A Client/Broker/Server Substrate
with 50 p s Round-Trip Overhead

Olivier Richard and Franck Cappello

LRI, Université Paris-Sud, 91405
Orsay, France
(fci)@lri.fr.

Abstract. This paper describes an environment (API and runtime) for
fast remote executions in the context of NOWs using high performance
networks and low cost multiprocessors. This environment is based on
the usual client/broker/server architecture. It is designed and optimized
for the features of local area networks. The main result of the early
performance measurements is a 50us remote execution overhead.

1 Introduction

A significant advance in networks of workstations are the availability of high
performance network hardwares (ATM, Myrinet, SCI and Ethernet 1 Gbits/s)
and protocols (VIA). An other advance is the progress of software technology
toward the use of components. Distributed environments like NetSovle [1] and
Ninf [2] already allow remote execution through the use of software components.
These Metacomputing tools are mostly dedicated to MAN and WAN. In this
note, we present a low level software mechanism (a substrate) designed for fast
remote executions inside a LAN and based on high performance networks.

2 Software Architecture

The controlled remote execution substrate is based on the classical Client-Broker-
Server (CBS) architecture (Figure [M). The broker provides a strong frontier be-
tween users and servers. It has the responsibility to furnish users with a unique
view of servers. Users can not directly access servers. The substrate had been
designed to fulfill a very low round-trip latency for remote executions. Figure [II
presents the critical path for remote executions.

Three significant points have influenced the substrate design towards a CBS
dedicated to LAN. First, high performance LANs (Myrinet, SCI, Ethernet 1
Gigabits) allow to use high performance protocols (BIP, PM, Unet, Active mes-
sages, Fast Messages, VIA) because the network hardware have several key prop-
erties (almost error free, packets stay ordered, homogeneous physical support).
Second, the broker and server architectures are optimized for performance. In
particular objects management, heterogeneity and security are not fundamental
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Fig. 1. Critical Path for Remote Executions.

issues for our substrate. The substrate follows a multi-thread oriented design.
Servers execute only library function calls and users cannot directly launch pro-
cesses on the server. Since server libraries are suppose to be fault free, there is
no particular memory protection mechanism on the server. Third, the substrate
uses a global naming system for the data sets on clients, broker and servers
to limit the data transfers (between these entities) to the ones required by the
program semantic. Function results and parameters are passed by references to
avoid multiple exchange transfers between client and server when consecutive
functions presents data-flow dependencies. Four client operations allow to man-
age data on the server side: create, kill, put and get. First operations create
(destroy) a variable and return references that may be used to store and read
data sets by client remote function calls. Last operations write (read) values
to existing variables on the server side using references. When consecutive re-
mote functions present dependencies, values are simply communicated between
functions using references.

Clients interact with the substrate using a low level API. Users make requests
to the substrate annotating their programs with directives. Directive annotations
concerns the substrate operations and users functions to execute remotely. A pre-
processor translates user directives in API function calls. The following program
shows how annotations are used in a C program to request a remote execution
of a matrix product.

float al[100];

//ovm create A,100 /* create a 100 entries array in the server side */
//ovm put A,a /* send the value of the a array to A array */
//ovm req(bserv,dgemm,N,A,B,C) /* Requests remote execution of dgemm */

The client first requests to create an array A on the server side. A is a ref-
erence to a contiguous memory region (100 words) on the selected server. Then
the value of the client local array a is transfered to the remote array A (put
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directive). Matrix element distribution (column first or row first) in memory re-
gions is not relevant for the substrate which conserves the words order during the
transfer. Finally, the client requests the remote execution of the dgemm function.

3 Performance Evaluations

The platform contains a Myrinet network. 2*400 Mhz Pentium II biprocessor
nodes and 2 300 Mhz Pentium II biprocessor nodes are used for the experiments.
The software environment includes Linux 2.0.36, BIP 0.95¢ [3] and Linux Pthread
library. BIP raw performances on Myrinet is a latency of 5 us and a bandwidth
of 1 Gbit/s. Every tests use 2*300 Mhz PII and 1*400 Mhz PII. Client and server
use 300 Mhz nodes and the broker runs on a 400 Mhz node.

We measure the bandwidth and the latency for data transfers between a
client and a server through the broker. The protocols used for the Put and Get
transfers are implemented on top of BIP low level communication operations.
Put operations use two protocols according to the message size. The threshold
for protocol change is 240 Bytes. Figure 2] presents the communication band-
widths for both transfer types (Put and Get) and the communication bandwidth
obtained with the BIP library between two nodes.
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Fig. 2. Communication Bandwidth for BIP Library, Put and Get Operations

Put and Get operations reach the bandwidth of BIP for large data transfers
(> 1M B). Client Get operations require 32us to get small data sets from servers.
Client Put operations have a 6us inter-sending delay.

Client request latencies are shown in table [I1

Performance results do not consider the servers management algorithm exe-
cuted by the broker. The client part of remote execution is about 40 times higher
than a client local void function call.

Figure[3 presents the execution time seen by the client program for the matrix
product routine (dgemm) of the BLAS library. We compare the local uniproces-
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sor, the remote uniprocessor and the remote biprocessor execution times. These
timings do not take into account the matrix transfers.

asynchronous remote void execution + get| 50 us
synchronous remote void execution 32 s

client part of remote execution 7 us
client local void function call 0,16 us

Table 1. Execution Delays for Main Remote Operations of the CBS Substrate
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Fig. 3. Execution Times of the Matrix Products for Several Configurations.

Remote uniprocessor execution time equals the local uniprocessor execution
time from 32 * 32 matrix. For higher matrix size, the parallel biprocessor imple-
mentation can be used efficiently.

Table 2] presents the speed-up of several implementations of the CG NAS
NPB 2.3 serial benchmark (class W). The conj_grad function is executed re-
motely. We measure sequential as well as multi-threaded (2 threads) versions.

Executions|Remote uniprocessor|Local biprocessor|Remote biprocessor
Speed-up 0.96 1.34 1.32

Table 2. Speed-up from Local Uniprocessor of Several Remote Executions for
the CG Class W Serial Benchmark

Remote executions of serial and multi-threaded versions reach respectively
96% and 98% the performance of local executions. The data transfers surround-
ing the remote execution of the conj_grad function are main limiting factors.
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4 Conclusion

The CBS substrate has been designed in the perspective of very low remote
execution overhead inside a LAN. Results section shows that remote execution
overhead is lower than 50us and very short remote executions (400us) may be
effective if they need few data transfers. By lowering the granularity of relevant
remote executions, the CBS substrate enlarges the number of potential functions
that are worthwhile to execute remotely and the applications domain.
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