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Abstract. We present a new construction for off-line electronic 
coins that is both far more efficient and much simpler than pre- 
vious systems. Instead of using many terms, each for a single bit 
of the challenge, our system uses a single term for a large number 
of possible challenges. The withdrawal protocol does not use a cut- 
and-choose methodology as with earlier systems, but uses a direct 
construction. 

1 Introduction 

The main requirements for an electronic cash system are the following: 

- Security. Every party in the electronic cash system should be protected from 
a collusion of all other parties (multi-party security). 

- Off-line. There should be no need for communication with a central authority 
during payment. 

- Fake Privacy. The bank and all the shops should together not be able to 
derive any knowledge from their protocol transcripts about where a user 
spends her money. 

- Privacy (untraceable). The bank should not be able to determine whether 
two payments were made by the same payer, even if all shops cooperate. 

The privacy requirement is obviously stronger then the fake privacy one. Under 
real-world circumstances, a payer is identified during some of the payments by 
means outside the electronic cash system. If two payments can be recognised as 
originating from the same payer, then knowing the identity of the payer during a 
single payment anywhere allows the tracing of all other payments made by that 
payer. Therefore, fake privacy provides no privacy at  all in practice. 

Electronic cash was first introduced by Chaum, Fiat and Noar [CFNSO]. 
Their system (later improved in [CdBvH+90]) meets all of the requirements, but 
is quite complex. The authors give a construction for electronic checks that allow 
a variable amount of money to be payed with a single signature. These checks 
can be thought of as a bunch of fixed-value coins sharing common overhead. 

In [vA90] Hans van Antwerpen described a different scheme which is more 
efficient than [CFNSO] and [CdBvH+90], but has the same basic properties. 

Okamoto and Ohta introduced the idea of divisibility of electronic cash 
[0092].  This allows a piece of money to be divided into smaller pieces each 
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of which can be spent separately. Their construction satisfies all of the above 
requirements except the privacy, and the fake privacy of the user is only compu- 
tationally protected. 

The most difficult fraud to counter in electronic cash systems is double- 
spending. A user can always spend a single coin twice in two different shops. 
This fraud cannot be detected at  the time of spending as payments are off-line. 
The solution that all electronic cash systems use is to detect the double-spending 
after the fact. At each payment the user is required to release information in 
response to a challenge from the shop. One such release provides no clue to the 
user’s identity, but two such releases are sufficient to identify the user uniquely. 

In all earlier schemes, the identification of double-spenders requires multiple 
terms in each coin. Each term is used to answer one bit of challenge from the 
shop during payment. If both possible answers for any term is ever given, the 
user’s identity is revealed. To achieve an acceptable probability of detection, 
a large number of terms is required. These schemes are therefore inefficient if 
a piece of money has  a fixed value, so all of them provide some way to pay 
a variable amount of money with a single ‘check’. The resulting refunds for 
partially spent checks pose further security and privacy problems [Hir93] as well 
as user-interfacing problems. Another major disadvantage of check systems is 
that they are very complex (the full but concise mathematical description of the 
protocols in [vA90] requires 40 pages), which makes them extremely difficult to 
understand, verify, implement or debug. 

Recently, in independent work, Franklin and Yung gave a construction for a 
provably secure coin scheme in a slightly different setting where a trusted centre 
is available to produce ‘blank’ coins [FY93]. An alternative they discuss does 
not require the trusted centre, but is not provably secure. Like our construction, 
they use a secret sharing line instead of multiple challenge terms. 

Up to this point all electronic cash schemes have used a cut-and-choose pro- 
tocol for constructing the money. These protocols are by their very nature in- 
efficient. To get a low enough probability of cheating, the cut-and-choose must 
consist of many terms, half of which are thrown away. 

Our new system (described earlier in [Fer93]) is a coin scheme where each 
piece of money has a fixed value. Each coin consists of 3 numbers plus 2 RSA 
signatures and can be stored in about 250 bytes. (This assumes that we multiply 
the signatures of 4 different coins together to save storage space; recovering the 
original signatures is easy [ChaSO] .) During payment (of possibly several coins) 
the user has to perform about 30 modular multiplications plus two multiplica- 
tions per coin being payed. The withdrawal protocol constructs the coins directly 
without resorting to cut-and-choose methods. 

