Vector ISA Extension for Sparse Matrix-Vector
Multiplication

Stamatis Vassiliadis, Sorin Cotofana, and Pyrrhos Stathis

Delft University of Technology, Electrical Engineering Dept.,
P.O. Box 5031, 2600 GA Delft, The Netherlands
{Stamatis,Sorin,Pyrrhos}@Plato.ET.TUDelft.NL

Abstract. In this paper we introduce a vector ISA extension to facilitate
sparse matrix manipulation on vector processors (VPs). First we intro-
duce a new Block Based Compressed Storage (BBCS) format for sparse
matrix representation and a Block-wise Sparse Matrix-Vector Multipli-
cation approach. Additionally, we propose two vector instructions, Mul-
tiple Inner Product and Accumulate (MIPA) and LoaD Section (LDS),
specially tuned to increase the VP performance when executing sparse
matrix-vector multiplications.

1 Introduction

In many areas of scientific computing the manipulation of sparse matrices consti-
tutes the kernel of the solvers. Improving the efficiency of sparse operations such
as Sparse Matrix-Vector Multiplication (SMVM) has been and continues to be an
important research topic. Several compressed formats for sparse matrix represen-
tation [5] and algorithms to improve sparse matrix multiplication performance on
parallel [3] and vector machines [4] have been developed. Moreover sparse matrix
solving machines, e.g., (SM)? [1], or Finite Element Method (FEM) [7] compu-
tations dedicated parallel architectures, e.g., the White Dwarf [6], SPAR [L1],
have been proposed.

For reasons related to memory bandwidth and to avoid trivial multiplications
with zero values sparse matrices are operated upon on compressed formats. Such
compressed matrix formats consist of two main data structures: first, the matrix
element values, consisting mainly of the non-zero matrix elements and second,
the positional information for the first data structure. A compact representation
however implies a loss of data regularity and this deteriorates the performance
of vector and parallel processors when operating on sparse formats. For exam-
ple, as suggested in [11], when executing FEM computations a CRAY Y-MP
vector supercomputer operates at less than 33% of its peak floating-point unit
throughput.

Up to our best knowledge, with the exception of [8], not much has been
done to improve the architectural support that vector processors may provide to
sparse matrix multiplication. In this paper we propose a vector ISA extension and
an associated sparse matrix organization to alleviate the previously mentioned
problem. The main contributions of our proposal can be summarized as follows:

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 708715} 1999.
© Springer-Verlag Berlin Heidelberg 1999

Vector ISA Extension for Sparse Matrix-Vector Multiplication 709

— A Block Based Compressed Storage (BBCS) sparse matrix representation
format which requires a memory overhead in the order of logs bits per
nonzero matrix element, where s is the vector processor section size, is in-
troduced.

— A Block-wise SMVM scheme to compute the product of an n x n sparse
matrix with a dense vector in % vectorizable loops is described. All the
trivial with zero multiplications are eliminated and the amount of processed
short vectors is substantially reduced.

— Two vector instructions to support the vectorization and execution of the
Block-wise SMVM scheme, Multiple Inner Product and Accumulate (MIPA)

and LoaD Section (LDS) are proposed.

The presentation is organized as follows: First, in Section[2 we introduce assump-
tions and preliminaries about sparse matrices and SMVM. Section] describes
the sparse matrix compact storage format to be used in conjunction with the
proposed ISA extension. Section H] discusses a Block-wise SMVM method and
the vector ISA extension. Finally, in Section [5] we draw some conclusions.

2 Problem Statement, Assumptions, & Preliminaries

The definition of the multiplication of a matrix A = [a;] by a

i,j=0,1,... ,n—1
vector b = [b;]i=0,1,... n—1 producing a vector ¢ = [¢;]i=0,1,... n—1 is as follows:

