
Exploiting Advanced Task Parallelism in High

Performance Fortran via a Task Library

Thomas Brandes

Institute for Algorithms and Scientific Computing (SCAI)
German National Research Center for Information Technology (GMD)

Schloß Birlinghoven, D-53754 St. Augustin, Germany
brandes@gmd.de

Abstract. As task parallelism has been proven to be useful for applica-
tions like real-time signal processing, branch and bound problems, and
multidisciplinary applications, the new standard HPF 2.0 of the data
parallel language High Performance Fortran (HPF) provides approved
extensions for task parallelism that allow nested task and data paral-
lelism. Unfortunately, these extensions allow the spawning of tasks but
do not allow interaction like synchronization and communication between
tasks during their execution and therefore might be too restrictive for
certain application classes. E.g., they are not suitable for expressing the
complex interactions among asynchronous tasks as required by multidis-
ciplinary applications. They do not support any parallel programming
style that is based on non-deterministic communication patterns.

This paper discusses the extension of the task model provided by HPF 2.0
with a task library that allows interaction between tasks during their
lifetime, mainly by message passing with an user-friendly HPF binding.
The same library with the same interface can also be used for single
processors in the local HPF model. The task model of HPF 2.0 and the
task library have been implemented in the ADAPTOR HPF compila-
tion system that is available in the public domain. Some experimental
results show the easy use of the concepts and the efficiency of the chosen
approach.

Keywords: Data Parallelism, Task Parallelism, High Performance For-
tran

1 Introduction

High Performance Fortran (HPF) [10] is a data parallel, high level programming
language for parallel computing that might be more convenient than explicit
message passing and that should allow higher productivity in software devel-
opment. With HPF, programmers provide directives to specify processor and
data layouts, and express data parallelism by array operations or by directives
specifying independent computations.

Some users are reluctant to use HPF because many applications do not com-
pletely fit into the data parallel programming model. The applications contain

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 833–844, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



834 Thomas Brandes

data parallelism, but task parallelism is needed to represent the natural compu-
tation structure or to enhance performance. Many results verify that a mixed
task/data parallel computation can outperform a pure data parallel version (e.g.
see [7]) if the granularity of the data is not sufficient; a typical example is the
pipelining of data parallel tasks for image and signal processing. Multiblock codes
are more naturally programmed as interacting tasks, and applications that in-
teract with external devices. Another important application area is the coupling
of different simulation codes (multidisciplinary applications).

Some features supporting task parallelism are available as approved exten-
sions in HPF 2.0[10]. The TASK REGION construct provides the means to create
independent coarse-grain tasks, each of which can itself execute a data-parallel
or nested task-parallel computation. This kind of task parallelism has been im-
plemented and evaluated within the public domain HPF compilation system
ADAPTOR [3]. Currently, ADAPTOR is the only HPF compiler supporting the
task model as defined in the new HPF 2.0 standard.

But the HPF task model does not allow interaction between the indepen-
dent tasks during their execution. The introduction of a task library that allows
interaction of HPF data parallel tasks during their lifetime enhances the pos-
sibilities of the current model. This paper describes the functionality of such a
library and shows that it goes conform with the existing language concepts. The
implementation of the task library in an existent HPF compiler should be rather
straightforward like it was in the ADAPTOR compilation system.

The rest of this paper is organized as follows. Section 2 describes related
work regarding the integration of task and data parallelism. The current HPF
task model and its restrictions are outlined in Section 3. Section 4 introduces
the HPF task library for interaction of data parallel tasks. Some experimental
results in Section 5 show the applicability of the advanced tasking model.

2 Related Work

The need of task parallelism and its benefits have been discussed by many au-
thors and at many places (e.g. in [6]). The promising possibility of integrat-
ing task parallelism within the HPF framework has attracted much attention
[13, 9, 10, 4]

An integrated task and data parallel model has been implemented in the
Fx compiler at Carnegie Mellon [14]. It is mainly based on the specification
of subgroups and the assignment of arrays, variables and computations to the
subgroups. Communication between the tasks must be visible at the coordination
level specified as a TASK REGION. The execution model is not based on message
passing, programs can still be executed in the serial model. A variation of this
model has become an approved extension for HPF 2.0 [10].

