Weaknesses of a public-key cryptosystem based
on factorizations of finite groups

Simon Blackburn * Sean Murphy Jacques Stern
Information Security Group, Laboratoire d’Informatique,
Royal Holloway and Bedford New College, Ecole Normale Supérieure,
University of London, 45, rue d’Ulm,
Egham, Surrey TW20 0EX, U.K. 75230 Paris

Abstract. Recently, Qu and Vanstone have announced the construction
of several new public-key cryptosystems based on group factorization.
One of these was described at the last AUSCRYPT meeting [2]. We
point out a serious weakness of this last system which makes it insecure.
Our method only uses elementary algebra.

1 The proposed cryptosystem

Let G be a finite group. A factorization of G is a sequence A;,---, A, of subsets
of G such that each element g of G can be expressed uniquely as a product

9= 9s8s-1"""1

where g; € A;.

The public-key cryptosystem described in [2] uses the additive group G = Z27.
Starting from a sequence a,, - - -, ay, of generators, the authors build a sequence
G = Go > Gy > -+ > Gpya = {0} of subgroups, where G; is generated by
{a2i41, @32i43, 3i43, - -, @n}. Next, a complete set of coset representatives of G;

in G.'_l
A = {als, 0], 3, 1), a5, 2, 315, 3])
is chosen, where
ali, j] = jiagi—1 + jaazi + ai

J1J2 being the l_)inary expansion of j and a;; a random element of G;.
The family A; is defined for § < n/4— 1. For n/4 < i < n/2 - 2, a somehow
similar construction is performed, with the difference that four complete sets

A = {ai, O)a, ali, 1)a, i, 2], &[4, 3]a}
are built instead of one.

® This author was supported by S.E.R.C. research grant GR/H23719

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT *93, LNCS 765, pp. 50-54, 1994.
© Springer-Verlag Berlin Heidelberg 1994

51

Finally, a one-one function f that maps the set {1,---,n/4 — 1} onto the set
{n/4,---,n/2—2} is chosen and the public key A,,---, An/4—, is defined where
A; is obtained by (randomly) ordering the set

U {E[i' h] + EU('.)! J]h}
3

j
h

INIA
INIA

0
0 3

a["p] ’ 0<p<15

A message m of n — 4 bits is encoded as follows: packing the bits 4 by 4,
one obtains a sequence m,---,m, 4_ of hexadecimal digits from which the
ciphertext ¢ is computed as:

c= Za[i, m;]

The secret data coming from the construction itself allow decoding: using
the decomposition of ¢ in the basis ay, - - -, a, successively gives, for each i =
1-.-n/4 — 1, the corresponding index A of the vector

chosen from A; via m;. But, once all the values h are known, the decomposition
of ¢ in the basis a;, - - -, ap, also gives by an easy recursion on k =n/f4---n/2—-2
the missing part @[k, j]5 of the vector

alf ' (k), b + alk, 5]

chosen at level f~1(k). All this can be made quite efficient (see [2]). The value
n = 128 is suggested for practical implementations.

2 Basic observations

In [2], it is stated that, although the cryptosystem is a kind of (modular) knap-
sack, methods using lattice reduction, such as the Lagarias-Odlyzko attack ([3])
do not apply. We agree with this opinion and we think it remains true even with
recent improved versions of this attack such as [1]. Thus, we take another way.

Note that the group G used in section 1 is also a vector space: using Gaussian
elimination over the field Z/2Z, it is easy to compute the dimension of a subspace
of G generated by a given family X of vectors and to output a basis of this
subspace.

Also, whenever a large family X is chosen in a subspace F of G, this family
is quite likely to generate the entire subspace. For example, we have:

Theorem 1 If P vectors are chosen independantly at random in a veclor space
of dimension K over the two element field, the probability that they do not gen-
erale the entire space is at most 2P~ K

52

The proof of this result is quite simple: given a subspace of dimen:ion k-1,
the probability that all choices remain in this subspace is at most % . But the
number of such subspaces is exactly the number of non-zero linear functionals,
je 2K 1.

From the public key of the above cryptosystem we define

A‘:UA.'

i>i

and we observe the following
Fact: With high probability, A* generates the subspace G;, provided i is not too
large.

Note that A® contains 16(n/4 — i) vectors from the space G;, which is of
dimension n—2¢. Even if the vectors from A’ are not really chosen independantly,
the above theorem still gives a convincing estimate of the probability that A
does not generate G;, namely 23"~ 1%, For n = 128, this estimate remains below
240 up to ¢ = 27. This leaves out only four values.