n—1
c=Ab, =) aixby, i=01,...,n-1 (1)
k=0

Let now consider the execution of the multiplication in Equation () on a vector
architecture [9)]. More in particular we assume a register type of organization,
e.g., IMB/370 vector facility [2] [10], with the section size of s elements per
register. When executed on such a VP the inner loop, i.e, the computation of
= Zz;é a; bk, can be vectorized. Ideally, if the section size s is large enough,
i.e., s > n, one loop could be replaced with just one inner product instruction
which multiplies the A; vector, i.e., the i*® row of the matrix A, with the b
vector and produces as result the i*” element of the ¢ vector. In practice the
section size is usually smaller than n and the A; and b vectors have to be split
into segments of at most s element length to fit in vector registers. Consequently,
the computation of ¢; will be achieved with a number of vector instructions in
the order of [Z]. Although the speedup due to vectorization obviously depends
on the section size value, due to issues like lower instruction fetch bandwidth,
fast execution of loops, good use of the functional units, VPs perform quite
well when A is dense. When operating on sparse matrices however VPs are
not as effective because the lack of data regularity in sparse formats leads to
performance degradation. Consider for instance that A is sparse and stored in
the Compressed Row Storage (CRS). To process this format each row of non-

! The CRS format consists of the following sets: Value (all the a; ; # 0 elements row-
wise stored), Column_Indez (the a;; # 0 column positions), and Row_Pointer (the

710 Stamatis Vassiliadis, Sorin Cotofana, and Pyrrhos Stathis

zero values forms a vector and it is accessed by using the index vector provided
by the same format. As the probability that the number of non-zero elements in a
matrix row is smaller than the VP’s section size is rather high many of the vector
instructions manipulate short vectors. Consequently, the processor resources are
inefficiently used and the pipeline start-up times dominate the execution time.
This makes the vectorization poor and constitutes the main reason for VPs
performance degradation. An other source for performance degradation might
be related to the use of the indexed load/store instructions which, in principle,
can not be completed as efficient as a the standard load vector instruction.

The occurrence of short length vectors relates to the fact that vectorization
is performed either on row or column direction but not on both. The number of
A matrix elements within a vector register can be increased if more than one
row (column) is loaded in a vector register at a time. Such vectorization schemes
however are not possible assuming the VPs state of the art as such an approach
introduces operation irregularity on the elements of the same vector register.
Whereas the data irregularity can be easily dealt with by using index based op-
erations and /or masked execution, the operation irregularity requires specialized
architectural support and this is exactly what our vector ISA extension does: it
enables the operation on multiple matrix rows at once.

3 Sparse Matrix Storage Format

Before describing the proposed vector ISA instruction extension we first intro-
duce a new Block Based Compressed Storage (BBCS) format to be used for the
representation of the A sparse matrix.

The n x n A matrix is partitioned in [%] Vertical Blocks (VBs) A™, m =
0,1,...,[2] =1, of at most s columns, where s is the VP section size. For each
vertical block A™, all the a;; # 0, sm < j < s(m+1),i=0,1,...,n—1,
are stored row-wise in increasing row number order. At most one block, the last
block, can have less than s columns in the case that n is not a multiple of s.
An example of such a partitioning is graphically depicted in Figure [l In the
discussion to follow we will assume, for the simplicity of notations, that n is
divisible by s and all the vertical blocks span over s columns.

The rationale behind this partitioning is related to the fact that when com-
puting the Ab product the matrix elements a;; are used only once in the com-
putation whereas the elements of b are used several times depending on the
amount of non-zero entries in the A matrix in the corresponding column, as it
can be observed in Equation (). This implies that to increase performance it is
advisable to maintain the b values within the execution unit which computes the
sparse matrix-vector multiplication for reuse and only stream-in the a;; values.
As to each vertical block A™ corresponds an s element section of the b-vector,
b™ = [bims, bms+1,- -+ »Omsts—1] we can multiply each A™ block with its cor-

pointers in the first two sets to the first non-zero element of each row that contains
at least one non-zero element) [5].

