
Single Term Off-Line Coins

Niels Ferguson

CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands.
e-mail: nielsacwi . n l

Abstract. We present a new construction for off-line electronic
coins that is both far more efficient and much simpler than pre-
vious systems. Instead of using many terms, each for a single bit
of the challenge, our system uses a single term for a large number
of possible challenges. The withdrawal protocol does not use a cut-
and-choose methodology as with earlier systems, but uses a direct
construction.

1 Introduction

The main requirements for an electronic cash system are the following:

- Security. Every party in the electronic cash system should be protected from
a collusion of all other parties (multi-party security).

- Off-line. There should be no need for communication with a central authority
during payment.

- Fake Privacy. The bank and all the shops should together not be able to
derive any knowledge from their protocol transcripts about where a user
spends her money.

- Privacy (untraceable). The bank should not be able to determine whether
two payments were made by the same payer, even if all shops cooperate.

The privacy requirement is obviously stronger then the fake privacy one. Under
real-world circumstances, a payer is identified during some of the payments by
means outside the electronic cash system. If two payments can be recognised as
originating from the same payer, then knowing the identity of the payer during a
single payment anywhere allows the tracing of all other payments made by that
payer. Therefore, fake privacy provides no privacy at all in practice.

Electronic cash was first introduced by Chaum, Fiat and Noar [CFNSO].
Their system (later improved in [CdBvH+90]) meets all of the requirements, but
is quite complex. The authors give a construction for electronic checks that allow
a variable amount of money to be payed with a single signature. These checks
can be thought of as a bunch of fixed-value coins sharing common overhead.

In [vA90] Hans van Antwerpen described a different scheme which is more
efficient than [CFNSO] and [CdBvH+90], but has the same basic properties.

Okamoto and Ohta introduced the idea of divisibility of electronic cash
[0092]. This allows a piece of money to be divided into smaller pieces each

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 318-328, 1994
0 Spnnger-Verlag Berlin Heidelberg 1994

31 9

of which can be spent separately. Their construction satisfies all of the above
requirements except the privacy, and the fake privacy of the user is only compu-
tationally protected.

The most difficult fraud to counter in electronic cash systems is double-
spending. A user can always spend a single coin twice in two different shops.
This fraud cannot be detected at the time of spending as payments are off-line.
The solution that all electronic cash systems use is to detect the double-spending
after the fact. At each payment the user is required to release information in
response to a challenge from the shop. One such release provides no clue to the
user’s identity, but two such releases are sufficient to identify the user uniquely.

In all earlier schemes, the identification of double-spenders requires multiple
terms in each coin. Each term is used to answer one bit of challenge from the
shop during payment. If both possible answers for any term is ever given, the
user’s identity is revealed. To achieve an acceptable probability of detection,
a large number of terms is required. These schemes are therefore inefficient if
a piece of money has a fixed value, so all of them provide some way to pay
a variable amount of money with a single ‘check’. The resulting refunds for
partially spent checks pose further security and privacy problems [Hir93] as well
as user-interfacing problems. Another major disadvantage of check systems is
that they are very complex (the full but concise mathematical description of the
protocols in [vA90] requires 40 pages), which makes them extremely difficult to
understand, verify, implement or debug.

Recently, in independent work, Franklin and Yung gave a construction for a
provably secure coin scheme in a slightly different setting where a trusted centre
is available to produce ‘blank’ coins [FY93]. An alternative they discuss does
not require the trusted centre, but is not provably secure. Like our construction,
they use a secret sharing line instead of multiple challenge terms.

Up to this point all electronic cash schemes have used a cut-and-choose pro-
tocol for constructing the money. These protocols are by their very nature in-
efficient. To get a low enough probability of cheating, the cut-and-choose must
consist of many terms, half of which are thrown away.

Our new system (described earlier in [Fer93]) is a coin scheme where each
piece of money has a fixed value. Each coin consists of 3 numbers plus 2 RSA
signatures and can be stored in about 250 bytes. (This assumes that we multiply
the signatures of 4 different coins together to save storage space; recovering the
original signatures is easy [ChaSO] .) During payment (of possibly several coins)
the user has to perform about 30 modular multiplications plus two multiplica-
tions per coin being payed. The withdrawal protocol constructs the coins directly
without resorting to cut-and-choose methods.

In [Bra93, Bra941 Stefan Brands recently showed a different construction for
an efficient electronic coin scheme based on discrete logarithms. His construction
does not use a cut-and-choose protocol or multiple challenge terms either.

