryptogram 
is authentic under at least one key. An A-code provides uniform near-perfect 
protection if it provides a near-perfect protection and Nm does not depend from 
the actual intercepted cryptogram,i.e, N m  = NI 
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Proposition5. The necessary and suficient conditions fo r  equality in (2) are 
1. the A-code provides unajonn near-perfect protection fo r  substitution; 
2. P,(m’lei, m) is independent of ei for all m, m‘ E M with E(m, m’) # 8 .  

Proof: See appendix 7.1. 

Proposition 5 shows that an authentication system that satisfies bound (2) 
will provide near-perfect protection for substitution. Equality in (2) requires an 
A-code with uniform near-perfect protection for substitution together with a 
source whose second order statistics satisfy condition 2 of proposition 5.  

Definition& An authentication system is called 0-perfect if it satisfies Sim- 
mons’ bound and 1-perfect if it satisfies Pei’s bound. 
Corollary 7 is an immediate result of proposition 5 and theorem 1. 
Corollary7. A n  authentication system is i-perfect (i = 0 , l )  i f  and only i f  it 
provides uniform near-perfect protection for  order i attack and source statistics 
of order i + 1 i s  ’matched’ fo the A-code. 

3.2 Simmons-Brickell-Stinson Bound 
Simmons and Brickell derived the following bound on Ps: 
Theorem 8 Simmons-Brickell, [l]. 

ps > 2 - W I W .  - 
If equality holds then 

,where m E M and ei  E G such that ei E E(m); riPa(eil m) 
P(m) 

1. Vs(m) = 
2. PS = Vs(m), m E M; 
Y. IE(m,m’) l s  1, and m E M ,  m’ E M m .  

Stinson gave a more general form of this bound, 
ps > &2-H(E;M)  - 

(4) 

( 5 )  
where 6 is equal to, 

and proved the following. 

Theorem 9 Stinson [ll], Theorem 2.8. In  an A-system without splitting that 
satisfies bound (5) with equality we have: 

1. IE(m)l= kE/M, 
2. IE(m,m’)l = 0 o r  A,  
Y. 6 ( e i ,  m, m‘) = 6 = A for all ei E E(m, m’), 
4. Ps = 6M/(kE). 

Simmons-Bridtell bound is a special case of Stinson’s bound when 6 = 1 and 
hence equality in Simmons-Brickell’s bound implies PS = M / ( k E ) .  
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4 Optimal A-Systems 

As noted in previous section i-perfect A-systems satisfy the information t h e  
retic bound and provide uniform near-perfect protection and so can be considered 
optimal when only one type (impersonation or substitution) of attack is consid- 
ered. In this section we will consider both types of attacks. For an A-system 
Pc 2 PI 2 k / M .  

Definitionlo. An A-system is optimal if it has Pc = k / M ,  satisfies Simmons’ 
bound for PI and an information theoretic bound (2) or (5) on Ps. 

We define order-1 perfect A-systems and &perfect systems and show that 
they are optimal. We prove that they also achieve minimum value of the I-game, 
Sgame and C-game. Our major results are complete characterization of both 
types of system ( theorems 14, 18). Simmons’ definition of perfect A-systems 
and Brickell’s definition of doubly perfect systems are studied in this context. In 
particular we show that perfect A-systems are not optimal and doubly perfect 
systems are optimal with least possible E. 

Definitionll. An authentication system is called order-1 perfect if PI and Ps 
satisfy Simmons’ bound and Pei’s bound respectively and IE(rn, m’)l 2 X > 0 
for all m,m’ E M .  

Let the communicants use their optimum strategy for combined game. 

Proposition 12. For an order-1 perfect A-system we have, 

E 2 A&. 

Hence such systems can etist if E 3 Eo. 

Proof: Follows from counting pairs of cryptograms and using the minimum value 
o f A = l . O  

Note that for order-1 perfect systems, in general, we do not have PI = Ps. 
Enemy’s best strategy for I-game and S-game are random strategies and the best 
C-game strategy is the same as the best I-game strategy. Proposition 13 shows 
that for order-1 perfect A-systems source must be uniform. It also specifies other 
properties of such systems. 

Proposition 13. If an A-system is order-! perfect the followings hold, 

best enemy’s stmtegy in impersonation or substitution i s  random strntegy 
and ihe overall best strategy i s  the same as the 
E 

j = 1  

probability of a cryptogram m occurring in the 
1 / M ) h  

best impersonation simiegy; 

channel is uniform (P(rn) = 
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4 .  source is uniform; 
5. P , ( m ’ l m , e j )  = P,(m’lm) for all m, m’ E M and ej IE E(m, m’). 

