
HOW TO FISD A N D AVOID COLLISIONS FOR

THE KNAPSACK HASH FUNCTION

Jacques PATARIN
Bull CP8, 68 route de Versailles - B.P.45 - 78430 Louveciennes - France

Abstract

Ivan Damgard [4] suggested at Crypto’89 concrete examples of hash functions
including, among others, a knapsack scheme. In [B], P. Camion and myself have
shown how to break this scheme with a number of computations in the region of 23’
and about 128 Gigabytes of memory. More precisely in [3] we showed how to find
an t such that h (z) = b, for a fixed and average b. (1).

But in order to show that h is not collision free, we have just to find z and p,
t # y such that h (r) = h(y) . (2). This is a weaker condition than (1).

We will see in this paper how to find (2) with a number in the region of 224 com-
putations and about 812 hlegabytes of memory. That is to say with about 256 times
less comptation and memory than 13). hforeover, ways to extend our algorithm to
other knapsacks than that (256. 128) suggested by Damgird are investigated.

Then we will see that for solving problems like (1) or (2) for various knapsacks it
is also possible to use less memory if we are allowed to use a little more computing
time. This is a iisefiill remark since the memory needed was the main problem of
the algorithms of [B].

Finally, at the end of this paper, we will briefly study some ideas on how to
avoid all these attacks by slightly modifying the knapsack Hash functions. However
some different attacks could appear. and it is not so easy to find a colision free Hash
function, hoth very quick and with very simple hlathematic expression.

The Proposed Knapsack
Let n l , . . . , a 8 be fixed integers of A binary digits, randomly selected. If T is a plaintext

of s binary symbols, T = 11 . . . I , , then h (z) = x x i u i will be the proposed hashed value.

In paragraph 1 and 2, values assigned are 256 for s and 120 for A, as suggested in [4].
Thus h(s) has at most 120+8=128 binary digits.

8

i= l

1 The general scheme of our modified algorithm
Our algorithm for finding I and such that h(s) = h (y) will he mainly a variation of
the algorithm described in 131 in order to find I such that h (z) = b, where b is a fixed
and average value. But our modified algorithm wil l he in O(?24) computations instead of
O(Z3’), and it will need about 512 Megabytes of memory instead of about 12s Gigabytes.
Nowadays it is quite common to have ,512 h4egabytes but still quite unusual to have 128
Gigabytes of Memory. So our modified algorithm will appear more practical. Our modi-
fied algorithm will proceed in 16 steps, plus a step 0 a t the beginning.

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT ’93, LNCS 765, pp. 305-317, 1994.
0 Springer-Verlag Berlin Heidelberg 1994

306

Step 0 : We choose integers m , m, , m2, m3, m, and b such that :

a) m = mlm2m3m4 >

b) The mi are pairwise coprime, and
a ml N 2', a m2 N 224, a m3 =i 224, e m4
(so

224.
,I. - - p + 2 4 + 2 4 + 2 4 = 280,

c) Let b be a fixed integer, b z 212', for example.
And Vi, 1 5 a 5 4, we define bi = b mod mi.

In order to have a general view of our algorithm. the diagram given below shows the
sequence of operations that will be carried out. Let us outline the meaning of the diagram
before going into detail. Each black point represents a step of the algorithm. The number
224 associated with the black point represents the evaluation of the number of partid
solution that will be found for this step. Each step will study binary sequences. The
length of those sequences is 32 for steps 1, 2, 3, 4, 5, 6, 7, 8. It is 64 for steps 9, 10, 11,
12. It is 128 for steps 13, 14. And then step 15 will produce about 2*' sequences of length
256 among which in step 16 we will find a collision with probability close to 1.

Number bits : of soning i2 " 3[i'
3[3i i' -c ml : 8 bits , 224. , 12f' , 12: , 1'2: , 224. , $4 , 224 . , SlCpP 1. 2. ... 8 :

- m2 : 24 bits

slep9.10.11.12: f2.4 , '"1 i:* , z;, - m, : 24 bits

224 224

'
Steps 13. 14 :

-c m4: 24 bits I
step I5 :

Step 16 :

224

- 48 b i s I
Collision

We will now go through each step in detail.