In [Bra93, Bra941 Stefan Brands recently showed a different construction for 
an efficient electronic coin scheme based on discrete logarithms. His construction 
does not use a cut-and-choose protocol or multiple challenge terms either. 

I would like to thank David Chaum for all his support, and for helping 
to  clean up and improve the withdrawal protocol. Stefan Brands and Ronald 
Cramer provided many helpful comments. 
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2 Efficient payments 

Instead of using many challenge terms for double-spending detection we will use 
a polynomial secret sharing scheme [Sha79]. The user (Alice) gives a share of 
her identity to the shop at each payment in response to  a random challenge. If 
Alice spends the same coin twice, she has  to give two different shares which will 
allow the bank to recover her identity eventually. This solution gets rid of the 
large number of challenge terms in all previous systems. 

The central idea (developed in cooperation with Hans van Antwerpen) is to 
represent a coin as 3 numbers, C := fc(c), A := fa(a), and B := fb(b) where the 
f functions are suitable oneway functions. Alice also gets two RSA-signatures 
from the bank: (CkA)'/" and (CUB)'/", where 21 is a prime, U is Alice's identity 
and k is a random number. 

During payment, Alice sends the numbers c, a, and b to the shop. The 
shop replies with a randomly chosen (non-zero) challenge z. Finally Alice sends 
T := kx + U (mod 21) (which is the share of her identity) and the signature 
(C'A"B)'/" which she can easily compute from the two signatures she has. The 
shop, in turn, can verify the consistency of these two responses. When spending 
several coins at  the same time, the same challenge is used for all the coins and 
Alice sends the product of all the signatures to the shop. (Coins of different 
values use a different v.) This reduces the computations done by Alice to two 
multiplications per coin plus one exponentiation to the power z. For a 20-bit 
challenge the exponentiation requires about 30 multiplications. 

The payment protocol can obviously be converted to a one-move protocol by 
choosing z as a hash value on the coin(s) and the shops identity. This requires 
a larger challenge but eliminates the interaction between the payer and payee. 

At the end of the day, the shop sends c, a, b, the challenge and the response 
to the bank. The bank can verify the correctness of the coin and credit the shop 
with the corresponding amount. If Alice spends the same coin twice, she must 
reveal two different points on the line z c) kz + U which immediately allows the 
bank to determine her identity U. 

Given this idea for the payment protocol, the problem of withdrawing the 
coin from the bank remains. Alice must get the signatures on C k A  and CUB 
while the bank learns nothing about c, a, b or k. 

3 Randomized blind signatures 

For our construction of an efficient withdrawal protocol we need a signature 
scheme with the following properties: 

- Alice receives an RSA-signature on a number of a special form, which she 

- The bank is sure that the number it signs was randomly chosen. 
- The bank receivqs no information regarding which signature Alice gets. 

cannot create herself. 
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We call such a signature a mndomired blind signature. The scheme that we use 
here is due to David Chaum [Cha92]. 

The protocol to get a randomized blind signature is shown in Fig. 1. All 
computations are done in an RSA system [RSA78] where the bank knows the 
factorization of the modulus n. The public exponent of the RSA system is v, 
a reasonably large prime (say 128 bits). Alice starts by choosing a random ai, 
and two blinding factors d and 7. She computes yualgu where g is a (publicly 
known) element of large order in Z: and sends the result to  the bank. The bank 
chooses its own contribution a2 and sends this back to Alice. Alice replies with 
f(a1an) - u where !(a) is a suitable oneway function mapping Z: into Z,. The 
bank multiplies y"alg" by a2 and gf(alaa)-u to get 7"ala2gf(ola2), computes 
the v'th root of this number and sends it to Alice. Alice divides out the blinding 
factor 7 to get the pair (a, ( a g f ( " ) ) l l v ) .  The number a is called the base number 
of the signature. 

