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Abetract. Recently, Qu and Vanstone have announced the construction 
of eeverd new public-key cryptosyetcma based on group factorization. 
One of theae was described at the last AUSCRYPT meetiq [2]. We 
point out a seriow weakness of thi. lut  ~yyrtem which makeo it k r e .  
Our method only ollcll elementary algebra. 

1 The proposed cryptosystem 

Let G be a finite group. A factorization of G ie a sequence A1, - - - , A, of subsets 
of G such that each element g of G can be expremed uniquely as a product 

where gi E &. 
The public-key cryptoeyatem deecribed in [2] uaea the additive group G = Z?. 

Starting from a wquence al, - . - , of generators, the authore build a sequence 
G = Go > C1 > ... > Cn/p = (0) of subgroup, where Ci is generated by 
{api+ l ,  upi+t, ~ 2 i + s ,  * - ,an}.  Next, a complete set of eoeet representatives of Gi 
in Gi-1 

Ai = {iii[i, 01, -di[i, 1],qi, 2 ] , q i ,  31) 
- 

ia choeen, where - 
a[i,j’j =jiu~i-i +jmi + aid 

j 1 j 2  being the binary expansion of j and uid a random element of Gi. 

similar construction ie performed, with the difference that four complete sets 
The family Xi is defined for i 5 n/4 - 1. For n/4 5 i 5 n/2 - 2, a somehow 

- 
Ai,h = {E[i[i, o]A,E[i, l ] h , d [ i ,  2 ]h ,q i ,  3]h} 

are built instead of one. 
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Finally, a one-one function f that maps the set { 1, - - , n/4 - 1) onto the set 
{n/4, -. . , n/2 - 2) ia chosen and the public key A1, .  - - , ,4,,1~-~ ia defined where 
Ai is obtained by (randomly) ordering the set 

A measage m of n - 4 bits is encoded as follows: packing the bits 4 by 4, 
one obtains a sequence ml, - - a ,  m,,/4-1 of hexadecimal digits from which the 
ciphertext c is computed as: 

The secret data coming from the construction itself allow decoding: using 
the decomposition of c in the basis a1, - - - , a, succeeeively givea, for each i = 
1 . . . n/4 - 1, the corresponding index h of the vector 

h] +zv(i), J l h  

choeen from Ai via mi. But, once all the values h are known, the decomposition 
of c in the basis al, - - -,a, also givea by an easy recursion on k = n/4- -.n/2-2 
the missing part z [ k ,  J l h  of the vector 

choeen at level f - l ( k ) ,  All this can be made quite efficient (e [2]). The value 
n = 128 is suggested for practical implementations. 

2 Basic observations 

In [2],  it is stated that, although the cryptoeystem is a kind of (modular) knap  
sack, methods using lattice reduction, such ae the LagariagOdlyzko attack ( [3 ] )  
do not apply. We agree with this opinion and we think it remains true even with 
recent improved versions of this attack such as [ l ] .  Thw, we take another way. 

Note that the group G used in aection 1 is also a vector space: wing Gaussian 
elimination over the field 2/22, it is easy to compute the dimension of a subpace 
of G generated by a given family X of vectors and to output a bash of this 

Also, whenever a large family X is choeen in a subspace F of G, this family 
subpace. 

is quite likely to generate the entire subpace. For example, we have: 

Theorem 1 Zf P uectors are chosen independanily ai  random in a uecior space 
of dimension K ouer the two elemeni field, ihe pro6a6iliig ihai ihey do not gen- 
erate the enfin space is at most 2 P - K .  
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The proof of thie result ia quite simple: given a subepace of dimension k - 1, 
the probability that dl choicee remain in this aubpace ie at moet i'. But the 
number of such subapacee ie exactly the number of non-zero linear function&, 
i.e. 2K - 1. 

From the public key of the above cryptosyetem we define 

A' = U Ai 
j>i 

and we o k r v e  the following 
Eact: With high probability, A' generates the subspace Gi, provided i L not too 
large. 

of 
dimension n - 2i. Even if the vectora from A' are not really chosen independantly, 
the above theorem still gives a convincing estimate of the probability that A' 
doee not generate Gi, namely *-Iu. For n = 128, thie estimate remains below 
2M up to i = 27. Thie leaves out only four values. 

Thus, it is fairly clear that some secret information leeb out. In the next 
section, we will see how to take advantage of thie fact. 

