
Inter active Hashing
Simplifies Zero-Knowledge Protocol

Mail Ostrovsky* Raniuathnam Venkatesant

(Extended abstract)

Abstract

Design

Moti Yung'

Often the core dificulty in designing zero-knowledge protocols arises from having
to consider every possible cheating verifier trying to extract additional information.
We here consider a compiler which transforms protocols proven secure only with r e
spect to the honest verifier into protocols which are secure against any (even cheating)
verifier. Such a compiler, which preserves the zero-knowledge property of a statisti-
cally or computationally secure protocol was first proposed in [BMO] based on Discrte
Logarithm problem. In this paper, we show how such a compiler could be constructed
based on any one-way permutation using our recent method of intemctiw hashing
(OVY-90, NOVY]. This applies to both statistically and computationally secure pro-
tocols, preserving their respective security. Our result allows us to utilize DES-like
permutations for such a compiler.

1 Introduction

An interactive proof involves two communicating parties, a prover and a verifier. The prover
is computationally unbounded; alternatively, in applications, it is a polynomial-time machine
possessing additional private knowledge. I t tries to convince the probabilistic polynomial
time verifier that a given theorem is true.

A zero-knowledge (ZK) proof is an interactive proof with an additional privacy constraint:
the verifier does not learn why the theorem is true [GMR]. That is, whatever the polynomial-
time verifier sees in a ZK-proof with the unbounded prover of a true theorem 5, can be
approximated by a probabilistic polynomial-time machine working solely on input 5. A
statistical zero-knowledge proof (SZK proof) is one for which this true view and approximate
view are (information-theoretically) indistinguishable.

protocols by assuming a canonical behavior of the verifier, and theu translate such protocols
to those where cheating is allowed. The mechanism proposed there, as well as the one in
(GKa, NY] (for computational zero-knowledge proofs only) uses specific algebraic assump-
tions to achieve it.

The task of finding the necessary and sufficient complexity conditions needed for various
primitives has attracted a lot of work, showing that many primitives, originally based on
specific algebraic functions, need only one-way functions or permutations. For example,
pseudo-random generators [BM-841, secure signature schemes [GoMiRi], computational ZK-

A methodology suggested in [BMO] is to design statistical or computational zero-knowledge

University of California a1 BerkeleyComputer Science Division, and International Compukr Science
Institute at Berkeley. Email: rafailObrlody , berkeloy . edu. Supported by NSF postdoctoral fellowship
and ICSI. Part of this work was done at Bellcore and part at 1BM T.J. Watson Research Center.

t Bellcore, Room 2M-344,445 South St, Morristown, NJ 07960. Ernail: vonlie0bdlcore.cor. * IBM Research. T.J. Watson Research Center, Yorktown Heights, NY 10598. E-mail:
noti0aatron.ibm.com.

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 267-273, 1994.
0 Springer-Verlag Berlin Heidelberg 1994

268

proofs [GMR] were shown to be equivalent to the existence of general one-way functions
[ILL, Ha-90, NY, Ro, OW]. Such efforts, not only develop the theoretical foundations of
cryptography, but also enable the primitive implementations to be based'on a larger possible
concrete choices of underlying functions, thus making them more plausible.

The recent method of interactive hashing [OVY-gO, NOVY] has been applied to various
cryptographic primitives, to information theoretically secure Oblivious Transfer protocols
[OVY-SO], and then to zero-knowledge arguments [NOVY] (as well as to commitments by/
to powerful non-polynomial parties [OVY-92]). Here we show an extended use of this method
with zero-knowledge protocols to provide a ZK-protocol design tool along the line of [BMO],
but based on the existence of any one-way permutation. In particular, assuming that one-
way permutations exist, we show that if a language L has a honest-verifier statistical zero-
knowledge proof, then L has a (general) statistical zero-knowledge proof. We remark that
our method applies to computational zero-knowledge as well. Previously, specific algebraic
assumptions were needed in order to implement such tools [BMO, GKa, NY].

1.1 Organization of the paper

In section 2, we give the model and definitions. In Section 3, we present the main result
on compiling protocols zero-knowledge against a honest verifier to general zero-knowledge
protocols, and we show some implications. Section 4 outlines the compiler and its proof.

2 Definitions
We use standard notions of Turing machines (TM) and probabilistic polynomial time TM's
(PPT), and interactive Turing machines [GMR]. We adopt the standard definition of com-
putational and statistical indistinguishability (see, for example, [ILL, GMR]). Let us recall
definitions of interactive proofs and zero-knowledge proofs, introduced and formalized in
[GMR].