Kohr, Foster et al. [7] developed a coordination library based on MPI to ex-
change distributed data structures between different HPF programs. The data
parallel language has not to be extended at all. Unfortunately, their implemen-
tation supports only coupling of different HPF programs, but not of different



Exploiting Advanced Task Parallelism in High Performance Fortran 835

HPF tasks created within a task region. But the ideas can be generalized for
nested task parallelism.

Zima, Mehrotra et al. [4] propose an interaction mechanism using shared
modules with access controlled by a monitor mechanism. A form of remote pro-
cedure call (RPC) is used to operate on data in the shared module. The monitor
mechanism ensures mutual exclusion of concurrent RPC’s to the same module.
This concept enhances modularity and is particularly good for multidisciplinary
applications. Due to the use of an intermediate space, it appears less well suited
for fine-grained or communication-intensive applications.

Orlando and Perego [11] provide run-time support for the coordination of
concurrent and communicating HPF tasks. COLTHPF provides suitable mech-
anisms for starting distinct data-parallel tasks on disjoint group of processors.
It also allows the specification of the task interaction on a high level from which
they generate automatically corresponding code skeletons. For the implemen-
tation of communication between the data parallel tasks they use the pitfalls
algorithm [12].

3 Support of Task Parallelism in HPF

The introduction of task parallelism in High Performance Fortran is strongly
connected with the ON directive that allows the user to control explicitly the
distribution of computations among the processors of a parallel machine. It al-
lows dividing processors into subgroups which is essential for task parallelism.
The RESIDENT directive tells the compiler that only local data is accessed and
no communication has to be generated. A code block guided by the ON and
RESIDENT directive is called a lexical task. An execution instance of a lexical
task is called an execution task. Every execution task is associated with a set of
active processors on which the task is executed.

Though the ON and RESIDENT directive on their own allow task parallelism,
HPF 2.0 provides the TASK REGION construct. A task region surrounds a certain
number of lexical tasks where other statements in the TASK REGION can be used
to specify data transfers and task interaction between these tasks.

3.1 The ON Directive

In the HOME clause of the ON directive, the user can specify a processor array or a
processor subset or an array (template) or a subsection of an array (template).
The ON directive restricts the active processor set for a computation to those
processors named in the home, or to the processors that own at least one element
of the specified array or template. As HPF allows the mapping of arrays to
processor subsets, the exploitation of task parallelism is more convenient.

It should be noted that the ON directive only advises the compiler to use
the corresponding processors to perform the ON statement or block. Certain
statements cannot be executed by an arbitrary processor subset, e.g. allocation,
deallocation and redistribution of arrays must include all processors involved in



836 Thomas Brandes

real, dimension (N) :: A1, A2

!hpf$ processors PROCS(8)

!hpf$ distribute A1 (block) onto PROCS(1:4)

!hpf$ distribute A2 (block) onto PROCS(5:8)

...

do IT = 1, NITER

!hpf$ task_region

!hpf$ on (PROCS(1:4)), resident

call TASK1 (A1,N)

if (mod (IT,2) == 0) A1 = A2 ! task interaction

!hpf$ on home (A2), resident

call TASK2 (A2,N)

!hpf$ end task_region

end do

Fig. 1. Mixed task and data parallelism in High Performance Fortran.

it. But the compiler should inform the user if it overrides the user’s advice. Not
respecting the ON directive can suppress the task parallelism intended by the
user.

3.2 The RESIDENT Directive

If a statement or a block should be executed by a processor subset, the compiler
must make sure that all data is mapped onto the corresponding active processors.
This data transfer can involve other processors that are not part of the active
processors. Unfortunately, compilers are conservative and can also introduce syn-
chronization or communication where it is not really necessary. The RESIDENT
directive tells the compiler that only local data is accessed and no communi-
cation has to be generated. This guarantees that only the specified processors
are involved and the code can be skipped definitively by the other processors.
The RESIDENT directive is very useful for task parallelism where subroutines are
called. It gives the compiler the important information that within the routine
only resident data is accessed. This might also allow the compiler to respect the
specified HOME where it was not possible before.

3.3 The TASK REGION Construct

Though the ON and RESIDENT directive on their own allow task parallelism,
HPF 2.0 provides the TASK REGION construct. A TASK REGION surrounds a cer-
tain number of lexical tasks. The TASK REGION construct specifies clearly where
task parallelism appears, it provides syntactical restrictions (every ON directive
must be combined with the RESIDENT directive), and the user guarantees no I/O
interferences between the different execution tasks. Data dependencies within a
TASK REGION can result in a serial execution of tasks. Nevertheless, parallelism
might be achieved due to the outer loop around the TASK REGION resulting in a
pipelined execution of the tasks (see example in Fig. 1).