Vector ISA Extension for Sparse Matrix-Vector Multiplication 711

A-matrix . . /\ 123456
Xlojijojolo] Vertical
XiX X g X | X|t|t|ofo]o Block
o I N S LTl Seee
X X Xlofofofo]o
XX X X X[1]1]ofo]o| 1 Value
S s >2< —[1]110]0] 2 Column position
ofl1fofo]o
X X Xj1jojojojo 3 EOR flag
X X X X[3[1]o]o]o] 4ZRflag
X X|2|1]ojo|o| 5 EOB flag
X Xi X X|t]ojojojo] 6 EOM flag
X X|3]1|ojo]o
XX X|4loo]o]o
Xi X X|6|1]o]o]o
X X 1|—=]1]1]o]o
X X Xl4]ojofo]o
X% X|6|1]o]o]o
X NERDND
X X X 1|—=]1]1]o]o
X Xl4]ojofo]o
X|7]1]o]1]o

X Non-Zero Values

Fig. 1. Block Based Compressed Storage Format

responding b™ section of the b-vector without needing to reload any b-vector
element.

Each A™, m =0,1,...,2 — 1, is stored in the main memory as a sequence
of 6-tuple entries. The fields of such a data entry are as follows:

1. Value: specifies the value of a non-zero a;; matrix element if ZR = 0.
Otherwise it denotes the number of subsequent block rows? with no non-
zero matrix elements.

2. Column-Position (CP): specifies the matrix element column number with-
in the block. Thus for a matrix element a; ; within the vertical block A™ it
is computed as 7 mod m.

3. End-of-Row Flag (EOR): is 1 when the current data entry describes the
last non-zero element of the current block row and 0 otherwise.

4. Zero-Row Flag (ZR): is 1 when the current block row contains no non-
zero value and 0 otherwise. When this flag is set the Value field denotes the
number of subsequent block rows that have no non-zero values.

5. End-of-Block flag (EOB): when 1 it indicates that the current matrix
element is the last non-zero one within the VB.

6. End-of-Matrix flag (EOM): is 1 only at the last entry of the last VB of
the matrix.

The entire A matrix is stored as a sequence of VBs and there is no need for an
explicit numbering of the VBs.

When compared with other sparse matrix representation formats, our pro-
posal requires a lower memory overhead and bandwidth since the index values
associated with each a; ; # 0 are restricted within the VB boundaries and can be

2 By block row we mean all the elements of a matrix row that fall within the boundaries
of the current VB.

712 Stamatis Vassiliadis, Sorin Cotofana, and Pyrrhos Stathis

represented only with log s bits instead of logn bits. The flags can be explicitly
4-bit represented or 3-bit encoded and, depending on the value of s, they may
be packed with the C'P field on the same byte/word.

The other multiplication operand, the b-vector, is assumed to be dense than
no special data types or flags are required. The by, K = 0,1,... ,n — 1, values
are sequentially stored and their position is implicit. The same applies for the
result, i.e., the c-vector.

4 Block-Wise SMVM and ISA Extension

Assume a register vector architecture with section size s and the data orga-
nization described in Section [Bl The Ab product can be computed as ¢ =
Zi;é A™ x b™,

To vectorize each loop computing the A™ xb™ product and because generally
speaking A™ can not fit in one vector register, we have to split each A™ into
a number of subsequent VB-sections A® each of them containing at most s
elements. Under the assumption that each vertical block A™ is split into #s,,
VB-sections A" the c-vector can be expressed as ¢ = Zi;é ZZ#:S(;” A" x b™.
Consequently, ¢ can be iteratively computed within % loops as ¢m = ¢m—1 +
Zf&” AT xb™, m=0,1,...,% — 1, where ¢,, specifies the intermediate value
of the result vector ¢ after iteration m is completed and ¢—; = 0.

Assuming that A7" = [A7,, ATy, ... Al 4] and ™ = [b",bT", ... ;b5 4] a
standard vector multiplication computes the A7® x b™ inner product as being
gt = Zj;(l) A7bT which is the correct result only if AF™ contains just one
row. As one VB-section A7* may span over r; > 1 rows of A™ the AT* x b™

product should be an r; element vector. In particular, if AT* = [A;n’o, Azn’l, ..