We assume that prover P is a probabilistic, infinite power, interactive TM and verifier V
is a probabilistic, poly-time interactive TM [GMR]. We consider interactions between P and
V, where they share the same input and can communicate. We say P convinces V to accept
on z if P and V have common input 5, and after the interaction V accepts. Let view of V
be the transcript of the conversation between P and V which consists of all the messages
between P and V and the portion of the random tape used by V (i.e. random coin tosses of

P and V form an interactive protocol for language L with security parameter k (k is the
V) .

length of the input string), if the following two conditions are satisfied:

Completeness: For all 5 E L , P convinces V to accept with probability greater than
1 - &, where probability is taken over coin tosses of P and V.

z is less than f.
Soundness: For all P' and for all z # L probability that P' convinces V to accept on

If (= P S P ACE) is the class of languages which can be accepted satisfying completeness
and soundness conditions.

The zero-knowledge property:
For every PPT verifier V' let Mv, be the probabilistic poly-time TM. The goal of Mvl is
to simulate the view of V', i.e. the conversation between P and V' on z. As such, it must
produce a pair: <random tape used by V', conversation between P and V' >. We restrict

269

our simulators to be average-PPT TM. An interactive protocol is Statistical Zero-Knowledge
if for all V' there exists M p E PPT such that for all z E L, the distributions of the
conversation between P and V' on 5 and M v , (x) is statistically close. If the two distributions
are computationally indistinguishable, this corresponds to Computational Zero-Knowledge.

Zero-knowledge wi th respect to honest verifier:
Finally, we are ready to specify what does it mean to have a protocol which works for honest
verifier only. An interactive protocol is Statistical Zero-Knowledge for Honest Verifier if for
the honest V (i.e. the one specified in the description of P, V) there exists Mv E PPT such
that for all z E L, the distributions of the conversation between P and V on x and Mv(z)
are statistically close. Similar definition holds for Computational Zero-Knowledge Protocols
for Honest Verifier.

Let j be a length preserving function f : (0 , l) ' -i (0,l) ' computable in polynomial
time.

Definition 2.1 [One-way function.] f i s one-way if for every probabilistic polynomial time
algorithm A, for all polynomials p and all suficiently large n,

If addition, if f is a permutation on (0, l}", n > 0, then we say that f is a one-way
permutation. The above definition is of a strong one-way function. Its existence is equivalent
to the existence of the weak one-way function [YSZ]; a stronger equivalence is possible in
the case of permutations (see [GILVZ]). A weak one-way function has the same definition
as above, except the probability of successful inversion above is 1 - I /nc,c > 0.

3 Main Result

We show that if there is any one-way permutation, then "honest verifier zero knowledge" is
in fact just as strong as zero-knowledge.

Theorem 3.1 Suppose a one-way permutation exists. If a language L has a n honest verifier
statistical (respectively computational) zero knowledge protocol, then L has a statistical (respec-
tively computational) zero knowledge protocol.

We remark that our transformation is constructive and that error probabilities are pre-
served, as in [BMO], it also works for zero-knowledge proof of knowledge.

3.1 Implications
The theorem has a few implications 011 languages and their proof systems (beyond giving a
design tool). We discuss those briefly.

Black-box simulation:
Oren [Or] formalized the black box notion by saying that the simulator is a PPT oracle
machine M whicli when asked to simulate a particular verifier V is given that verifier as
an oracle. Thus the same simulator works for all verifiers. Using our method we show
that assuming any one-way permutation, black box simulation is not a restriction 011

zero-knowledge, i.e.: Suppose L has a (honest verifier) SZK (ZK) protocol and one-way
permutation exists. Then, L has a black box simulation SZK (ZK) protocol.

270

Error probability one-sidedness :
Goldreich, Mansour and Sipser [GMS] define a one-sided proof system to be one in
which completeness holds with probability 1 (that is the prover can always convince
the verifier). An implication of our protocol tool is: If L has a (honest verifier) SZK
proof system and one-way Permutation exists. Then, L has a SZK one-sided proof
system.

4 The Protocol Compiler and its Proof
Given a zero-knowledge for honest verifier proof system (P,v), we have to construct another
prover/verifier pair (P, V) such Ahat (P, V) is still an interactive proof system for L and for
any (possibly cheating) verifier V there exists a simulator 5'3. We specify the protocol below.
For completeness sake, first we recall what is interactive hashing, and show the interactive
hashingbased bit commitment protocol.

Remark: The bit commitment protocol parties are efficient, i.e. they need only perform
polynomial time computations to execute the protocol.