Exploiting Advanced Task Parallelism in High Performance Fortran 837

The HPF model allows nested task and data parallelism. There is no re-
striction that execution tasks within one TASK REGION are executed on disjoint
processor subgroups. The compiler can ignore the ON directive without changing
the semantic of the program. Task interaction must be visible at the coordination
level which is the code within the task region outside the lexical tasks.

The main disadvantage is the lack of any possibility for task interaction dur-
ing the execution of the tasks. Communication between tasks in the TASK REGION
is deterministic and does not allow any self-scheduling.

4 The HPF Task Library

The HPF task library is intended to allow interaction between different data
parallel tasks via message passing. The use of new language constructs has not
been considered as it would complicate the whole development.

4.1 Problems and Design Issues

Any task interaction can only be useful if the concurrent execution of the tasks
is guaranteed. All execution tasks must be mapped to disjoint processor subsets
that is not mandatory for the task concept of HPF. With task interaction, an
HPF program might no longer run on a serial machine. Furthermore, task inter-
action requires the unique identification of tasks, e.g. by a task identifier, that
is used to specify the source and destination of message passing.

In the first place, it might have been useful to define the message passing
routines between data parallel tasks in analogy to MPI [8], but an own HPF
binding of such routines offers a lot of advantages. It allows to pass whole arrays
or subsection of arrays to the routines without specifying the data type, the
distribution, or the size of the data. The data must not be contiguous and the
use of derived data types like in MPI is not really necessary. The routines do not
require a communicator as the communicator is implicitly given by the current
task nesting level (see also Section 4.4).

The task library is not intended to be realized compiler-independently but as
a part of the HPF compiler. Most of the necessary functionality must be avail-
able in the HPF runtime system of an HPF compiler. As internal descriptors
for arrays and their mappings and internal representations for communication
schedules are far away from any standardization, the task library is most effi-
ciently implemented by the compiler vendor itself.

The routines of the HPF TASK LIBRARY are available in global, local and serial
HPF programs by the USE statement of Fortran. Two subroutines, HPF TASK INIT
and HPF TASK EXIT support the initialization and termination of data parallel
tasks. They should verify at runtime that the tasks of the current context are
really mapped to disjoint processor subgroups. Furthermore, at the end it should
be verified that there are no pending messages between the tasks. The two sub-
routines HPF TASK SIZE and HPF TASK RANK return, similar to their MPI coun-
terparts, the size (number of data parallel tasks in the current context) and the
rank of the calling task (1 ≤ rank ≤ size).



838 Thomas Brandes

There are no mechanisms for the creation or termination of task processes
at runtime. Tasks can only be defined as subtasks within the current context.
Support of task migration can be an option of the runtime system but is not
part of the language or library.

4.2 Spawning of HPF Tasks

Tasks can be spawned within a TASK REGION. Their concurrent execution requires
that the execution of tasks does not depend on any values computed within
the tasks and that there are no dependencies at the coordination level. The
user has to assert this property by the keyword INDEPENDENT. The following
example shows how to invoke data parallel tasks for pipelined data parallelism
as described in section 5.2.

!hpf$ processors PROCS (20)

...

!hpf$ independent task_region

!hpf$ on (PROCS(1:4)), resident ! will be task 1

call STAGE1 ()

!hpf$ on (PROCS(5:10)), resident ! will be task 2

call STAGE2 ()

!hpf$ on (PROCS(11:16)), resident ! will be task 3

call STAGE2 ()

!hpf$ on (PROCS(17:20)), resident ! will be task 4

call STAGE3 ()

!hpf$ end task_region

All execution tasks within the INDEPENDET TASK REGION get a task identifier
starting with 1. Processor subsets in the ON directive must not be known at com-
pile time. Therefore the user can implement algorithms on its own to compute
the processor subsets for the scheduling of his data parallel tasks.

The HPF Task Library allows also the coupling of separately compiled data
parallel programs. Some parallel architectures provide the possibility of loading
distinct executables on distinct nodes. Then the data parallel programs will
be executed on disjoint processor subsets that are specified on an outer level.
The task initialization within the HPF runtime system guarantees that all data
parallel tasks know their current task context.