Alice Bank 

- 
- A +- yYalg" . a2 . ge 

(A)'/" 
t 

Fig. 1. Randomized blind signature scheme 

Note: To make the blinding perfect, all computations involving exponents are 
done modulo v. For example, e is computed as ( f ( a l a 2 )  - 0 )  mod v .  Alice can 
correct for the possible additional factor of gv by multiplying the final signature 
by g(f(a)-a)divu . In the rest of this paper we will assume implicitly that all 
computations involving exponents are done modulo v and that the necessary 
corrections are applied to the resulting signatures. 

Assumption 1. It i s  computationally infeasible to forge a signature pair of the 
fonn (a, (agf(a))l/"). 
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Reasoning. This assumption is a special case of the RSA signature assumption. 
Suppose Alice tries to forge a signature pair (a, A ) .  If we define t := f (a), then 
she must have solved the equation t = f (dug-‘). Two ways to solve this equation 
spring to mind. The first one is to  choose A and then try different values o f t  
until you get lucky (probability of success is l / u ) .  The second one is to choose 
Avg-t ,  compute t ,  and then try to compute A. This requires the computation 
of a v’th root. Neither of these methods seems feasible. 

Even if Alice has a large number of valid signature pairs, it is still difficult 
for her to find new ones. A result of Evertse and van Heyst [EvH92] implies 
(loosely stated) that the only new RSA signatures that can be computed from 
old ones are multiplicative combinations of the old signatures. If you multiply 
two signatures of the form ~ g f ( ~ ) ,  you do not get another valid signature, unless 
f(ab) = f(a) + f ( b ) .  One of the requirements for f is that it is infeasible to find 
relations of this kind. 

Proposition 2 .  The bank get5 no information regarding (a,  (agf(a))l/u) from 
the protocol an Fig. 1 .  

Proof. We define the view of the bank as all the communication to and from the 
bank, plus all the random choices that the bank made. Given the banks view of 
a run of the protocol, we will show that for every legal pair (a, A) there is exactly 
one set of random choices that Alice could have made which would result in her 
receiving that signature in that protocol run. This makes all possible signature 
pairs equally likely, given the knowledge of the bank. 

Given a (from the pair) and u2 (from the view), a1 must have been chosen 
as a/az.  Alice’s choice of u is given by subtracting the value in the third trans- 
mission (f(a) - u) from f(a) (computed from a). Finally, Alice’s choice of y is 
uniquely determined by the first transmission. 

If Alice had indeed chosen a l ,  u and y in this way, then she would have 
gotten (a, A) as a signature pair. So, from the banks point of view, all signature 
pairs are equally likely. 0 

3.1 ‘Abuses’ by Alice 

There are several ways in which Alice can deviate from this protocol which we 
will investigate briefly. For this we rewrite the protocol as shown in Fig. 2. We 
assume that Alice is choosing the numbers A-E in some clever way. For practical 
reasons we have to restrict Alice’s behaviour a bit. In choosing the numbers, she 
can use any construction, but we assume that the only computations that she 
does with the final signature are an exponentiation and a multiplication. (Other 
operations don’t seem to make sense on an RSA. signature.) Furthermore, Alice 
should end up with a v’th root on a number of the form K g f ( K )  for some K 
that Alice can compute. Any other results are not of interest in the coin system. 

First of all, observe that B only occurs as C + B in the result. As C is chosen 
later then B, we can assume B = 0 without loss of generality. 
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Bank 

Fig. 2. Possible behaviours of Alice 

To get a useful signature, Alice must have R = ( K g f ( K ) ) l / " ,  which is equiva- 
lent to D"AEafgEC = K g f ( K ) .  We can assumed that Alice doesn't use a factor 
g 2  in A for some 2. (Alice can get the same effect by adding z to C.) The ex- 
ponents on g are modulo v, so D cannot contribute to them. As Alice doesn't 
know g l / ' ,  she cannot put any extra factors in herself. To get something useful 
she must therefore solve the following two simultaneous equations. 

t + EC = f ( K )  (mod u )  

D"AEaF = Kgt 

for some t E Z". There seems only one way to do this, and that is to fix K by 
choosing D ,  A, E and t ,  and then choosing C to fit the first equation. (Any other 
way would involve inverting the oneway function, or computing a root.) But this 
means that D and E must have been fixed before sending C to the bank. 