I would like to thank David Chaum for all his support, and for helping
to clean up and improve the withdrawal protocol. Stefan Brands and Ronald
Cramer provided many helpful comments.

320

2 Efficient payments

Instead of using many challenge terms for double-spending detection we will use
a polynomial secret sharing scheme [Sha79]. The user (Alice) gives a share of
her identity to the shop at each payment in response to a random challenge. If
Alice spends the same coin twice, she has to give two different shares which will
allow the bank to recover her identity eventually. This solution gets rid of the
large number of challenge terms in all previous systems.

The central idea (developed in cooperation with Hans van Antwerpen) is to
represent a coin as 3 numbers, C := fc(c), A := fa(a), and B := fb(b) where the
f functions are suitable oneway functions. Alice also gets two RSA-signatures
from the bank: (CkA)'/" and (CUB)'/", where 21 is a prime, U is Alice's identity
and k is a random number.

During payment, Alice sends the numbers c, a, and b to the shop. The
shop replies with a randomly chosen (non-zero) challenge z. Finally Alice sends
T := kx + U (mod 21) (which is the share of her identity) and the signature
(C'A"B)'/" which she can easily compute from the two signatures she has. The
shop, in turn, can verify the consistency of these two responses. When spending
several coins at the same time, the same challenge is used for all the coins and
Alice sends the product of all the signatures to the shop. (Coins of different
values use a different v.) This reduces the computations done by Alice to two
multiplications per coin plus one exponentiation to the power z. For a 20-bit
challenge the exponentiation requires about 30 multiplications.

The payment protocol can obviously be converted to a one-move protocol by
choosing z as a hash value on the coin(s) and the shops identity. This requires
a larger challenge but eliminates the interaction between the payer and payee.

At the end of the day, the shop sends c, a, b, the challenge and the response
to the bank. The bank can verify the correctness of the coin and credit the shop
with the corresponding amount. If Alice spends the same coin twice, she must
reveal two different points on the line z c) kz + U which immediately allows the
bank to determine her identity U.

Given this idea for the payment protocol, the problem of withdrawing the
coin from the bank remains. Alice must get the signatures on C k A and CUB
while the bank learns nothing about c, a, b or k.

3 Randomized blind signatures

For our construction of an efficient withdrawal protocol we need a signature
scheme with the following properties:

- Alice receives an RSA-signature on a number of a special form, which she

- The bank is sure that the number it signs was randomly chosen.
- The bank receivqs no information regarding which signature Alice gets.

cannot create herself.

32 1

We call such a signature a mndomired blind signature. The scheme that we use
here is due to David Chaum [Cha92].

The protocol to get a randomized blind signature is shown in Fig. 1. All
computations are done in an RSA system [RSA78] where the bank knows the
factorization of the modulus n. The public exponent of the RSA system is v,
a reasonably large prime (say 128 bits). Alice starts by choosing a random ai,
and two blinding factors d and 7. She computes yualgu where g is a (publicly
known) element of large order in Z: and sends the result to the bank. The bank
chooses its own contribution a2 and sends this back to Alice. Alice replies with
f(a1an) - u where !(a) is a suitable oneway function mapping Z: into Z,. The
bank multiplies y"alg" by a2 and gf(alaa)-u to get 7"ala2gf(ola2), computes
the v'th root of this number and sends it to Alice. Alice divides out the blinding
factor 7 to get the pair (a, (a g f (")) l l v) . The number a is called the base number
of the signature.

Alice Bank

-
- A +- yYalg" . a2 . ge

(A)'/"
t

Fig. 1. Randomized blind signature scheme

Note: To make the blinding perfect, all computations involving exponents are
done modulo v. For example, e is computed as (f (a l a 2) - 0) mod v . Alice can
correct for the possible additional factor of gv by multiplying the final signature
by g(f(a)-a)divu . In the rest of this paper we will assume implicitly that all
computations involving exponents are done modulo v and that the necessary
corrections are applied to the resulting signatures.

Assumption 1. It i s computationally infeasible to forge a signature pair of the
fonn (a, (agf(a))l/").

322

Reasoning. This assumption is a special case of the RSA signature assumption.
Suppose Alice tries to forge a signature pair (a, A) . If we define t := f (a), then
she must have solved the equation t = f (dug-‘). Two ways to solve this equation
spring to mind. The first one is to choose A and then try different values o f t
until you get lucky (probability of success is l / u) . The second one is to choose
Avg-t , compute t , and then try to compute A. This requires the computation
of a v’th root. Neither of these methods seems feasible.