S tep 1 : Let bl = b mod ml.

We find all sequences (zi), 1 5 i I 32, xi = 0 or 1, such that '&;ui E b l [ml] .

We will find about 224 such sequences because there are 232 sequences (xi) of 32 bits, and
mI is close to 28. In fact, we will see in Section 2 the number of solutions that we may
expect to obtain when the algorithm is brought to completion.
It is important to notice that it is possible to do this step 1 with a number in the region
of 2" operations, with a memory of about Z2' words of 32 bits. Indeed, we just have to

32

i= l

307

do the following :

a) Compute and store all values of bl - c x , u , modulo ml.

The “store” is done such that we will have easy access to all the sequences (5:) such that

b, - Xx,u , has a given value modulo ml .

b) Compute, one by one, all the values of z,u, modulo ml and look if there are some

sequences (x,), 1 5 i 5 16, which gived the same value modulo ml in a). If it is SO, keep
all the pairs of sequences obtained (I ,) , 1 5 i 5 32.

For a) we will need about one field of 216 words of 16 bits. And for b) we will need
about one file of 224 words of 32 bits.

16

:=I

16

, = I
32

,=17

Step k, k=2 to 8 : In the same way, we find about P4 sequences (x,) such that

I.0, = O [r n l]
1=3’2(k-1)+1

31 64

Step 9 : We denote ~ x , u , by 5 1 and ~ x , u , by s l .

From the sequences (5,) found at Steps 1 and 2, we find about 224 sequences (x l) , l 5
t 5 64 such that s1 + sz For there are about
224 x sequences (I,), 1 5 i 5 G4 such that (xl,. . . , q2) is a solution from Step 1
and (~33,. . . ,zm) is a solution from Step 2. So if the numbers sI + s2 are about equally
distributed modulo mz, m 2 ‘v 2“, we find about = 224 among those sequences such
that 51 + sz h[m2]. A11 sequences (2,) to be found in Step 9 also have the following
property :

I S 1 r=33

bz[mz]. (where bz = b mod mz).
=

s1 + s2 = b2[m2] and s1 + s2 = bl[ml].
This is because s1 5 bl[ml] and s2 = O[ml]. It is important to notice that it is possible

to do this step 9 with a number in the region of 2z4 operations, with a memory of about
224 words of 64 bits. Indeed, we just have to do the following :
a) Compute and store all values of h2 - s1 modulo mz, where s1 has been found in step 1.
11) Compute and store all the values of s2 modulo m2, where s2 has been found in step 2.
c) keep all pairs of sequences (5,) which give the same value modulo mz in a) and b).

Step k, k = 10, 11 and 12 : The same way as step 9, we find about 224 sequences (Ti)

such that
64(k - 8)

x,u; = O[rn,],i = 1,2.
i=64(k-Y)+1

S t e p 13 : Combining solutions of steps 9 and 10, we find about 224 sequences (xi)
128

such that x z , u , s b;[rn;],i = 1 ,2 ,3 . (This is done with about 224 computations, the

same way as step 9).
i= 1

Step 14 : Combining solutions of steps 11 and 13, we find about 224 sequences (xi)

such that
256

xis, E O[m,],i = 1 ,2 ,3 .
i=129

308

S t e p 15 : Combining solutions of steps 13 and 14, we find about 224 sequences (z;)
such that

256

x z , u ; = b , [m ,] , i = 1,?,3,4. (1)
i= l

The rn, are pairwise coprimes, so (1) means : we have about 224 sequences (5 ,) such that

256

xz,u, G b[m], where m > 280.
i = l

Step 16 : Among the 22' sequences (T,) found in Step 15, we will have with a "good"
probability a collision, that is to say two sequences (I,) and (y,) such that :