Commit to a bit a

1. The verifier V selects 1: ER {0,1}" at random and computes y t f (z) . V keeps both
1: and y secret from P.

2. The prover P selects h l , hz, . . . h,-] E (0, 1)" such that each h, is a random vector
over GF[2]
such that hl, h z , . . . h,-1 are linearly independent over GF[2]

3. For j from 1 to n - 1

P sends hj to V
V sends rJ t B(h,, y) to P (where B (u , u) is the bit resulting as the inner product
of u and v) .

4. At this point there are exactly two vectors yo,yl E (0, I}" such that for i E (0, I} ,
rj = B(y,, h,) for all 1 5 j 5 n - 1. yo is defined to be the lexicographically smaller of
the two vectors. Both P and V compute yo and yl. Let

d = { 0 i f y = y , .
1 1 f y = y1-.

5. V computes d and sends it to R (d is "encrypting" the commitment bit a and given
the inversion of one of yo, y1 and d , a is uniquely determined).

This committal reveals to P nothing about the committed bit (in the information-
theoretic sense). On the other hand, V cannot later decommit to a value other than the one
it committed without inverting a one-way permutation on a random challenge.

Next w e present the compiler.

Compiler Protocol

1. V picks a sequence a,, 1 5 i 5 2t of random bits, and commits to them using Interactive
Hashing. The commitment can be done in parallel for all bits.

27 1

2. P chooses a t random t-subset of { 1 , . . . , 2 t } and asks V to decommit bits a, for j in
the subset. Let a:, i 5 t be the subsequence of unopened bits.

3. P picks t bits b l , . . . , b, at random and sends them to V.

4. V lets ci = b; @I a: and C = C I C Z C ~ . . . c, be its secret random (tape) string.

5. P, V execute an old (P , v) protocol with V, running an v, but using C as its secret
coinflips. Moreover, for every message sent from V to P is accompanied by a sero-
knowledge argument that v would really have sent this message if its coinflips were
C. (Remark: Such a proof is possible [NOVY] and users are engaged in Interactive
Hashing based on one-way permutation as a subroutine).
More specifically, V begins by sending the message a1 that would have been the first
message v sent on coins C, and proves that indeed it has done this. The prover checks
this proof, and if it is incorrect it aborts. Otherwise it sends whatever response PI
the old prover 7 would have sent. This continues till the proof ends. (The available
strongly coniiiiitted bits, and the specification of the original protocols are the witness
to the proofs communicated).

4.1 Proof of correctness
We have to prove completeness, soundness and the zero-knowledge property.

Completeness: For all z in L, the prover can still convince the verifier, since the success
probability of the new P is essentially equivalent to the old one (by the simple fact that it
is following the protocol).

Soundness: Interactive hashing hides committed bits in the information-theoretic sense,
and thus the prover does not get any information about the random tape of the verifier
(other then what follows from the original protocol during the initialization stage). Since all
the subsequent rounds use zero-knowledge arguments in addition to the messages of the old
protocol, the soundness follows.
Zero-knowledge property: The simulator below proves this. We concentrate on statis-
tical zero-knowledge here. The computational case is similar.

First, our new simulator runs the old simulator for honest verifier in order to obtain a
pair (c, alP1 . . . a,,$,) consisting of coin tosses of the honest verifier c = E l & . . .& and the
transcript alP1. . . amprn of the conversation between the prover and the honest verifier. The
new simulator, will now transform (with very high probability) this old transcript for honest
verifier into one which is statistically close to the conversation between new prover/verifier
pair as follows:

(1) It runs V for step 1 to get its commitment of a , , . . . , az,, using interactive hashing.
(2) At this point, the simulator uses the backtracking capability to run the protocol twice in

order to learn what are the “unopened” bits. That is, it asks to reveal a random subset
of t bits. Then it puts the verifier into the state it was in before the subset of 1 bits
was requested to be revealed (but after the commitments) and now requests to open the
complementary set of bits.

(3) Having the a,, the simulator now picks b; = a, @ Ti for all i = 1,. . . , t as being the
prover’s response (modifying bits) of step 3, and has thus makes c be the secret random
string for the new V.

Recall that the simulator has in its possession the old conversation with coins fixed to c.

272

The zero-knowledge arguments executed at each round force cheating verifier to generate a
conversation which is statistically close to the one w e produced by using the honest verifier
(with additional ZK arguments). and gets what is supposed
to be vs first message i f it had c, together with a proof (i.e. a zero-knowledge argument
based on interactive hashing and assuming one-way permutations exist) that this is indeed
the case. It examines the proof and if it is found incorrect the simulator aborts as the prover
would have. But if not, then with very high probability, the message V sent is really the
message a1 that the simulator expected at this stage. And to this message it can respond:
it just has to send /I1. Continuing in this way the simulator soon has a transcript of the
entire conversation, which (retracing through the argument) is statistically close to the real
conversation. That is, the simulator generates exactly the correct conversation except i f

The new simulator runs

0 P manages to break the commitment scheme (i.e. invert a one-way permutation), or

0 if it is able to cheat the prover in a zero-knowledge argument (which as well implies it
can invert a one-way permutation, given the underlying construction).