Note that A' contains 16(n/4 - i) vectore from the space Gi, which 

3 Cryptanalysis of the system 

From eection 2, we know that we can m v e r  from the public data the sequence 
of subgroup Gi, for i not too large, say i 5 io .  Our cryptanalysis include several 
step. 

Grouping the elernenis of Aj togeihcr, for i noi ioo lorpe, Although the elements 
of each Aj have been scrambled, it ie poeeible to group together the elementa 

with the same h by using the equivalence relation 

Since, the Gi's are known up to i = io ,  the grouping is properly recovered up to 
i = io as well. We note that actually, whenever u and u are equivalent elements 
of Ai , the u @ u belongs to Gn/d- 1. This way, we can collect a fairly large 
family Y of elements of Gn/,-I. 

EZlending the method l o  ihc lost few indices. For i between io and n/4- 1, we 
have not been able so far to compute accurately Gi because the sample A' of 
elements of Gi wan not large enough. Now, if we add to A' the aet Y that has 
been computed at the end of the last paragraph, then we see that we obtain a 
generating family for Gi. From this, we can deo perform the correct grouping 
of Ai. 
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Recovering the secni pcrmuiaiion f .  We work again with the equivalence rela- 
tion on Ai defined above and, thie time, we use the fact that, whenever u and v 
are equivalent elements of Ai, the sum u e v belongs to Gl(i)-I (and not only 
to Gn/4-1 as wly~ obeerved above). We let E; be the set of s u m  u d u obtained 
from equivalent elementa of Ai. 

fact: 
i) if f ( i )  = n/4 then, with bigh , 

Esch Bi contains 24 elements. We define: 

E' = U Ei 
i #i 

probability, 3' generates the aubspaee Gn 14 

ii) otherwise, with high probability, B' generatee the subepace Gnf4-1 
Thie ie because, we have, in each cane a very large family of members of the 

corresponding space. 
From the fact, it follows that we can recover both f-'(n/4) and Gn/d by 

computing the dimension of all the spaces generated by the various families E' . 
A recursive procedure will then achieve the same for f-'(n/4 + j) and Gn/d+j: 
thie procedure u~es the same argument, the family Bi being restricted to those 
indices i for which f(i) ie not yet known (i.e. is 2 n/4 + j). 

Note that, at step j, we have 24(n/4 - j - 2) elements of a subepace of 
dimension n/2 - 2j  or n/2 - 2 j  + 2. Using the estimate of theorem 1, we see 
that the probability of error remains quite small even for the last significant C B B ~  

(j = n/4 - 3), for which it ia below 2-l6. Still, there ia a slight chance that 
f-l(n/4 + j) ie not correctly computed for say the last two or three valuea. This 
issue will be addreseed specifically when we turn to decoding. 

. 

Decoding. Given the ciphertext c, we first apply the following procedure: 
for i := 1 to n/4 - 1 do 
begin 
pick any u i0 Ai such that c @ u belongs to Gi 
u[d := u; return u[d; 
c : = c e u ;  
end; 
return c 

unique element of Ai that contributes to the sum 
At the end of the procedure, we have reduced the posible choices of the 

to a subeet of each Ai consisting of the four elements equivalent to the vector u[q 
returned at step i. We denote thie subset by &. Next, we apply the following. 
for i := n/4 to n/2 - 2 do 
begin 
pi& 
v[4  := v; return urh; 
c : = c e u ;  
end 

u in Al-1 i) SU~A d a t  c e ~ [ d  e v belongs to Ci 
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The value of u[il returned at step i is the vector a[i, mi] of the sum 

This gives the plaintext rn. Efficient implementations using decoding matricea 
can be implemented in [2]. 

As observed above, there is a small chance that a mistake occurs for two or 
three values i = f-'(n/4 - 2), i = f-'(n/4 - 3), etc. This can be corrected by 
exhaustive search. Note that, since the mistake coma from the attack (and not 
from the ciphertext), the proper value off can be recovered from a few decoding 
computations. 

4 Conclusion 

We have pointed out a serious weakneas in the system p r o p d  in [2]. Further- 
more, we do not feel simple modificatiom of the system can restore its security. 
For example, it is quite poeeible to changer the order of the Ai'a but the correct 
order can be recovered by computing dimensions with the same method we used 
to dkloee f .  
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