256 256

Cx,a, = Cw,.
:=I , = I

This is because all the sequences found in step 15 have the same value modulo m,
where rn > .Zm. So the probability that h (z) = h(y), where z and y are found in step 15,

found in step 15. So it is possible to prove (this is a classical "birthday paradox") that
with a "good" probability we will obtain an z and an y such tha t h (z) = h(y). And the
collision will be found in about 224 computations after step 15 : we just have to compute

and store all the values ~ T , u , where (I,) has been found in step 15 (about 224 such (z i)

have been found) and this will give us the collisions.

24 224 ,
z + y, is 2 1 = $. But we have about 2 couples (z,y) where z and y are

236

,=I

Differences be tween our a lgor i thm a n d t h e or iginal a l g o r i t h m of [3]

There are three main differences in the design of the algorithm that we have described
and the original algorithm of [3] :

1. The number of solutions after each step is about 224 instead of 232, in order to
require less memory and to do less computations.

2. We have one more stage where steps 1 to 8 are done. And for these steps we use
reduction modulo m, where ml 'v 2'.

3. At the end we find a collision with a "Birthday Paradox" like attack.
We will now give more details about the 'good" probability t o find a collision with our
algorithm, and the memory required.

2 More details and small improvements of our al-
gorit hm

What do we do if at the end of our algorithm no collision is found ? It is possible to
use the algorithm again, but with new chosen values. For example we can replace bl by
s1 A[ml] a t step 2, where X is any fixed integer in
10, ml - 11. Or we can permute the ui*s. We can also change the value of b or of the mi's.

bl - A[rnl] a t step 1, and 0 by s2

But it is much better to keep the same value for band m : this is because the probability

b[m].
258

of success in Step 16 depends only on the number of (I,) found such that '&i
i= 1

309

So all the solutions (I ,) found in step 15 with the first application of our algorithm will
be useful with the second application of our algorithm. For this second application we
can decide t o find less solutions in step 15 than P4, because they will be combined with
the “previous” solutions.

“Good” probability
But in fact, even one iteration of our algorithm has a probability of success near 1. This
is because h (z) is not equidistributed. If we denote by P (b) the number of (2;) such that
h (+) = 6, the function P (h) will have a diagram as follows :

And it is possible to prove that, if the a , ’ s are random numbers of 120 bits, for about
99 % of the (I,) we will have : 108.2110 5 h(z) 5 148.2116.
So for about 99 % of the (G), h(z) will have less than 40.2Il9 values, thus less than
%Iz5. So the “collision” i n step 16 of our algorithm is easier than expected, and then it is
possible to prove that the probability ol finding a collision after step 16 is near 1.

Me niory
In order to use less memory, it is useful to begin with steps 1, 2 and 9, then steps 3, 4, 10
and 13. Then steps 5,G and 11, then steps 7,8, 12 and 14. Then steps 15 and 16. Thus
with a file of about 2’‘ words of 2.56 bits it will be possible to do all these steps. This is
512 Megabytes of memory. It is high but 256 less than what was needed in [3]. (In [3]
it is explain that 64 Gigabytes are needed for one basic step. But it seams that at least
about 128 Gigabytes are needed for all the steps). In paragraph 4 we will see some other
ideas in order to use less memory but a t the cost of a little more computations.

3 Generalization of the new algorithm for other sizes
of Knapsacks

Values for complexity 232

Let ((1,. . . , n, be fixed integers of A binary digits.

If I is a plaintext of s binary symbols, i.e. I = q . . . z,, then h (z) = x z , a ; is the proposed

hashed value. The hash value h (z) has less than E binary digits, i.e. E u A + log, S.
In [3] some algorithms were given to find an z such that h (z) = 6 (where 6 is a fixed and
random value in [1,2’]). In complexity 0(232) (in time and memory) these algorithms can
find such 1: in the following cases :

1

*=I

310

Value of s (or more)
128
256
512
1024
204S

Value of B (or less)
96
128
160
192
224
etc.