Even if Alice has a large number of valid signature pairs, it is still difficult
for her to find new ones. A result of Evertse and van Heyst [EvH92] implies
(loosely stated) that the only new RSA signatures that can be computed from
old ones are multiplicative combinations of the old signatures. If you multiply
two signatures of the form ~ g f (~) , you do not get another valid signature, unless
f(ab) = f(a) + f (b) . One of the requirements for f is that it is infeasible to find
relations of this kind.

Proposition 2 . The bank get5 no information regarding (a, (agf(a))l/u) from
the protocol an Fig. 1 .

Proof. We define the view of the bank as all the communication to and from the
bank, plus all the random choices that the bank made. Given the banks view of
a run of the protocol, we will show that for every legal pair (a, A) there is exactly
one set of random choices that Alice could have made which would result in her
receiving that signature in that protocol run. This makes all possible signature
pairs equally likely, given the knowledge of the bank.

Given a (from the pair) and u2 (from the view), a1 must have been chosen
as a/az. Alice’s choice of u is given by subtracting the value in the third trans-
mission (f(a) - u) from f(a) (computed from a). Finally, Alice’s choice of y is
uniquely determined by the first transmission.

If Alice had indeed chosen a l , u and y in this way, then she would have
gotten (a, A) as a signature pair. So, from the banks point of view, all signature
pairs are equally likely. 0

3.1 ‘Abuses’ by Alice

There are several ways in which Alice can deviate from this protocol which we
will investigate briefly. For this we rewrite the protocol as shown in Fig. 2. We
assume that Alice is choosing the numbers A-E in some clever way. For practical
reasons we have to restrict Alice’s behaviour a bit. In choosing the numbers, she
can use any construction, but we assume that the only computations that she
does with the final signature are an exponentiation and a multiplication. (Other
operations don’t seem to make sense on an RSA. signature.) Furthermore, Alice
should end up with a v’th root on a number of the form K g f (K) for some K
that Alice can compute. Any other results are not of interest in the coin system.

First of all, observe that B only occurs as C + B in the result. As C is chosen
later then B, we can assume B = 0 without loss of generality.

Alice

323

Bank

Fig. 2. Possible behaviours of Alice

To get a useful signature, Alice must have R = (K g f (K)) l / " , which is equiva-
lent to D"AEafgEC = K g f (K) . We can assumed that Alice doesn't use a factor
g 2 in A for some 2. (Alice can get the same effect by adding z to C.) The ex-
ponents on g are modulo v, so D cannot contribute to them. As Alice doesn't
know g l / ' , she cannot put any extra factors in herself. To get something useful
she must therefore solve the following two simultaneous equations.

t + EC = f (K) (mod u)

D"AEaF = Kgt

for some t E Z". There seems only one way to do this, and that is to fix K by
choosing D , A, E and t , and then choosing C to fit the first equation. (Any other
way would involve inverting the oneway function, or computing a root.) But this
means that D and E must have been fixed before sending C to the bank.

We conclude that Alice can 'abuse' this protocol by sending a slightly different
reply in the third message. She can choose any D and E such that she gets a valid
signature (on a number of the form z g f (=)) after raising it to the E'th power and
multiplying it by D. The factor D doesn't help Alice much in cheating. Alice
can modify the base number after the bank has revealed a2, but she can only
multiply the base number by D". Because Alice cannot compute roots, any v'th
power is essentially random to her, thus she cannot control the way in which
she changes the base number. Alice could at most use the D factor to shift the
uniform distribution of the base number slightly, but in the large set of possible
base numbers this is hardly significant. The same basically holds for the E power.

Unfortunately, we cannot prove that there is no other way for Alice to cheat.
The attacks allowed in Fig. 2 are only the most obvious ones. There might for

324

example be an attack in which Alice computes the cosine of the last reply to get
something useful, but this seems somewhat unlikely to give any useful result.
At present, the state of the art in cryptography does not allow us in general to
prove the security of such a protocol.

When E # 1 it is essential for Alice to be able to compute a? after receiving
a2. For our coin withdrawal protocol we also need a restricted version (see Fig. 3)
which does not allow Alice to choose E # 1. Instead of a2, the bank sends
ha2 mod p where p is a prime congruent to 1 modulo n, and h is a publicly known
element of order n in IF,. The exponents of h are thus reduced modulo n so the
numbers in the exponent behave in exactly the same way as in the RSA system.
The final form of the signature will not be (agf(a))llw but rather (c~gf(*~))~/".
Because Alice cannot compute haF given only h"2 she can no longer choose E.