Proof: Let the A-system be order-1 perfect. Then property 1 follows from the 
definition of order-1 perfect systems and theorems 1 and 2. Enemy’s overall 
optimal strategy is random selection from M (impersonation) as PI = k / M  > 
( h  - 1)/(M - 1) = Ps and PI and Ps are achievable for the same communicants’ 
strategy. Property 3 follows from Theorem 3.2 of [14] where it was proved that 
perfect protection for impersonation and substitution implies P(m) = 1/M. Also 
property 2 follows from the same theorem when the source is uniform. To prove 
property 4 we note that, 

E 
~ ( m )  = C kjajmPs(ej,m), 

j = 1  

but equality in (1) implies P, (e j ,  m) = P,(m) and we have, 

where the last equality holds because A-system provides perfect protection for 
impersonation. Using P(m) = 1/M with (6) we have P,(m) = l/k. Finally 
property ( 5 )  is true because the A-system satisfies Pei bound (2). 
0 

Communicants’ optimal strategy can be obtained by solving a system of 
linear equations [S] which depends on the incidence matrix of the A-code and 
is independent of the source. Conditions (2) to (5) of the proposition 13 are 
sufficient for an A-system to be order-1 perfect. Theorem 14 characterizes such 
systems. 

Theorem14. An order-1 perfect A-system satisfies conditions 1 to  5 of pmpo- 
sition 13. Monover  conditions 2 to 5, or equivalently, I (or 2), 4 and 5 are 
suficient condiiions. 

Proof: See appendix 7.2. 
Proposition 13 and theorem 14 show that A-systems that are order-1 perfect 

are obtained from A-codes whose incidence matrices satisfy certain conditions 
together with a ’matched’ source. 

Corollary 15. An onier-1 perfect A - s p t e m  achieves minimum values for I- 
game, S-game and C-game and hence has the best game theoretic performance, 
that is, 

1. Pc = k / M ;  
2. PI = k/M; 
9. Ps = (h - l) /(M - 1). 

Monover  we have 
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- enemy’s best combined strategy is the same as his/her best strategy for im- 
personation and is actually o mndom selection fmm M; 

- enemy’s best substitution slrntegy is rnndom selection fmm all the remaining 
crypiogmms; 

- communicants best strategy can be calculated by solving a set of linear equa- 
tions whose coeficients a n  derived from the incidence matrix of the A-code. 

Using proposition 12 we conclude that order-1 perfect systems are optimal 
if E 2 Eo. An A-system that satisfies Simmons’ bound for impersonation has 
PI = k/M and it is shown in [14] if E < EO then 

&perfect A-systems, defined below, are optimal when M 2 / k 2  5 E 5 Eo. 
Definition16. An A-system is &perfect if it satisfies Simmons bound for PI 
and 
ps = &-H(EIW. 

Proposition 17. A &perfect A-system satisfies the following, 

1. IE(m)I = eonst = k E / M ;  
2. IE(m, m’)l= 6 = X o r  0; 
3. Pl(ej ,m) = P,(m); 

Proof: Properties one and two follows from theorem 9 and property 3 follows 
from theorem 1. 0 

Theorem 18. C-perfect A-systems a n  optimal if Eo 2 E 2 M2/k2. In this case 
communicants best strategy for combined game is  uniform distribution on the 
key space. Moreover, this cohdition together with 1, 2 and 3 of proposition 17 
a n  suficient for an A-system to be C-perfect. 

Proof: The system satisfies Simmons’ bound and hence PI = k / M .  It satisfies 
Stinson’s bound and so Ps = S M / ( k E ) .  If E 2 M2/k2 we have Ps 5 PI and 
Pc = PI = k/M and the system is optimal. Communicants’ best strategy for 
combined game will be uniform distribution on the key space. 

To prove sufficiency, we note that if condition 1 of proposition 17 holds then 
communicants uniform strategy provides perfect protection for impersonation. 
Using the uniform strategy for substitution and taking into account conditions 
1,2  and 3 of proposition 17 we show that payoff(m, m’) = 0 or L M / ( k E ) .  This 
is true because, 

E Cj=l rjajmajmtpa(ej I m) 

xf=l rjajrnP,(ej , m) 
Cj ajmajm’ - M Cj ajmajmj 

k E  
- - p a w f f ( m ,  m’) = - 

Cj a j m  

So Vs(m) = C M / ( k E )  and Ps = C M / ( k E ) ,  which means that uniform strategy 
is the best communicants’ substitution strategy. Using the same conditions it is 
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Corollary 19. A &perfect A-system achieves minimum possible value for Ps 
and satisfies 

1. Pc = PI = k / M ;  
2. Ps = SM/(kE).  

Moreover enemy and communicants’ best simiegies are given by 

- enemy’s best combined stmiegy is random selection from M; 
- enemy’s best impersonation btmiegy i s  mndom selection fmm M and his/her 

best substituiion sinaiegy is  random selection from keys that are incident with 
ihe received cryptogmm and ihen mndomly selecting a cryptogram which is 
authentic under ihe chosen key; 

- communicants best strategy is uniform disiribuiion on E .  