In paragraph 1, we have seen how to find a collision h(x) = h(y) for * = 256 and
B = 128 in 0(224) complexity. By using the same ideas, we will now see that, in 0(232)
complexity our algorithms will find a collision h(x) = h(y) in the following cases :

Value of 5 (or more)
128
256
512
1024
2048

Value of B (or less)
128
160
192
224
256
etc.

Example 1 : let s = 128 and B = 128

In this case the function h is not a real "hash"1 function since from integers of 128 bits, it
gives integers of about the same size. But the function is not collision free, even in this
case. In the diagram below we will see how to find an x and y such that h(x) = h(y) in
0(232) complexity.
We will not give details because this algorithm is similar with algorithm of paragraph 1.

Starting bits: 64

Steps 1.2

64

2 " ,

Step 3

Step 4

232

m2 : 32 bits

64 bits

Collision

Example 2 : let s = 256 and B = 160
We will not give the details because it is just the same algorithm but with one more stage.
The diagram is

31 1

64 64 64 64 : Starting biu - m, : 32 bits

232

232

- 64 bits I
Collision

With the same technique, by using two, three, etc. more stages and still about 2"
operations we can solve the cases s = .512 and B = 192, or 5 = 1024 and B = 224, etc.
And we obtained in this way the values given in this section before example 1 . If we
compare these values with the values given in [3], we see that, when 5 is given. we can
obtain a collision on 32 extra bits. Or. when B is given. we can obtain a collision with a
length of the Text which is twice as small.

Note. It is not a surprise that to find a collision we need a length of the text twice
as small. If x = y.: (that is to say i f x is the concatenation of y and i) then

And (2) is similar to the problem of finding collision on texts y and t twice as small as x.
h (z) = b (1) H h (y) = b - h (~) (2).

A general formula
With the same technique by using e stages, with a t most about 2" memories and in 2"
operations, and with eventually one extra-stage with a reduction modulo c bits (all the
others stages perform reductions modulo m bits), w e will obtain these genera! properties :

Number of starting bits : 2'(m + c) hits (or more).
I t invert h on : (1 + e) m + c bits (or less).

0 It find collisions on : (2 + e) m + c bits (or less).

With O(fZrn) time and a t most a(?") memory.

Example a.
knapsack in 0(224) complexity. This is exactly what we did in paragraph 1.

\Vith m = 24,c = 8,e = 3, we can find a collision for the (25G,128)

Example b.
knapsack in 0(232) complexity. This is what we did in example 2 above.

With rn = 32,c = 0 , e = 3, we can find a collision for the (256, 160)

312

4 Time-Memory trade off (for 3 or 4 stages)

All the algorithms given in [3] and in paragraphs 1, 2, 3 above have been designed in order
to minimize the time of computing. But the main practical problem of these algorithms
is the memory needed, and not the time needed. This is because to perform about 232

basic operations is faisable with modern computers quite easilly, but to find hundred of
Gigabytes of memory is still less easy.

However, we will see in this paragraph that all our algorithms can be modify in order
to use less memory, at the cost of a little more computing time. So it will be possible to
adapt the algorithm to the memory available.

Due to the lack of space, we will explain how to do this just in the cases with three of
four stages, because this is a very good number of stages for a lot of practical knapsacks.
However for others knapsacks less or more stages will be better. (For example if the
length of the text is appreciably more that the double of the length of the hash value,
more stages will be better).

We will denote by t and m two integers such that :
• the memory available is on the order of 2m .
• the time for computation available is on the order of 2'.

We will assume that - < m < t. And we will denote by c a parameter such that :

1/2 + c/2 < m and c > 0. Before going into details, we give the diagram of the steps :
The general diagram is :

Smiting bits: 4m+4c t+m+c(ifl m+c)
or 2m+2c 2 t + 2 c

l-w biu . m i+c bits

(Siep2) 2m 21 (Siep3)

I* U

(Slepl) .2' 2'.(Step 4)

L J
, t+m biu (to invert)

Or t+2m biu (collision).