We conclude that Alice can 'abuse' this protocol by sending a slightly different 
reply in the third message. She can choose any D and E such that she gets a valid 
signature (on a number of the form z g f ( = ) )  after raising it to the E'th power and 
multiplying it by D. The factor D doesn't help Alice much in cheating. Alice 
can modify the base number after the bank has revealed a2, but she can only 
multiply the base number by D". Because Alice cannot compute roots, any v'th 
power is essentially random to her, thus she cannot control the way in which 
she changes the base number. Alice could at most use the D factor to shift the 
uniform distribution of the base number slightly, but in the large set of possible 
base numbers this is hardly significant. The same basically holds for the E power. 

Unfortunately, we cannot prove that there is no other way for Alice to cheat. 
The attacks allowed in Fig. 2 are only the most obvious ones. There might for 
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example be an attack in which Alice computes the cosine of the last reply to get 
something useful, but this seems somewhat unlikely to give any useful result. 
At present, the state of the art in cryptography does not allow us in general to 
prove the security of such a protocol. 

When E # 1 it is essential for Alice to be able to compute a? after receiving 
a2. For our coin withdrawal protocol we also need a restricted version (see Fig. 3) 
which does not allow Alice to choose E # 1. Instead of a2, the bank sends 
ha2 mod p where p is a prime congruent to 1 modulo n, and h is a publicly known 
element of order n in IF,. The exponents of h are thus reduced modulo n so the 
numbers in the exponent behave in exactly the same way as in the RSA system. 
The final form of the signature will not be (agf(a))llw but rather (c~gf(*~))~/". 
Because Alice cannot compute haF given only h"2 she can no longer choose E. 

Alice Bank 

Fig. 3. Randomized blind signature scheme without exponential attack 

4 Coin withdrawal protocol 

For our system we need 3 numbers, C, A, and B. These will be of the form 

f(h3 c = cg, 

A = ,g,f(") 

B = bgb f ( h 3  

where the numbers g,, g,, and Qb are publicly known and of large order in the 
group 2;. The numbers h, and hb are elements of order n from IF, where p - 1 
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is a multiple of n. The use of three different g values ensures that the numbers 
are distinct and do not mingle when multiplied together in a signature. 

The coin withdrawal protocol (see Fig. 4) consists of three parallel runs of the 
randomized blind signature scheme. Two of the runs are the restricted version, 
and one is the unrestricted version. The E exponent is used to allow Alice to 
randomise the k parameter of the secret sharing line herself while the bank can 
ensure that the other parameter is Alice's identity U. 

Alice Bank 

Fig. 4. Coin Withdrawal protocol 
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There are 2 additions to this simple parallel-run view. One is that there is an 
extra one-way function that makes a depend on e, and eb. This prevents Alice 
form choosing e, and eb as a function of a. Were she able to do this, she could 
cancel some of the terms and get a signature on just C and B. Although this 
is not a threat as such against the payment scheme, it is undesirable that Alice 
has  so much freedom. 

The second modification is that the bank puts a random power on C in 
the first signature. Alice is going to end up with two signatures: (CkA)'I" and 
(CUB)'/".  Here, U is the identity and k is a random number unknown to the 
bank. However, to prevent Alice from combining an old coin with the one cur- 
rently being withdrawn the bank must ensure that k is indeed random. Therefore, 
the bank puts a random power on the C in the first signature, forcing k to be 
random. The protocol consists of the following steps: 

1. Alice starts by choosing the random numbers c1, a' ,  b l ,  u, 7, 9, a ,  p, and 
y. The first three are Alice's contributions to the base numbers. The second 
triple are the exponential blinding factors, and the third triple are the mul- 
tiplicative blinding factors. Alice computes y"clgz, a"alg; and p b l g t ,  and 
sends these numbers to the bank. 