Definition20. An optimal &perfect A-system with minimum number of en- 
coding rule is called &doubly perfect system. 

Proposition21. For a &doubly perfect system Ps = PI = Pc. 

Proof: We have E = 6M2/k2 and PI = k/M = CM/(kE) = Ps. 0 

4.1 Doubly Perfect A-systems 

A doubly perfeci A-system, as defined by Brickell [l], is a perfect A-system that 
satisfies 

Doubly perfect A-systems are special case of C-doubly perfect A-systems when 
6 = 1. This is true because for perfect A-systems Pc = PI and hence we have 
PI = Ps = P c .  Doubly perfect A-codes have all properties mentioned in corol- 

pc = 2 - ~ ( 4 W *  

lary 19. 

4.2 Perfect A-systems 

Simmons defined a perfect A-system as an A-system that satisfies the following 
bound: 

pc = 2 - I ( M ; E ) .  

For an A-system using theorem 1, we have PI 3 2-’(‘;E). So for a perfect 
A-system 2-‘(”iE) = Pc > - PI >, 2 - r ( M ; E )  and hence PI = 2‘r(M;E) and the 
A-system is &perfect. Moreover PI = Pc 2 Ps. Hence enemy’s best combined 
strategy is random selection from M. However the enemy’s best chance of success 
in substitution is not known. Communicants’ optimal strategy for C-game can 
be obtained by solving a system of linear equations [S]. We note that for perfect 
A-systems we have Pc = PI = k /M and PS < PI. 
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Corollary22. Perfect A-systems an not optimal as Ps does not satisfy any 
bound. 

Corollary 23. Optimal A-systems ezist only if E 2 M 2 / k 2 .  

Proof: For optimal A-systems Pc = PI = k / M .  In this case Ps is lower bounded 
as in (7). If E < M 2 / k 2  then E < EO and the best achievable value of Ps is 
M / ( k E )  but in this case M / ( k E )  > k / M  and hence Pc > k / M .  0 

Corollary24. For a given El M ,  k we have, 

We summarize these results in the following corollary. 

1. If E < M 2 / k 2  ihen PC > k / M .  
2. I f  E = M 2 / k a  then doubly perfect A-systems are optimal and have Pc = 
Ps =PI = k / M  = M / ( k E ) .  

3. I f  M 2 / k 2  < E < Eo then C-perfect A-systems are optimal. We have Pc = 
PI = k / M  > Ps = XM/(kE) .  

4. If E 2 Eo then order-1 perfect A-systems are optimal and we have Pc  = 
PI > Ps = ( k  - 1)/M - 1. 

This corollary can be restated for A-systems for which E(m,m') 5 X when 
E(m, m') # 0. 
Corollary25. For a given E ,  M, E X  we have, 

1. If E = XM2/ka then 6-doubly perfect A-systems are opiimal and Pc = Ps = 

2. If XM2/k2 < E < AEo then &perfect A-systems a n  optimal and have Pc = 

3. If E 2 XEo then onier-1 perfeci A-sysiems are optimal. 

PI = k / M  = AM/(kE) .  

PI = k / M  > Ps = XM/(kE) .  

5 Construction of Optimal Codes 

In this section we will give some constructions for optimal A-systems. 

5.1 

Definition26. A(u,k,r,A)-PBIB is a pair ( M ,  E),where [MI = v is a set of 
elements called points and E is a set of blocks,where block is a k-element subset 
of M; such that each point occurs in exactly r-blocks, and each pair of points 
occurs in exactly X blocks or does not occur at all. 

Using proposition 17 we immediately get the following result. 

Proposition27. If there ezists a C-penfct system for a uniform source then 
there ezist a (u, k , r ,  X)-PBIB. Conversely if ihen ezisi a (u ,  k,  r, X)-PBIB then 
then ezist a 6-penfct A-system with k equiprobable source states, u = M cyp- 
tograms and E = ru/k kegs. 

&-doubly perfect A-systems and &-perfect systems 
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In order to  construct a &doubly perfect system we need another construction 
called transversal design. 

Definition28. A transversal design TD(k ,A ,n)  is a triple ( X , G , A ) ,  which 
satisfies the following properties 

1. X is a set of kn elements called points; 
2. G is a partition of X into k subsets of n points, called groups; 
3. A is a set of An2 subsets of X (called blocks) such that a group and a block 

4. every pair of points from distinct groups occurs in exactly A blocks. 