Thus, it is fairly clear that some secret information leeks out. In the next
section, we will see how to take advantage of this fact.

3 Cryptanalysis of the system

From section 2, we know that we can recover from the public data the sequence
of subgroups G;, for i not too large, say i < ig. Our cryptanalysis include several
steps.

Grouping the elements of A; together, for i not too large. Although the elements
of each A; have been scrambled, it is possible to group together the elements

ali, h] + @[f(i), s]n
with the same h by using the equivalence relation
udveG

Since, the G;’s are known up to i = 1, the grouping is properly recovered up to
i = ip as well. We note that actually, whenever u and v are equivalent elements
of A;, the sum u @ v belongs to Gn/4—1. This way, we can collect a fairly large
family Y of elements of G, /4.

Ezxtending the method to the last few indices. For i between §p and n/4 — 1, we
have not been able so far to compute accurately G; because the sample A* of
elements of G; was not large enough. Now, if we add to A the set Y that has
been computed at the end of the last paragraph, then we see that we obtain a
generating family for G;. From this, we can also perform the correct grouping
of A;.

53

Recovering the secret permuiation f. We work again with the equivalence rela-
tion on A; defined above and, this time, we use the fact that, whenever u and v
are equivalent elements of A;, the sum u @ v belongs to Gy(;)—, (and not only
to Gn/4—1 88 was observed above). We let B; be the set of sums u @ v obtained
from equivalent elements of A;. Each B; contains 24 elements. We define:

B = U B;
J#i
fact:
i) if (i) = n/4 then, with high probability, B' generates the subspace Gn /4
ii) otherwise, with high probability, B' generates the subspace G, /4-1

This is because, we have, in each case a very large family of members of the
corresponding space.

From the fact, it follows that we can recover both f~!(n/4) and Gn4 by
computing the dimension of all the spaces generated by the various families B*.
A recursive procedure will then achieve the same for f~'(n/4 + j) and Gpn/44j:
this procedure uses the same argument, the family B; being restricted to those
indices i for which f(i) is not yet known (i.e. is > n/4 + j).

Note that, at step j, we have 24(n/4 — j — 2) elements of a subspace of
dimension n/2 — 2j or n/2 — 2j + 2. Using the estimate of theorem 1, we see
that the probability of error remains quite small even for the last significant case
(j = n/4 —3), for which it is below 2-16, Sitill, there is a slight chance that
F~Y(n/4+ j) is not correctly computed for say the last two or three values. This
issue will be addressed specifically when we turn to decoding.

Decoding. Given the ciphertext ¢, we first apply the following procedure:
fori:=1ton/4—-1do
begin
pick any u in A; such that c & u belongs to G;
uli] := u; return ufg];
c:=cOu;
end;
return ¢
At the end of the procedure, we have reduced the posible choices of the
unique element of A; that contributes to the sum

c= Za[i, m;]

to a subset of each A; consisting of the four elements equivalent to the vector uli]
returned at step i. We denote this subset by A;. Next, we apply the following.
fori:=nf4d ton/2—2 do

begin B

pick any v in Aj-1;y such that ¢ @ uls] ® v belongs to G;

v[i] := v; return v[:%;

c:=cPu,

end

54

The value of v[i] returned at step i is the vector [, m;] of the sum

c= Ea[i, m;]

This gives the plaintext m. Efficient implementations using decoding matrices
can be implemented as in [2].

As observed above, there is a small chance that a mistake occurs for two or
three values i = f~1(n/4 —2), i = f~1(n/4 — 3), etc. This can be corrected by
exhaustive search. Note that, since the mistake comes from the attack (and not
from the ciphertext), the proper value of f can be recovered from a few decoding
computations.

4 Conclusion

We have pointed out a serious weakness in the system proposed in [2]. Further-
more, we do not feel simple modifications of the system can restore its security.
For example, it is quite possible to changer the order of the A;’s but the correct
order can be recovered by computing dimensions with the same method we used
to disclose f.

References

1. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. P. Schnorr and
J. Stern, Improved low-density subset sum algorithms, Computational Com-
plezity, to appear.

2. M.Qu, S. A. Vanstone, New public-key cryptosystems based on factorizations
of finite groups, AUSCRYPT’92, preproceedings page 12.7-12.12.

3. J. C. Lagarias and A. M. Odlyzko, Solving low-density subset sum problems,
J. Assoc. Comp. Mach. 32 (1985), 229-246.

	Weaknesses of a public-key cryptosystem based on factorizations of finite groups
	The proposed cryptosystem
	Basic observations
	Cryptanalysis of the system
	Conclusion
	References