(Step 5)

We now go through each step in more details.

Step 0 : We choose integers mi,mj,m3,m4 such that :
a) m1,mj,7n3,m< are pairwise coprime, and mj ~ 2C, m2 ~ 2m , 1713 2; 2'.
b) m4 ~ 2<+2m if we want a collision, or m4 ~ 2 l + m if we want to invert (i.e. to find

an 1 such that h(x) = b where b is given).

Step 1 : The aim of step 1 is to find, and store about 2m sequences of 4m + Ac bits
4m+4c

such that]T] r,a, = 0[m,m2m3] in 0(2') time and 0(2m) memory.
1 = 1

Note. There are about 2< m + < c /2 '+ m + c ~ 23m~'+3c such solutions. Among these we want
only 2m such solutions, and this is in fact less or equal because m < 3m — t + 3c since
t < 2m and c > 0.

31 3

For step 1, we proceed in 2'-" cases. Each of these 2'-" cases follows a diagram like
that :

m+c

I
Stmingbitr: m+c m+c

chits-1 1
p' , 2.7

,2-m , 2.7

m biu - - m bits

22m-1

So for each case 22m-t solutions are found. But all the solution of one case are distincts
from the solutions of another case because for example in each case we found solutions

such that z,ai I A[mlm2] where A is a parameter distinct in each cases. So in this

step 1 we will find 2*-" x 22"'-t - - 2" solutions as claimed. And the total time for this
step 1 in on the order of 2'-" x 2" = 2'. (Note that the time for each reduction modulo

c bits is about 2F+i 5 2" since c 5 m since c/2 5 m - - 5 -). And the total memory
is on the order of 2".

2m+Zc

i= l

t m
2 2

Step 2 : The aim of step 2 is to find, and store, about 2"' sequences of l = t + m + c bits

(if t 2 m + c) or of e = 2 m + 2c bits (if t 5 m + c) such that q a , = O[mlms) in O(2')

time and O(2") memory, where CY = 4m + 4c + 1 .

I+o

i=a

Case 1 : t > r n + c
Then for step 2 we proceed in 2' cases. Each of these 2' cases follows a diagram like that :

So we will found about 2' x 2"-' N 2" solutions as wanted.

Note. Here we have 2" solutions for step 2 and we found all of them. The time on
the right side was 2c x 2" = 2"'+' and this is 5 2' because here m + c 5 t . So for step
2 the total time is in O(2'). And the value 2'-c in the diagram is a number of sequences
that are found one by one, and not stored. So the total memory is in O(2").

31 4

Case 2 : t < m + c
Then for step 2 we proceed in 2'-" cases. Each of these 2'-" cases follows a diagram like
that :

m+c m+c : S t ~ t i n g bits

chits -1 1 -chits '* t hits

22m-1

a+c

Here we have about 22mt2c/2'+c = 22m+c-1 solutions such that z;aj O[mlm~] and
*=a

with the diagram above we find 2'-" x 2*"-' = 2
t 5 m + c here).

such solutions. (rn 5 2m + c - t since

Step 3 : The aim of step 3 is to find, one by one, about 2' sequences of 2t + 2c hits such

that [[rnlm3] in O(2') time and 0(2m) memory, where /3 = ! + a + 1 (P and

o as in step 2) and where [is a fixed and given value. For s tep 3 we proceed in 2'-"
cases. Each of these 2'-" cases follows a diagram like that :

P t 2 t t 2 c

i=p
ziai

l+C : S ~ ~ f l i n p bits

__c m bits

2m

Note. Here, at the begining of this diagram, a t least 2"z+c/z computations are done
in each one of the 2'-" cases. So we want that t / 2 + c / 2 + t - m 5 t , That is to say :
t/2 + c/2 5 m. And this was exactly a property given a t the begining for our parameters.