Using this combinatorial design we can construct a Cartesian C-doubly perfect 
A-system. 

Proposition29 [ll], theorem 3.5. ff t h e n  i s  o T D ( k ,  X,n) then t h e n  is 0 

6-doubly perfect Cartesian A-system with M = kn crypiograms, k-source states, 
E = An2 keys for which Ps = PI = l /n .  Conversely i f  there ezisf a C-doubly 
perfect Cartesian A-system with no splitting then ihere ezisi o transversal design 
TD(k ,  6, n = M / k ) .  

contain at most one common point; 

5.2 Order-1 perfect authentication codes 

We can construct order-1 perfect authentication codes using a well known com- 
binatorid construction called balance incomplete block design-BIBD. 

Definition30. A ( u ,  k, r, A)-BIBD is a collection of k-subsets, called blocks, of 
a u-set, called points, such that each such that each point occurs in exactly 
r-blocks, and each pair of points occurs in exactly X blocks. 

Proposition31. If there ezists a ( u ,  C ,  r, A)-BZBD then then  ezists on order- 
1 perfect A-system wtih k-equtproboble source siaies,u = M cryptograms and 
E = vr/k keys. 

For a fixed parameters M, k, E, X this order-1 perfect system has minimum POS- 

sible number of keys. 

6 Concluding Remarks 

We have defined optimal performance of an A-system using information theory 
and game theory measures and have characterized them when E is within dif- 
ferent ranges. In particular we have proved that these systems can only exist for 
E 2 M 2 / k 2  and for less number of encoding rules the chance of enemy’s success 
is always greater than k / M .  We noted that perfect A-systems of Simmons are 
not optimal but doubly perfect systems of Bridcell are optimal with least num- 
ber of encoding rules. We have given some construction for each case. Further 
research is needed to  construct larger classes of optimal systems. 
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7 Appendix 

7.1 A 

Proof of proposition 5: Necessity: We show that the above conditions could be 
derived from (3). To obtain first condition we have 

and 

Hence payof f (m,  m’), given in (9), is independent of m and m’ and the A-code 
provides uniform near-perfect protection for substitution, i.e., 

= 0, E(m,  m’) = 0. 

To get second condition we have 

where P,(m’lm, ej) is the conditional source probability Ps(s(ej, m’)ls(ej, m)). 
That  is, the source states that are mapped into a cryptogram m‘, when m is 
received, are equiprobable. 

Sufficiency: We show that conditions 1 and 2 result in equality in (2). Using 
condition 1 we have 
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Multiplying numerator and denominator by Pa(e,, m’lm) and using condition 2 
we have 

0 

7.2 B 

Proof of theorem 14: 

Sufficiency: using conditions 2 and 4 we have, 
Necessity has been already given in the proof of proposition 13. 

. So the code provides perfect protection for impersonation and PI = k / M .  More- 
over 

2-’(EtM) = 2 H ( S ) - H ( M )  = k / M ,  

and so PI = 2-’(EpM) and the code is 0-perfect. 
To show that the code is 1-perfect we note that, 

where the last equality follows from condition 5.  Using condition 4 we have 

which results in 
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We make the following substitutions in (lo), 

which gives, 

and hence using theorem 2 the A-system is 1-perfect. 0 

7.3 c 
Pei proved the following bound on probability of the enemy’s success for spoofing 
attack of order r .  

pr > - 2H(EIM‘+1)-Jf(ElM’) 

The following is a proof for r = 1 which can be generalized for spoofing of order 
r .  We need the following propositions. 

Proposition32. Suppose that P and Q are probabilify veciors of the same di- 
mension wifh non zero coordinates. So pi > 0 and qi > 0 (1 < i < n), and 

n n 

i= l  i = l  

Then 
n 

Moreover equalify holds if and only if pi = qi 

Proposition33. Suppose that IE(m’,rn)\ > 0 then, 

Moreover equality holds if and only i f  

for any e j  E E(m,m’)  
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Proof. 
Let 

for any ej E E(m,m’) and use proposition 32. 0 

Proposition 34. 

and equality holds if and only if 

for any e; E E(m,m‘). In the case of equality PS = C 

ProoJ From proposition 33 we have 

C e, E E( n, m l )  p(e*lm) log payoff(m, m’) 2 2 . 

Averaging over all m and m’ we have the desired result. 0 

Theorem 35. 

Now we can prove the main theorem. 

ps > 2H(ElW-ff(EIM) - 
And equality holds i f  and only if the following conditions is  satisfied: for any 
m, m’ E M and e J  E E(m, m’) 
P(ej Im)/p(ej Im, m’) = const = C. In the case of equality Ps = C 
Proof. 
Using proposition 34 and Jensen’s inequality we have 

m,m’ 

which completes the proof. 
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