HPF allows the use of local routines via the EXTRINSIC mechanism. A local
routine allows to write single-processor code that works only on data that is
mapped to a given physical processor. The processors executing the local sub-
program can be viewed as single processor tasks where task interaction can be
used in exactly the same way as for data parallel tasks. The routines in the local
model have the same syntax as the corresponding routines for communication
between data parallel tasks.



Exploiting Advanced Task Parallelism in High Performance Fortran 839

4.3 Communication between Data Parallel Tasks

For the sending of data (scalars, arrays or array sections of any type), the task
identifier of the destination task dest must be specified. For the receiving of
data, the specification of the source task is optional to allow the receiving of
data from any task. Every send must have a matching receive.

subroutine HPF_SEND (data, dest [,tag] [,order])

subroutine HPF_RECV (data [,source] [,tag])

The optional ORDER argument for the sending of data must be of type integer,
rank one, and of size equal to the rank of DATA. Its elements must be a permu-
tation of (1, 2, ..., n), where n is the rank of the data. If the ORDER argument is
available, the axes of the sending data will be permuted similar to the extended
TRANSPOSE routine of HPF 2.0.

Due to the HPF/Fortran 90 binding, the routines HPF SEND and HPF RECV can
be called with array arguments and the arguments can be named. This makes
the use of the routines easier and better readable.

Figure 2 shows the communication pattern between the single processors if
TASK 1 runs on a 2 × 2 processor subset and TASK 2 on a processor subset of
three processors. The implementation of point-to-point communication between
data parallel tasks results in communication between the processors of the two
processor subgroups that are involved.

P=7P=4

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Task 2: B (*, block)

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

P=2

Task 1: A (block, block)

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

>p: send to p

<q: recv from q

P=5 P=6

P=1 P=3

��
��
��
��
��
��
��

��
��
��
��
��
��
��

<4

<1

<4<2<2

<3<1>5 >6 >7

>5 >6 >6 >7

>6 <3

Fig. 2. Example of point-to-point communication between data parallel tasks.

In fact, the implementation of the message passing routines should be straight-
forward for all HPF compilers as the send and receive operation together cor-
respond to the HPF array assignment between the two arguments. The only
difference is that due to the local allocation of the arrays in the processor subset
the exchange of the mapping information (descriptor exchange) is necessary.

Sending and receiving of distributed data must be assumed to be blocking.
When executing shift operations across a chain of tasks or when two tasks are



840 Thomas Brandes

exchanging data, one needs to order the sends and receives correctly (e.g. even
tasks send, then receive, odd tasks receive first, then send) so as to prevent cyclic
dependencies that may lead to deadlock. When using a send-receive routine, the
system takes care of these issues.

subroutine HPF_SEND_RECV (send_data, dest, recv_data, source

[,send_tag] [,recv_tag] [,order])

The point-to-point communication between two data parallel tasks causes
a certain overhead due to the exchanging of the mapping information. This
overhead as well as the computation of the schedule between the single processors
of the tasks can be reduced by introduction of internal handles (request). The
use of these routines might cause serious problems when the distribution or sizes
of data has changed.

subroutine HPF_SEND_INIT (data, dest, request [,tag] [,order])

subroutine HPF_RECV_INIT (data, source, request [,tag])

subroutine HPF_TASK_COMM (request)

Collective communication like in MPI might also be useful for HPF tasks.
Especially the broadcast of data and the barrier proved to be useful. It should be
observed that the context of these operations is given by the current task context.
A barrier synchronizes the tasks of the current context, not the processors within
this task.

subroutine HPF_BCAST (data [,root])

subroutine HPF_BARRIER ()

4.4 Nested Task Parallelism

Task parallelism can be nested. Every independent TASK REGION defines a set of
data parallel tasks, in each task new subtasks can be created hierarchically.

T 1a T 1b T 2a
T 2b

T 2c

T 3a

T 3b

Task 3Task 2Task 1

Fig. 3. Task interaction for nested task parallelism.

Task interaction is only possible between the tasks within one context. In the
example of Figure 3, task communication is possible between the tasks TASK 1,



Exploiting Advanced Task Parallelism in High Performance Fortran 841

TASK 2 and TASK 3 as long as they are not spawned into subtasks. When TASK 2
is divided into the three subtasks TASK 2a, TASK 2b and TASK 2c, only commu-
nication between these subtasks is possible. Task communication between e.g.
TASK 1a and Task 2a is not possible.

