Skip to main content

Wet Artificial Brains: Towards the Chemical Control of Robot Motion by Reaction-Diffusion and Excitable Media

  • Conference paper
Book cover Advances in Artificial Life (ECAL 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1674))

Included in the following conference series:

Abstract

The paper gives probably the first ever systematic discussion on how wave processes in reaction-diffusion and excitable homogeneous media can be efficiently used to solve a wide range of problems in robot navigation. Three possible applications of chemical controllers are considered: (i) object following, (ii) optimal path finding, and (iii) universal control. The various implementations of controllers discussed here include: Belousov-Zhabotinsky chemical processors, families of excitable lattices, and self-localised excitations. We present some results from a simulation of robot control using excitable lattices, and find the results encouraging for our planned construction of a chemically controlled robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky A. Universal dynamical computation in multi-dimensional excitable lattices International J. Theor. Physics 37 (1998) 3069–3108.

    Article  MATH  MathSciNet  Google Scholar 

  2. Adamatzky A. and Holland O. Edges and computation in excitable media In: Proc. ALIFE IV: 6th Int. Conf. on Artificial Life (MIT Press, 1998) 379–383.

    Google Scholar 

  3. Adamatzky A. and Holland O. Phenomenology of excitation in 2D cellular automata and lattice swarm Chaos, Solitons and Fractlas 7 (1998) 1233–1265.

    Article  MathSciNet  Google Scholar 

  4. Adamatzky A. and Tolmachev D. Chemical processor for computation of skeleton of planar shape Adv. Mater. Opt. Electron. 7 (1997) 135–139.

    Article  Google Scholar 

  5. Adamatzky A. and Holland O. Parametric classification of local rules of excitation in a lattice: morphology, dynamics and computation Unpublished manuscript, 1998.

    Google Scholar 

  6. Babloyantz A. and Sepulchre J.A. Front propagation into unstable media: a computational tool In: Nonlinear Waves Processes in Excitable Media (A.V. Holden, M. Markus and H.G. Othmer, Eds) (New York and London: Plenum Press, 1991) 343–350.

    Google Scholar 

  7. Braitenber V. Vehicles: Experiments in Synthetic Psychology (The MIT Press: Cambridge, Massachusetts, 1984).

    Google Scholar 

  8. Fredkin E. and Toffoli T. Conservative logic In. J. Theor. Phys. 21 (1982) 219–253.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hjelmfelt A., Weinberger E.D. and Ross J. Chemical implementation of neural networks and Turing machines Proc. Natl. Acad. Sci. USA 88 (1991) 10983–10987.

    Article  MATH  Google Scholar 

  10. Holland O. Grey Walter: The pioneer of real artificial life In: Artificial Life V(The MIT Press, 1997) 34–41.

    Google Scholar 

  11. Jakubowski M., Squier R.K. and Steiglitz K. State transformations of colliding optical solitons and possible application to computation in bulk media Phys. Rev. E 58 (1998) 6752–6758.

    Article  Google Scholar 

  12. Moebius D. and Kuhn H. Energy transfer in monolayers with cyanine dye Scheibe aggregates J. Appl. Phys. 64 (1979) 5138–5141.

    Article  Google Scholar 

  13. Rambidi N.G. An approach to computational complexity: nondiscrete bioiholecular computing Computer 25 (1992) 51–54.

    Article  Google Scholar 

  14. Rambidi N.G. and Yakovenchuk D. Finding path in a labyrinth based on reaction-diffusion media Adv. Mat. Optics and Electronics (1998) (in print).

    Google Scholar 

  15. Rambidi N.G. and D.S. Chernavskii Toward a biomolecular computer. 1. Ways, means, objectives J. Mol. Electron. 7 (1991) 105–114.

    Google Scholar 

  16. Rambidi N.G., Maximychev A.V. and Usatov A.V. Molecular image processing based on chemical reaction systems. 1. Implementation of Blum-type algorithm Adv. Materials Optics Electr. 4 (1994) 191–201.

    Article  Google Scholar 

  17. Steiglitz K., Kamal I. and Watson A. Embedded computation in one-dimensional automata by phase coding solitons IEEE Trans. Comp. 37 (1988) 138–145.

    Article  MathSciNet  Google Scholar 

  18. Steinbock O., Kettunen O. and Showalter K.J. Anisotropy and spiral organizing centers in patterned excitable media Science 269 (1995) 1857–1860.

    Article  Google Scholar 

  19. Steinbock O., A. Toth and K. Showalter Navigating complex labyrinths: optimal paths from chemical waves Science 267 (1995) 868–871.

    Article  Google Scholar 

  20. Tolmachev D. and Adamatzky A. Chemical processor for computation of Voronoi diagram Adv. Mater. Opt. Electron. 6 (1996) 191–196.

    Article  Google Scholar 

  21. Toth A. and Showalter K. Logic gates in excitable media J Chem Phys 103 (1995) 2058–2066.

    Article  Google Scholar 

  22. Tu Y. Worm structure in modified swift-hohenberg equation for electroconvection patt-sol/9701001.

    Google Scholar 

  23. Walter G. W. An imitation of life Scientific American (1950) 42–45.

    Google Scholar 

  24. Zigler J., Dittrich P. and Banzhaf W. Towards a metabolic robot control system In: Proc. 2nd Int. Workshop Information Processing in Cells and Tissues (New York: Plenum Press, 1997) 305–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adamatzky, A., Holland, O., Rambidi, N., Winfield, A. (1999). Wet Artificial Brains: Towards the Chemical Control of Robot Motion by Reaction-Diffusion and Excitable Media. In: Floreano, D., Nicoud, JD., Mondada, F. (eds) Advances in Artificial Life. ECAL 1999. Lecture Notes in Computer Science(), vol 1674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48304-7_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-48304-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66452-9

  • Online ISBN: 978-3-540-48304-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics