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Abstract. Today’s open hypermedia systems (OHS) provide middle-
ware services for a range of hypertext applications. However, configura-
tion and adaptation to specific applications’ requirements is a tedious
task. Research has been conducted into further splitting hypermedia
middleware systems up into sets of interacting components that can
be combined, extended and configured dynamically. These component-
based open hypermedia systems (CB-OHS) allow for better adaptability,
configurability and also interoperability amongst hypermedia middleware
systems themselves.

Described is the Solent component-based open hypermedia system. In
particular, we focus on architecture, dynamic service discovery and in-
vocation as well as the storage interface, which allows for storage and
retrieval of arbitrary hierarchical structures encoded in XML.

Authoring and managing links are without doubt essential issues in hyper-
text systems. Thus, research has been conducted into separating link data from
content, i.e. the documents, which results in link services being available to all
applications on the user’s desktop. These third generation hypertext systems are
called open and are referred to as open hypermedia systems (OHS) [18].

There are several consequences of designing a system with separate links [10]:
documents can still be managed and edited by those applications that created
them and more links can be applied to documents that are read-only, such as
documents on a CD-ROM or documents owned by another user. In addition to
this, multiple users can use their own link bases at the same time, thus there
are different views on the same information space. One of the most important
features lies in the possibility of link maintenance: when updating links only the
link bases have to be updated, the documents themselves remain unchanged.
This clearly has great advantages in contrast to systems with embedded links
— the WWW serving as a very prominent example — because these systems
demand all relevant documents to be changed.

While the development from the early monolithic and closed hypertext sys-
tems to today’s open and distributed hypermedia systems with support for col-
laboration has resulted in increased openness and flexibility [13,20], integrating
or adapting various different tools as client applications has remained a tedious



task. Many developers found themselves implementing essentially similar compo-
nents, simply for the benefit of having their own platform on which to experiment
with hypertexts.

At the Second Workshop on open hypermedia systems (OHS) held in con-
junction with the 96 ACM Hypertext Conference [19] the open hypermedia
systems working group (OHSWG) was formed, with its main focus being inter-
operability between OHSs [18]. The group felt that the community had reached
a level of maturity and stability such that it was possible to abstract the com-
mon features of the various systems, and to propose to move towards one of the
major goals of any open system: interoperability.

This goal resulted in the hypermedia middleware, i.e. the link servers, be-
ing split up into several components with well defined interfaces [2,20]. Some
of these interfaces, e.g. for navigational hypertext, have been standardised by
the open hypermedia systems Working Group (OHSWG) and therefore allow
interoperability amongst components [7].

This paper describes the design and implementation of the Southampton
component-based open hypermedia system (CB-OHS) which we refer to as the
“Solent” system, named after the waters around Southampton. The system has
been developed to address the many issues posed to hypermedia middleware and
serves as a platform for the development of advanced multmedia applications
such as content-based retrieval [4], content-based navigation [12], or navigation
in audio [3].

1 Requirements

The objective of efficiently supporting a diverse range of advanced open hy-
permedia applications by a set of middleware components leads to a number
of requirements that have to be met. Besides the more technical requirements,
there are goals that we as a research group would like to address, such as building
a framework that could serve as a research vehicle with which we could further
experiment,.

Dynamic Setup of Components (Requirement 1, R1). This precondition
arises from our experience in providing middleware services for various open
hypermedia applications. Configuring these applications is often a quite complex
task, additionally it may require updates to components at runtime with minimal
impact on other components, dynamic lookup of services, and more [8]. Besides,
within the context of the research undertaken towards interoperability amongst
open hypermedia systems, there is the need to support multiple hypermedia link
models at the same time and allow dynamic exchange and adaptation of these.
Often components run on various platforms and therefore the communicaion
mechanism between components should be platform independent.

Support for Navigational Hypertext (R2). Various forms of navigation
still build the core features of many hypertext systems. Thus, it has been a



requirement to support the standardised navigational interface as promoted by
the OHSWG [7].

Support for Storage of Arbitrary Structured Data (R3). The data be-
ing dealt with in hypermedia applications is often highly structured. Hence it
is a requirement to support such structures, e.g. encoded in eXtensible Markup
Language (XML) we believe that support of this standard is necessary. XML
has an interesting property in that it allows a mode whereby no document-type-
definition is required to form an XML document (hence approaches such as [5]
cannot be directly applied). This implies that the storage system has to support
storage and retrieval of structures that it does not “know” about. Besides encod-
ing of data in documents, XML is also often used for communicating messages
between components. This further strengthens the need for support of XML (see
also Section 2.2).

Support for Computations (R4). In particular for supporting content-based
retrieval [4] and navigation in multimedia documents [12], it is necessary to
support the abstract notion of a computational service as a “black-box” which
takes defined parameters as input and produces a fixed output. A computation
stores the information about a service in the same way that a node represents a
wrapper to a document, it is a meta-information object.

Open, Extensible Framework (R5). It was a requirement to build a frame-
work which can be used as a research vehicle in a number of research projects.
By Framework we refer to a software environment that is designed to simplify
the development and management of hypermedia applications [2] by supporting
re-use of existing components [11]. In particular, we want to research issues such
as streaming content data and its synchronisation with link data, the use of com-
putations for content-based retrieval and navigation, and adjust the architecture
to different configurations in order to e.g. address scalability [1].

2 Description of the Architecture

The architecture of the Solent system builds on the experience gained in devel-
oping the open hypermedia systems Microcosm [6], Microcosm TNG [9], MEM-
OIR [8] and others. Figure 1 depicts the conceptual architecture.

The Figure shows the separation of components into front-end components
(i.e. the applications), middleware services, and the storage backend. This is
in agreement with both other CB-OHSs such as Microcosm TNG [9] or Con-
struct [20] and also the requirements mentioned above (R1, R5).

Solent is designed to support the standardised interfaces being developed
within the OHSWG [7], distributing that support over many communicating
components. Key to the system is the notion of an “engine” which is a software
process managing a certain functionality within the system. The most essential
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Fig.1. The Component Architecture of the Solent System

engine, present in every component, is the registration engine (“Reg” in Fig-
ure 1). The purpose of this engine can be compared to that of an information
broker, e.g. in Corba. This engine is tightly coupled to the hosting component.
Its job is to receive registration requests from other components in the system.
When one component registers with any other it sends its connection details
(the protocol and version it speaks as well as the host and other location infor-
mation that it resides on). The registration engine then creates a prozy engine
(see grey boxes in Figure 1) in its own component and sends its own registration
information back. Registration and de-registration can be truly dynamic (R1,
R5).

A proxy engine appears to the outside world as would any other engine but
in actual fact proxies all requests to the real engine in a separate component.
This has several advantages:

1. When a component registers it sends details not only of its own genuine
engines but also to all of the proxy engines.

2. Because the proxy engine retains the connection information of the genuine
engine, when it registers it sends this information rather then that of the
proxy. This means that messages are only ever re-directed once (client to
proxy to engine).

3. Any component can be treated as if it contained an appropriate engine as
long as it knows the location of such an engine in another component.

The communication objects are currently configured to work using messages
represented in XML over plain TCP /IP sockets as “on-the-wire” protocol. Other
communication mechanisms such as Corba’s IIOP or Java’s RMI have been in-



vestigated as well; however, due to reasons of platform independence and stan-
dardisation within the OHSWG, XML over plain Sockets has remained the com-
municatin mechanism of choice. Each incoming message is offered to each engine
in the component, it is up to the engine to decide if it wishes to deal with a par-
ticular request. Each engine does this based on the protocol and version of the
message being sent (if it can differentiate between them) and also the name of
the engine that the message was intended for. As a result, concurrent support
of multiple versions of a particular interface is possible (R1, R5).

This architecture results in a group of communicating components that can
be dynamically configured and distributed over multiple platforms and at the
same time act together cohesively as a whole. Even though currently only two
core hypertext interfaces are supported, namely the navigational and the com-
putational interface (R2, R4), the architecture allows for an easy integration of
interfaces to other hypertext domains such as spatial hypertext [14] or workflow
applications [17].

In the following subsections we will describe two components in more detail,
the computation and storage components.

2.1 Dynamic Service Discovery and Execution

Hypermedia systems often allow their proprietary clients access to advanced
functionality, in particular for supporting retrieval [4] and navigation within
multimedia documents [12]. To enable this functionality to be accessed by generic
clients it is necessary to support the abstract notion of a computational service
(R4). A computation is a black box of functionality, known to a client only by
its name as well as its input and output parameters, that can be invoked and its
results understood, even though its workings are completely opaque. In this way
a generalised client gains access to complex functionality that would otherwise
be unavailable (see also Section 3).

The OHSWG has been working on a standard interface for accessing these
computations. The Solent system contains a computation engine that under-
stands what computations are and the interface that deals with them.

Often computations may actually take a long time to complete resulting in
the obvious problem of giving feedback to the user. The definition of the com-
putation interface therefore includes a mechanism which lets the calling compo-
nent know the time that a service takes and allows the called component to send
progress messages back to give explicit feedback. This can be compared to the
notion of “Quality-of-service” (QoS).

Sometimes a single computation cannot effectively represent a facility. For
instance, for content-based navigation in audio [3], a computation might anal-
yse a section of music and produce a contour; it would then check that contour
against the ones in a database to produce a list of nodes representing musical
scores similar to the selection. The issue here is that although the input and
output parameters of this complex computation are well defined the computa-
tion itself needs to be split up into several sub-computations for scalability and
performance reasons. Clearly, the analysis of a huge audio file should take place



at the file’s location, however, matching the resulting contour against a database
could be performed elsewhere. We have therefore come up with the definition of
a composite computation.

Composite computations represent a way for components to “impart knowl-
edge” to the rest of the system about how computations can be combined (in
serial or in parallel). This leaves plenty of scope for the development of more so-
phisticated systems which learn about particular combinations of computations
and also provides a framework for the exploration of mobile code and agents
within a CB-OHS environment.

2.2 A Storage Engine for XML

The Solent CB-OHS contains a storage component which corresponds to the
storage engine of Figure 1 (R3). Its role is to manage the storage of arbitrary
structured data encoded in XML. The storage engine comprises a relational
database which other components of the Solent system can access via a Java
application, called the storage manager.

We have found that being able to store arbitrary structured data has afforded
some benefits.

— It encourages rapid prototyping of protocols which describe meta-data about
components of the system, such as the navigational or the computational
interfaces. This is because different versions of the same protocol can be
stored in the same database at the same time, without having to create a
new database or alter the schema of existing database tables.

— The ability to store arbitrary structured data enables the installation of new
components within the system without having to consider the protocol that
is being used to manipulate the meta-data representation of its objects, the
only factor being that the meta-data must be able to be represented in XML.

Due to the fact that all (structured) objects are stored as flat relations in the
database, retrieving objects from the database involves building XML elements
which are composed of smaller entities: sub-elements and values. The XML ele-
ments used to represent the arbitrary structured data in the storage engine take
the form of n-ary trees; i.e., each XML sub-element can be considered to be a
branch and XML values represent leaves of a branch.

The implementation of the storage engine comprised of several steps, these
were particularly necessary due to performance issues. We will now briefly de-
scribe these steps.

Firstly, data was retrieved using a breadth-first approach. This method begins
at the element root and works its way down the tree. A typical retrieval operation
using this technique took 121 seconds.! The problem with this approach is that

! The data was calculated with the following configuration: Pentium P75, 32 MB Ram,
Windows 95, JDK 1.1, MS-Access 95. Our test data consisted of around 80 high-level
objects which resulted in approximately 2600 XML objects stored in the database
overall. Times given are for a typical query with a single user.



when storing similarly structured objects in the database, the difference between
objects meant for retrieval and ones that are not, may only be perceivable when
examining the values of the leaves of the retrieved XML structure. Therefore
there may be a lot of retrieval activity within the database, which is retrieving
structure that is not associated with the database objects meant for retrieval, but
this is not discovered till late into the retrieval process. This is an inherent flaw
when retrieving XML structure using a top-down approach, where the discerning
information is located at the bottom of the structure.

In a next step, data was retrieved using a depth-first approach. This involved
retrieving the value at the botton of the branch for each unexplored sub-element
of an element. A typical retrieval operation using this method took 28 seconds. A
major problem concerned with this approach is when there are lots of objects in
the database which match the object meant for retrieval. By retrieving objects
from the bottom-up, the retrieval algorithm may begin constructing objects
which comprise the same structure as one of those objects meant for retrieval, but
may actually contain the values and/or sub-elements which belong to different
objects. Therefore such objects should not be retrieved after all.

Thirdly, we investigated a combination of depth-first and breadth-first re-
trieval methods. It follows the same steps as the depth-first retrieval technique
until the first branch is encountered within the template object. Then instead of
searching the database for the value at the end of that branch, it performs the
breadth-first technique for retrieving database entries down that branch. The
performance measured 24 seconds on average for a typical retrieval operation.

In a final step, we employed caching of objects in main memory to further
increase the efficiency of retrieving objects from the database. On system start-
up, each object stored in the database was built into its corresponding XML
structure. Then when an object was requested, a breadth-first retrieval algorithm
was employed for object retrieval on the database cache. Although breadth-first
retrieval had proven to be the most inefficient retrieval method earlier, caching
easily compensated for this inefficiency. A typical retrieval operation took 5
seconds.

We also investigated query optimisation at the application level [16]. This
involved modifying the client application which sent database retrieval requests.
The order of the elements which the storage engine would use as a basis for
searching the database was changed in order to optimise the retrieval operation.

In general, our approach towards flexibility by supporting storage and re-
trieval of arbitrary structures encoded in XML meant that we needed to in-
vestigate various tuning techniques to achieve the performance needed for our
applications.

3 Sample Applications: Generic Media Player and Car
Stereo

A number of hypermedia applications have been built using the Solent system.
We will briefly describe two examples, a software Car Stereo and a generic Media



Player. The Car Stereo Viewer replicates a car CD system which can play files
encoded in the MP3 standard and it was built specially for use within the Solent
system. The second application, a generic media player, is an adapted client of
the windows media player which has been developed for content based navigation
in audio [3]; it demonstrates how services can be dynamically discovered using
the compu
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Storage Backend

Fig. 2. Media Player and Car Stereo as Sample Applications of Solent

As can be seen in the Figure, the adapted generic Media Player (see top left)
communicates using two interfaces, the navigational and computational inter-
faces, whereas the purpose-built Car Stereo client only uses the computational
interface. The Car Stereo has a built-in set of requests it understands, those can
be instantiated by users through pressing a button. E.g., users might want to
ask for “similar songs” to the one that they are currently listening to.

The Media Player on the other hand, is a generic application that, besides
others, supports the computational interface. Hence, this application is able to
negotiate with a computational engine the set of services it is offered. The Media
Player understands the basic mechanisms on how to call a computation and how
to parse its results, i.e. it knows how to deal with input and output parameters.
In doing so it can dynamically discover the set of computations available, offer
them to the user, perhaps ask the user to provide it with some additional pa-
rameters and finally execute the computation. By supporting the navigational
interface the Media Player not only allows users to retrieve tracks by executing a
computation, but also to navigate from e.g. a track to some description in form
of an HTML file on the Web, etc. This clearly demonstrates the advantage of
component-based open hypermedia systems in that specific parts of functionality
can be supported and combined if feasible.



4 Summary and Conclusions

In this paper we have considered the evolution of open hypermedia systems to
component-based open hypermedia systems. In particular, we have described
the design and development of the Solent CB-OHS which have been driven by
the requirements being set by today’s advanced hypermedia applications.

The experiences we gained during the design, implementation and prototyp-
ing are manifold.

— The modular design clearly helped in restructuring the system to the dif-
ferent application areas and allowed us to better select the components to
support various functionalities [15].

— Furthermore, the flexibility helped to address the problems encountered in
serving different versions of protocols and interfaces that we needed to sup-
port during the development of standardised interfaces within the OHSWG’s
interoperability effort [7].

— The modularity of the system allowed us to run different interfaces simulta-
neously assisting interoperability, in particular at the front-end [20].

— The trade offs between flexibility and performance have been shown by the
example of the storage layer. The feature of being able to support arbi-
trary structures proved useful during the development phase with structures
changing constantly and also, often being undefined (i.e., no document-type-
definition existed). On the other hand, for demonstrating the system as
described above it was necessary to tune the performance of the retrieval
operations.

In summarising we believe that the current system provides us with a plat-
form which allows us to exploit research issues of open hypermedia systems. In
particular, we are interested in addressing scalability aspects of our architec-
ture not only with respect to data [1] but also with respect to number of users,
number of concurrent computations, etc. Additionally, we are currently investi-
gating the feasibility of a standardised interface to access documents within open
hypermedia systems. This includes issues such as streaming document content,
synchronising content data with link data and more.
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