AT with AT = (AT AT AT 4], d = 0,1, ,m — 1, and
#r; being the number of elements within the row j, ¢[* = A™ x b™ has to be

computed as follows:

*

=y et] A= AT) b™, =01, — 1 (2)
Consequently, to compute c}*, r; inner products, each of them involving #r;
elements, have to be evaluated. Moreover when executing the evaluation of
A™? x b™ inner product the “right” elements of b™ have to be selected. There-
fore, ¢}; is evaluated as follows:

mo__ m,j_ m
c '_Ai,O b

. m,j . pm
i cpamy)y TALT b

; . (3)
—|—A;7f#]r]_71 .an}P(AT#rj,l)’ j=0,1,...,m;,—1

As each ¢} contributes to the ¢ vector element in the same row position as A
and row position information is not explicitly memorized in the BBCS format
bookkeeping related to index computation has to be performed. Moreover as A;*
does not contain information about the row position of its first entry, hence not

Vector ISA Extension for Sparse Matrix-Vector Multiplication 713

Vector ¢
. artia
A-matrix Vectorb result
s s
XX X 0 [X 1 2 [[
% A % A A
X X

ﬂ(l 23 456 7 8 91011 1213 1415 16 17 18

[[
Value CP_EOR ZR EOB EOM

[RPR] o[ag2m [6 [1] ofoTo
i i ol 1] oo
0

Contains
12 before 2| @412 4

and 18 after 3| 204.14) | 6 1
execution 4| a(15,15) 7 1

5 1 0
aariy) | 4 0
aazls) | 7 1

VB Section—"

01 234567

sle|-]|=

X Non-Zero Values

Fig. 2. Sparse Matrix-Vector Multiplication Mechanism

enough information for the calculation of the correct inner product positions is
available, a Row Pointer Register (RPR) to memorize the starting row position
for AT* is needed. The RPR is reset every time the processing of new A™ is
initiated and updated by the index computation process.

To clarify the mechanism we present in Figure [2] an example. We assume
that the section size is 8, the VB-section contains the last 8 entries of Al, b!
contains the second 8-element section of b, and that an intermediate ¢ has been
already computed though we depict only the values of ¢ that will be affected by
the current step. First the inner product calculation and the index calculation
are performed. For the inner product calculation only the a(i,j) elements with
ZR = 0 are considered. Initially they are multiplied with the corresponding
b elements, the CP field is used to select them, and some partial products
are obtained. After that, all the partial products within the same row have
to be accumulated to form the inner products. As the FOR flags delimit the
accumulation boundaries they are used to configure the adders interconnection.
The index calculation proceeds with the RPR value and whenever a entry with
ZR =1 is encountered RPR is increased with the number in the Value field.
When an EOR flag is encountered the RPR is assigned as index to the current
inner product and then increased by one. Second the computed indexes are
used to select the ¢ elements to whom the computed inner products should be
accumulated and the accumulation is performed.

714 Stamatis Vassiliadis, Sorin Cotofana, and Pyrrhos Stathis

To be able to execute the previously discussed block-wise SMVM we propose
the extension of the VP instruction set with 2 new instructions: Multiple Inner
Product and Accumulate (MIPA) and LoaD Section (LDS).

MIPA is meant to calculate the inner product A7* x b™. Furthermore, it
also performs the accumulation of the ¢} elements to the c-vector values in the
corresponding locations. The instruction format is MIPA V R1,V R2,V R3. The
vector register V R1 contains A7*, V R2 contains b™, and V 3 contains initially
those elements of the c-vector that correspond to the non-empty rows of AI™
and after the instruction execution is completed the updated values of them.

LDS is meant to load an A]® VB-section from the main memory. The in-
struction format is LDS @A,V R1,V R2. QA is the address of the first element of
the VB-section to be loaded. After an LDS instruction is completed V R1 con-
tains all the non-zero elements of the VB-section starting at @A, V' R2 contains
the indexes of the VB-section rows with non-zero elements (to be used later on as
an index vector to load and store a ¢ section), and the Column Position Register
(CPR), a special vector register, is updated with the CP and flag fields of the
corresponding elements in V' R1. To execute the LDS instruction the VP Load
Unit has to include a mechanism to analyze the BBCS flags in order to compute
the indexes and filter the entries with ZR = 1. In this way V R1 always contains
only nonzero matrix elements and no trivial calculations will be performed.