Step 4 and 5 : Each time a solution of step 3 is found, that solution is combined
with the solutions of steps 2 and 1, as shown in the general diagram. The property of our
algorithm (with 3 or 4 stages) is finally :

Number of starting bits (or more) :

It invert h on
It find collision on

3t + 5m + 7c if t 2 m + c
0 2 t + 6 r n + 8 c i f t L : r n f c

2t + 2m + c bits (or less).
2t + 3m + c bits (or less).

With O(3') time. O(2") memory, and 1 2 rn 2 t / 2 + c/2.

31 5

Examples.
E x a m p l e 1. With m = 32, t = 32. c = 0 we can invert the (25G, 128) knapsack. This
was done in [3). But with m = 24 ,1 = 39, c = 2 we can solve the same problem with less
memory (and a little more time).
Example 2. With m = 48,t =, 4S,c = 16, or with m = 42,t = 5 6 , ~ = IS, we can find
a collision for the (512, 256) knapsack. (However here the algorithm still need a huge
amount of time and memory).

5 How to avoid these attacks
In (41, I. Damgird gave a great theorem which shows that if we can have a collision free
hash function f from 256 to 128 bits (for example), then we can design a collision free
hash function h from any size to 128 bits. And it will be possible to calculate h very
quickly if we can calculate f very quickly. The Knapsack Hash function with s = 256
and B = 128 is quick to calculate. Moreover for example on a 32 bit computer it seems
that it will b e about 4 times slower than MD4. (MD4 is a concrete example of really used
hash function, see [5] for details). Another problem of this Knapsack Hash function is
that it requires an array of about 256 words of 120 bits for the numbers al, 1 5 i 5 256,
(this is 3.75 Kbytes), and MD4 doesn’t need this. However the main problem, of course,
is that we have seen that this Knapsack Hash function is not collision free. But most of
the hash functions that are used today (as MD4, MD5 or SHS) do not have a very simple
mathematical description. So, is it possible to describe a candidate hash function which
will be :

1. Very quick to calculate.
2. Collision free.
3. With a very simple mathematical description.
4. With about 128 bits in output.

In [6] , G. G m o r suggested a candidate for points 1, 2, 3 above based on multiplication in
the group G = SLZ(F,) of 2 x 2 matrices of determinant 1 over F,.

However, in order to avoid some potential attacks, GI Z m o r suggested to take for p
a prime of about 150 bits. So the hash value will be a hash of about 450 bits (instead of
128 for MD4 for example).

I t is possible to suggest many different candidates (for example with modular multi-
plication, but then the function will be much slower than MD4). We will now give some
example of functions obtained by modifying just a little the Knapsack Hash function.
T h e hash values of these functions will b e 128 bits long. However, in all the examples
below our functions (designed in order to avoid the attacks of paragraphs 1-4) will not
be collision free, due to other attacks. Nevertheless, we think that, from a theoretical
point of view, it is very interesting to study simple mathematical hash functions, in order
to gain a better understanding of what makes such a function “collision free” and what
doesn’t.

E x a m p l e 1

Let z be a plaintext of 256 binary symbols. Let h (r) = C z i u ; be the (256,1283 Knapsack

Hash function that we have studied in paragraph 1. Let I = (z;), 1 5 i 5 256,zi = 0 or
1, and let g = (xi), 1 5 i 5 128 and z = (x i) , 129 5 i 5 256. (SO I is the concatenation
of y and z) . Then let H (z) = h (z) + I/ + 2.

256

i=1

31 6

Is H collision free ? In fact, we will see that H is not collision free. If 1 5 i 5 128, let

h, = r i l+2I - ' . Ant1 if 129 5 i 5 3.56, let h, = u,+2'- '2'. Then H (z) = x x , b , , so His just

another Knapsack like h. So H is not collision free as explained in [3] and in paragraph
1.