Alice Bank

Fig. 3. Randomized blind signature scheme without exponential attack

4 Coin withdrawal protocol

For our system we need 3 numbers, C, A, and B. These will be of the form

f(h3 c = cg,

A = ,g,f(")

B = bgb f (h 3

where the numbers g,, g,, and Qb are publicly known and of large order in the
group 2;. The numbers h, and hb are elements of order n from IF, where p - 1

325

is a multiple of n. The use of three different g values ensures that the numbers
are distinct and do not mingle when multiplied together in a signature.

The coin withdrawal protocol (see Fig. 4) consists of three parallel runs of the
randomized blind signature scheme. Two of the runs are the restricted version,
and one is the unrestricted version. The E exponent is used to allow Alice to
randomise the k parameter of the secret sharing line herself while the bank can
ensure that the other parameter is Alice's identity U.

Alice Bank

Fig. 4. Coin Withdrawal protocol

326

There are 2 additions to this simple parallel-run view. One is that there is an
extra one-way function that makes a depend on e, and eb. This prevents Alice
form choosing e, and eb as a function of a. Were she able to do this, she could
cancel some of the terms and get a signature on just C and B. Although this
is not a threat as such against the payment scheme, it is undesirable that Alice
has so much freedom.

The second modification is that the bank puts a random power on C in
the first signature. Alice is going to end up with two signatures: (CkA)'I" and
(CUB)'/". Here, U is the identity and k is a random number unknown to the
bank. However, to prevent Alice from combining an old coin with the one cur-
rently being withdrawn the bank must ensure that k is indeed random. Therefore,
the bank puts a random power on the C in the first signature, forcing k to be
random. The protocol consists of the following steps:

1. Alice starts by choosing the random numbers c1, a' , b l , u, 7, 9, a , p, and
y. The first three are Alice's contributions to the base numbers. The second
triple are the exponential blinding factors, and the third triple are the mul-
tiplicative blinding factors. Alice computes y"clgz, a"alg; and p b l g t , and
sends these numbers to the bank.

2. The bank then chooses its three contributions to the base numbers c ~ , az ,
b z . It sends hzz, az, and h? to Alice.

3. Alice chooses a random number k l , and computes the exponents e, and
eb as f(hf"*) - u and f(h:lba) - 4. She computes a as (alazfz(ec,eb))kl
where fi(.) is a suitable oneway function. The exponent e, is computed
somewhat differently to get the right exponent after raising the signature to
the kl'th power. After computing e, as (l /k l) f (u) - T , Alice send all three
exponents to the bank. Note: The subtractions and multiplication by l /ki
are done modulo v. Any modulo reduction here has to be corrected in the
final signature, by multiplying the signature by a suitable powers of g c , 9 ,
and gb. These corrections are not shown.

4. The bank now computes the blinded versions of C, A and B. ?? is computed
as y"c1g: . c ~ .gEC which is equal to yucgcf(h:) for c = c1c2. A and B are com-
puted in a similar way, and the factor fZ(e,, et,) is put into 2. The following
relations hold between the blinded numbers and their unblinded values:

- -

- c = 7°C
- A = a"Al/kl
-
B = PUB

-k2 -
The bank then chooses a random kz, and sends cz, b z , k z , (C . A) l / " , and
(C . B)'/" to Alice.

5. Using c~ and b2 Alice can compute c and b as clcz and blbz respectively. She
now constructs the numbers C , A , and B as cgcf(h:), ag,f(") , and bg:(h:l.

Alice computes the first signature S, as ((C . A) l / u / y k z a) k l , and the

second signature sb as (C . B) ' / " / yuB . The k,'th power is needed because

-u -

-kz -

-u -

327

the base number a was chosen as (ala2)k1 instead of a1a2. All the necessary
adjustments in the exponent of go were already made by Alice. The total
effect of this kl’th power is to get a v’th root on the number C k A where

Finally Alice checks that the signatures she received are correct by verifying
that S: = C k A and S l = CUB.

k = klk2.

Alice ends up with the following set of numbers: c, a , b, k, S,, and sb which
are the 3 base numbers, the random parameter for the secret sharing line and
the 2 signatures. These 6 numbers plus the identity U are used as input to the
payment protocol.