Thus, we are done.

Conclusions: To summarize, we have presented a uniform way to compile honest-verifier
zero-knowledge protocols into general zero-knowledge ones. This gives a design method
which seems to be easier than considering all possible verifiers as a starting design point.
The proof has some implications to properties of languages and their proofs, and it further
demonstrates a wider applicability of the recent notion of interactive hashing.

References

[BM-841 M. Blun~, and S. Micali “How to Generate Cryptographically Strong Sequences Of
Pseudo-Random Bits” SIAM J . on Computing, Vol 13, 1984, pp. 850-864.

Knowledge” STOC 90.
[BMO] Bellare, M., S. Micali and R. Ostrovsky, “The (True) Complexity of Statistical Zero

[BCC] C. Brassard, D. Chaum and C. CrCpeau, Minimum Disclosure Proofs of Knowledge,
JCSS, v. 37, pp 156-189.

[BCY] Brassard, G., C. CrCpeau, and M. Yung, “Everything in NP can be Argued in Perfect
Zero Knowledge in a Bounded Number of Rounds,” ICALP 89. (also in Theoretical
Computer Science, special issue of ICALP 89).

[Dam] I. B. Damgaard, Collision Free Hash Functions and Public K e y Signature Schemes ,
Eurocrypt, 1987.

[GKa]

[GILVZ] 0. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman, Security

Goldreich, 0. and A. Kahn, personal communication.

Preserving Amplification of Hardttess, FOCS 90.

(CMS) Goldreich, O., Y. Mansour, and M. Sipser, “Interactive Proof Systems: Provers that
never Fail and Random Selection,” FOCS 87.

[GMWl] Goldreich, O., S. Micali, and A. Wigderson, “Proofs that Yield Nothing but their
Validity”, FOCS 86.

273

[GMR] Goldwasser, S., S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive
Proofs,” SIAM J. Cornput., 18(1), 186-208 (February 1989).

[GoMiRi] Goldwasser, S., S. Micali, and R. Rivest, “A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks,” SIAM J. Cornput., 17(2), 281-308 (April
1988).

[Ha-901 J. Hastad, “Pseudo-Random Generators under Uniform Assumptions” STOC 90

[ILL] I. Impagliazzo, L. Levio and M. Luby, Pseudo-random generation from one-way func-

[NOVY] M. Nmr, R. Ostrovsky, R. Venkatesan, and M. Yung. “Perfect Zero-Knowledge
Arguments for NP Can Be Based on General Complexity Assumptions”, Advances in
Cryptology - Crypt0 ’92, Lecture Notes in Computer Science, Springer, to appear.

tions, Proc. 21st Symposium on Theory of Computing, 1989, pp. 12-24.

[NY] Naor, M. and M. Yung, “Universal One-way Hash Functions and their Cryptographic
Applications,” STOC 89.

[Or] Oren Y., “On The Cunning Power of Cheating Verifiers: Some Observations About
Zero Knowledge Proofs”, FOCS 87.

[OVY-90] R. Ostrovsky, R. Venkatesan, and M. Yung. “Fair Games Against an All-Powerful
Adversary”, SEQUENCES ’91, Positano, June, 1991 (Proc. Springer Verlag), (also
presented a t Princeton Oct. 1990 Workshop on Complexity and Cryptography).

[OVY-921 R. Ostrovsky, R. Venkatesan, M. Yung, Secure Commitment Against A Powerful
Adversary, STACS 92, Springer Verlag LNCS Vol. 577, p. 439-448, 1992.

[OW] R. Ostrovsky, A. Wigderson One- Way Functions are Essential for Non-Triuial Zero-
Knowledge, The second Israel Symposium on Theory of Computing and Systems (ISTCS93)
1993.

[Ro] J. Rompel “One-way Functions are Necessary and Sufficient for Secure Signatures”
STOC 90.

[Y82] A. C. Yaq Theory and Applications of Trapdoor functions, Proceedings of the 23th
Symposium on the Foundation of Computer Science, 1982, pp 80-91.

	Inter active HashingSimplifies Zero-Knowledge Protocol Design
	Introduction
	Organization of the paper

	Definitions
	Main Result
	Implications

	The Protocol Compiler and its Proof
	Proof of correctness

	References