Example 2
Let z, h (s) , y and z be as in example 1. l\'e now define an auxiliary function F that takes
as input three 128-bit words and produces as output one 128-bit word : F (X , Y, 2) =

(In this formula X Y denote the bit-wise AND of A' and Y, ;Y V Y denote the bit-wise

Each bit position F acts as a conditional : i f z then y else z. (In MD4 a similar

256

r = l

Y X v (1X)Z.

OR of X and Y, and 1X denote the bit wise complement of X).

function is used, but for 32 bit words). Finally, we define

H (r) = JYh(z),Y,Z).

Then H is just a slight variation of the Knapsack. The time needed to calculate H and
h is about the same and all the attacks described for the Knapsack seem to be ineffective
for H. However, this function is not collision free. In fact if y = z = b, then H (z) = b.
So H is really easy to invert !

Example 3
Let 5 , h (z) , y, z and F be as in example 2.
And let H (z) = F (h (z) , y, z) + h(z) .
This function H is defined in order to avoid the attacks of paragraphs 1-4 and the attack
of example 2. (H computes only additions except one single use of F in order to have a
simple mathematical description and he quick to calculate).
However, H is not collision free.
In fact, if y = 0 and z = 1, then H (y z) = 1.
And more generally, if y = 0 then H (0 , z) = h V z .
So by chosen a z with only one zero, the probability that H (0 , z) = 1 = H (0 , l) is about
1/2. This property will give easily a collision.
As all our three examples show it can be very dangerous to add a n extra composition of
functions. It could be a good idea to reuse the input t~ and z with h in order to design
an hash function H to avoid the attacks of paragraph 1-4, but this must be done very
carefully.

6 Conclusion
\Ye have seen how t o modify the algorithms described in [3] in order to find collisions
with less memory, or in order to find collisions for stronger Knapsack. For example, with
about 512 Megabytes of memory (instead of about 12s Gigabytes) is it possible to find
a collision for the (256,138) Knapsack. Or, in complexity 0(232) it is possible to find a
collision for the (128,12S) Knapsack. The technique is very efficient for various values of
the Knapsack. Moreover it is possible to adapt the algorithms by using less memory if a
little more computing time is allowed. Finally, we have study some slight modifications
of the Knapsack in order to avoid these attacks. Although these modifications did not
avoid collisions we think that it is interesting to study simple mathematical candidate
hash functions.

31 7

Acknoledgernents
I want to thank you S. Vaudenay and J.S. Lair for usefull comments.

References
[l] P. Camion, ‘‘Can a Fast Signaturn Scheme Without Secret Iiey be Secure ?”, in

AAECC-2, Lecture Notes in Computer Science no 228, Springer Verlag.

[2] P. Carnion and Ph. Godlewski, “.Vanipulation and Errors, Localization and De-
tection”, Proceedings of Eurocrppt’68, Lecture Notes in Computer Science n’ 330,
Springer Verlag.

[3] P. Camion and J. Patarin. “The Iinapsack Ha5h Function proposed at C q p t o ’89 can
be broken”, Proceedings of Eurocrypt’91, pp. 39-53. Springer Verlag.

(41 I. Darngbrd, “Design Principles /or Ha5h Functions”. Proceedings of Crypto’S9,
Springer Verlag.

[5] R.L. Rivest, “The MDI dlessage Digest Algonthm”, Crypto.90, Springer Verlag, pp.
303-31 1.

[(i] G. Zkmor, “Hash Functions und Graphs with Large Girths”, Proceedings of EURO-
CRYPT’91, pp 508-511, Springer Verlag.

	HOW TO FISD AND AVOID COLLISIONS FOR THE KNAPSACK HASH FUNCTION
	The Proposed Knapsack
	The general scheme of our modified algorithm
	More details and small improvements of our algorithm
	Generalization of the new algorithm for other sizesof Knapsacks
	Time-Memory trade off (for 3 or 4 stages)
	How to avoid these attacks
	Conclusion
	Acknoledgernents
	References