We still need a few additions to this protocol to protect Alice against framing
by the Bank. To this end we let U be the concatenation of Alice’s identity and a
unique coin number. This makes the U’s of all the coins distinct. Secondly, in the
third transmission Alice includes a digital signature on U and all the data in the
first three transmissions. If the bank now claims that Alice spent a coin twice, it
must show a transcript of the withdrawal protocol for that coin. This transcript
must include the correct data in the last transmission. (This is verifiable by a
third party.) The bank also shows a, b and c from the doubly spent coin.

If Alice didn’t spend the coin with that identity twice, then the bank can
have no knowledge regarding a, b, or c. So if the bank tries to frame Alice, the
triple (a, b, c) will (with high probability) be different from the actual values used
by Alice. If Alice can provide a different triple (a , b , c) plus the corresponding
blinding factors that match the transcript, then the bank must be framing Alice,
as she cannot generate a new triple which matches a given transcript.

5 Remarks

It would be nice to make a similar system where C, A , and B are images under
oneway functions of a single base number c. If c can also be made smaller (say
in Z, instead of Z,) then we could store a coin in about 70 bytes. However,
constructing an efficient withdrawal protocol for such a coin remains an open
problem.

Work is currently under way to implement this scheme on workstations to
provide e-mail money. An extension of this coin system to n-spendable coins
(which can be spent n times but not n + 1 times) and the incorporation of
observers in the coin system are described in (Fer941.

References

[Bra931 Stefan Brands. An efficient off-line electronic cash system based on the
representation problem. Technical Report CS-R9323, CWI (Centre for
Mathematics and Computer Science), Amsterdam, 1993. Anonymous ftp:
ftp.cwi.nl:/pub/CWIreports/AA/CS-R9323.ps.Z,

328

[Bra941 Stefan Brands. Electronic cash systems based on the representation prob-
lem in groups of prime order. In Proceedings of CRYPTO '93, 1994. TO
appear.

[CdBvH'SO] David Chaum, Bert den Boer, Eugkne van Heyst, Stig Mj~lsnes, and
Adri Steenbeek. Efficient off-line electronic checks. In J.-J. Quisquater

[CFNSO]

[ChaSO]

[Cha92]

[EvH92]

[Fer93]

[Fer94]

(FY931

[Hir93]

[0092]

[RSA78]

[Sha79]

[vA90]

and J. Vandewalle, editors, Advances in Cyptology-EUROCRYPT '89,
Lecture Notes in Computer Science, pages 294-301. Springer-Verlag, 1990.
David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash.
In S. Goldwasser, editor, Advances in Cryptology-CRYPT0 '88, Lecture
Notes in Computer Science, pages 319-327. Springer-Verlag, 1990.
David Chaum. Online cash checks. In J.-J. Quisquater and J. Vande-
walle, editors, Advances in Cryptology-EUROCRYPT '89, Lecture Notes
in Computer Science, pages 288-293. Springer-Verlag, 1990.
David Chaum. Randomized blind signature. Personal communications,
April 1992.
Jan-Hendrik Evertse and Eugkne van Heyst, Which new RSA-signatures
can be computed from certain given RSA-signatures? J . Cryptology,
5(1):41-52, 1992.
Niels Ferguson. Single term off-line coins. Technical Report CS-R9318,
CWI (Centre for Mathematics and Computer Science), Amsterdam, 1993.
Anonymous ftp: ftp.cwi.nl:/pub/CWIreports/AA/CS-R9318.p~.Z.
Niels Ferguson. Extensions to single term off-line coins. In Proceedings
of CRYPTO '93, 1994. To appear.
Matthew Franklin and Moty Yung. Secure and efficient off-line digital
money. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Automata,
Languages and Programming, 20th International Colloquium, ICA LP 93,
Lund, Sweden, Lecture Notes in Computer Science 700, pages 265-276.
Springer-Verlag, 1993.
Rafael Hirschfeld. Making electronic refunds safer. In Advances in Cryp-
tology-CRYPT0 '92, 1993. To appear.
Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In
J. Feigenbaum, editor, Advances in Cryptology-CRYPT0 '91, Lecture
Notes in Computer Science, pages 324-337. Springer-Verlag, 1992.
Ronald Rivest, Adi Shamir, and Leonard Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of
the ACM, 21:120-126, February 1978.
Adi Shamir. How to share a secret. Communications of the ACM,

Hans van Antwerpen. Off-line electronic cash. Master's thesis, Eindhoven
University of Technology, department of Mathematics and Computer Sci-
ence, 1990.

22(11):612-613, 1979.

	Single Term Off-Line Coins
	Introduction
	Efficient payments
	Randomized blind signatures
	‘Abuses’ by Alice

	Coin withdrawal protocol
	Remarks
	References