2. The bank then chooses its three contributions to  the base numbers c ~ ,  az ,  
b z .  It sends hzz, az, and h? to Alice. 

3. Alice chooses a random number k l ,  and computes the exponents e, and 
eb as f(hf"*) - u and f(h:lba) - 4. She computes a as (alazfz(ec,eb))kl 
where fi(.) is a suitable oneway function. The exponent e, is computed 
somewhat differently to get the right exponent after raising the signature to 
the kl'th power. After computing e, as ( l /k l ) f (u )  - T ,  Alice send all three 
exponents to the bank. Note: The subtractions and multiplication by l /ki  
are done modulo v. Any modulo reduction here has to be corrected in the 
final signature, by multiplying the signature by a suitable powers of g c ,  9 ,  
and gb. These corrections are not shown. 

4. The bank now computes the blinded versions of C, A and B. ?? is computed 
as y"c1g: . c ~  .gEC which is equal to yucgcf(h:) for c = c1c2. A and B are com- 
puted in a similar way, and the factor fZ(e,, et,) is put into 2. The following 
relations hold between the blinded numbers and their unblinded values: 

- - 

- c = 7°C 
- A = a"Al/kl 
- 
B = PUB 

-k2 - 
The bank then chooses a random kz,  and sends cz, b z ,  k z ,  (C . A ) l / " ,  and 
(C . B)'/" to Alice. 

5. Using c~ and b2 Alice can compute c and b as clcz and blbz respectively. She 
now constructs the numbers C ,  A ,  and B as cgcf(h:), ag,f(") ,  and bg:(h:l. 

Alice computes the first signature S, as ( (C  . A ) l / u / y k z a ) k l ,  and the 

second signature sb as (C . B) ' / " / yuB .  The k,'th power is needed because 

-u - 

-kz  - 

-u - 
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the base number a was chosen as (ala2)k1 instead of a1a2. All the necessary 
adjustments in the exponent of go were already made by Alice. The total 
effect of this kl’th power is to get a v’th root on the number C k A  where 

Finally Alice checks that the signatures she received are correct by verifying 
that S: = C k A  and S l  = CUB.  

k = klk2. 

Alice ends up with the following set of numbers: c, a ,  b, k, S,, and sb which 
are the 3 base numbers, the random parameter for the secret sharing line and 
the 2 signatures. These 6 numbers plus the identity U are used as input to the 
payment protocol. 

We still need a few additions to this protocol to  protect Alice against framing 
by the Bank. To this end we let U be the concatenation of Alice’s identity and a 
unique coin number. This makes the U’s of all the coins distinct. Secondly, in the 
third transmission Alice includes a digital signature on U and all the data  in the 
first three transmissions. If the bank now claims that Alice spent a coin twice, it 
must show a transcript of the withdrawal protocol for that  coin. This transcript 
must include the correct data  in the last transmission. (This is verifiable by a 
third party.) The bank also shows a,  b and c from the doubly spent coin. 

If Alice didn’t spend the coin with that identity twice, then the bank can 
have no knowledge regarding a,  b, or c. So if the bank tries to frame Alice, the 
triple (a, b, c) will (with high probability) be different from the actual values used 
by Alice. If Alice can provide a different triple ( a , b , c )  plus the corresponding 
blinding factors that match the transcript, then the bank must be framing Alice, 
as she cannot generate a new triple which matches a given transcript. 

5 Remarks 

It would be nice to make a similar system where C, A ,  and B are images under 
oneway functions of a single base number c. If c can also be made smaller (say 
in Z, instead of Z,) then we could store a coin in about 70 bytes. However, 
constructing an efficient withdrawal protocol for such a coin remains an open 
problem. 

Work is currently under way to implement this scheme on workstations to 
provide e-mail money. An extension of this coin system to n-spendable coins 
(which can be spent n times but not n + 1 times) and the incorporation of 
observers in the coin system are described in (Fer941. 
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