Even though the previously discussed approach guarantees an efficient fill-
ing of the vector registers, it may suffer a performance degradation due to the
use of indexed vector load/store instructions as such operations, depending on
the implementation of the main memory and/or load unit, may create extra
overhead. However, the use of indexed load/stores can be avoided if instead of
partitioning the VBs in s-element VB-sections, they are divided in [{%] ks-
element hight segmentsﬁ where k > 1. To support this new division the BBCS
has to include an extra flag, the End of Segment (FOS) flag. This flag is 1 for the
entries which describe the last element of a segment. Under this new assumption
when a VB-section is loaded with the LDS instruction the loading stops after
s nonzero elements or when encountering the £OS, FOB, or EOM flag. By
restricting the VB-section’s row span within a VB segment we guarantee that
all the A* X b™s will contribute only to elements within a specific ks-element
wide section of the vector ¢. Consequently, the c-vector can be manipulated with
standard load/store instructions.

5 Conclusions

In this paper we proposed a vector ISA extension and an associated sparse
matrix organization to alleviate some of the problems related to sparse ma-
trix computation on vector processors, e.g., inefficient functional unit utilization
due to short vector occurrence and increased memory overhead and bandwidth.

3 All of them are s x ks segments except the ones on the right and/or bottom edge of
the matrix which might be truncated if the dimension of the matrix n is not divisible
by s.

Vector ISA Extension for Sparse Matrix-Vector Multiplication 715

First we introduced a Block Based Compressed Storage (BBCS) sparse matrix
representation format which requires a memory overhead in the order of logs
bits per nonzero matrix element, where s is the vector processor section size.
Additionally, we described a Block-wise SMVM scheme to compute the prod-
uct of an n x n sparse matrix with a dense vector in % vectorizable loops. To
support the vectorization of the Block-wise SMVM scheme two new vector in-
structions, Multiple Inner Product and Accumulate (MIPA) and LoaD Section
(LDS) were proposed. They eliminate all the trivial multiplications with zero
and substantially reduce the amount of processed short vectors. Implementa-
tion and quantitative evaluations of the performance of the proposed schemes
via simulations on sparse matrices benchmarks constitutes the subject of future
research.

References

[1] H. Amano, T. Boku, T. Kudoh, and H. Aiso. (SM)2-II: A new version of the
sparse matrix solving machine. In Proceedings of the 12th Annual International
Symposium on Computer Architecture, pages 100—107, Boston, Massachusetts,
June 17-19, 1985. IEEE Computer Society TCA and ACM SIGARCH.

[2] W. Buchholz. The IBM System/370 vector architecture. IBM Systems Journal,
25(1):51-62, 1986.

[3] R.Doallo, J. T. no, and F. Hermo. Sparse matrix operations in vector and parallel
processorse. High Performance Computing, 3:43-52, 1997.

[4] 1. S. Duff. The use of vector and parallel computers in the solution of large
sparse linear equations. In Large scale scientific computing. Progress in Scientific
Computing Volume 7, pages 331-348, Boston, MA, USA, 1986. Birkh&user.

[5] 1. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Clarendon Press, Oxford, UK, 1986.

[6] A. W. et al. The white dwarf: A high-performance application-specific proces-
sor. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, pages 212-222, Honolulu, Hawaii, May—June 1988. IEEE Computer
Society Press.

[7] T. J. R. Hughes. The Finite Element Method. Prentice-Hall, Englewood Cliffs,
NJ, 1987.

[8] R. N. Ibbett, T. M. Hopkins, and K. I. M. McKinnon. Architectural mechanisms
to support sparse vector processing. In Proceedings of the 16th ASCI, pages 64-71,
Jerusalem, Israel, June 1989. IEEE Computer Society Press.

[9] P. M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill, New York,
1981.

[10] A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz. The IBM System/370
vector architecture: Design considerations. IEEE Transactions on Computers,
37:509-520, 1988.

[11] V. E. Taylor, A. Ranade, and D. G. Messerschitt. SPAR: A New Architec-
ture for Large Finite Element Computations. IEEFE Transactions on Computers,
44(4):531-545, April 1995.

	Introduction
	Problem Statement, Assumptions, & Preliminaries
	Sparse Matrix Storage Format
	Block-Wise SMVM and ISA Extension
	Conclusions