5 Experiments and Results

This section presents some typical patterns for using the HPF task library. More
examples regarding task parallelism in HPF and more detailed results can be
found in [2].

5.1 Recursive Tree Structured Algorithms

Many problems can be solved recursively by splitting the problem into two par-
tial problems of the half size. Typical examples are the Fast Fourier Transfor-
mation (FFT) that plays a key role in many areas of computational science and
engineering. Another recursive tree structured algorithm is the Barnes-Hut al-
gorithm for N-body problems [1]. The recursive splitting can be used to split
the active processors into two processor subsets via task parallelism. The two
subtasks can exchange data via the task library. When the recursion ends up in a
single processor, it might be more efficient to call a serial and iterative algorithm.

Table 1 shows the execution times (in seconds) of an one-dimensional FFT
(N = 219) that has been implemented in this way. The task parallel version
shows reasonable speed-ups when compared with the serial version of the FFT
based on the efficient Cooley-Tukey algorithm [5]. It outperforms a data parallel
version that uses indirect addressing.

P=1 P=2 P=4 P=8 P=16 P=32

serial 1.506 n.a. n.a. n.a. n.a. n.a.
data 5.399 3.363 1.955 1.157 0.671 0.444
task 1.784 1.144 0.762 0.493 0.295 0.184

Table 1. Results for one-dimensional FFT (N = 2K , K = 19) on IBM SP2.

5.2 HPF Task Farming

The HPF task library allows the realization of task farming within a pipeline of
data parallel tasks. Let the pipeline have three stages. While the first and the
last stage are exactly one task, there are a certain number of worker tasks for
the second stage. The load is scheduled to available tasks on this second stage. A
worker task sends a ready signal to the first stage when it is free for doing work.
It receives the data, works on it and sends it at the end to the final stage NT
in the pipeline where NT is the number of tasks. Figure 5 shows the principle of
message passing between the different tasks.



842 Thomas Brandes

recursive subroutine DO_IT (A, N, NP)

use HPF_TASK_LIBRARY

integer :: N, NP, N2, NP2, SIZE, RANK, IP

real, dimension(N) :: A, H

!hpf$ processors PROCS(1:NP)

!hpf$ distribute (block) onto PROCS :: A, H

call HPF_TASK_INIT ()

call HPF_TASK_RANK (rank=RANK)

IP = 3 - RANK

call HPF_SEND_RECV (send_data=A, dest=IP, recv_data=H, source=IP)

...

if (NP .eq. 1) then

call DO_IT_SERIAL (A, N); return

end if

NP2 = NP/2; N2 = N/2

!hpf$ independent task_region

!hpf$ on (PROCS(1:NP2)), resident

call DO_IT (A(1:N2), N2, Np2)

!hpf$ on (PROCS(NP2+1:NP)), resident

call DO_IT (A(N2+1:N), N2, Np2)

!hpf$ end task_region

...

call HPF_TASK_EXIT ()

end subroutine DO_IT

Fig. 4. Example of a recursively nested task and data parallel program.

Task farming becomes especially useful when running data parallel programs
on heterogeneous architectures.

6 Conclusions

The HPF task model allows the coupling of data parallel tasks in a simple way as
long as the interaction between the tasks is completely visible at the coordination
level in the TASK REGION. As all information about the mapping of the arrays
is available, no exchange of descriptors or distribution information is necessary.
The deterministic communication allows the program still to be run on a serial
machine. This task model is relatively easy to implement in an HPF environment
if the ON directive and related clauses are supported as well as the mapping of
data to processor subsets.

Moving task interaction within the tasks is rather straightforward. An assign-
ment of data from one task to data of another task becomes a send in the first
and a receive in the other task. New allocated data within the tasks (e.g. local
variables) can now also be exchanged. Furthermore, only task interaction within
the task allows the receiving of values from any other task resulting in non-
deterministic behavior. Many well established parallel programming styles like
farming can be used in a data parallel framework. Task parallelism can now also
be exploited for separately compiled HPF programs. The task library combines



Exploiting Advanced Task Parallelism in High Performance Fortran 843

integer TASK_ID, STREAM_ID

subroutine STAGE3()

!hpf$ distribute (*,block) :: A

real, dimension (N,N) :: A

call hpf_recv (data=TASK_ID)

call hpf_recv (STREAM_ID, TASK_ID)

call hpf_recv (A, TASK_ID)

Task 1

call hpf_send (A, TASK_ID)

call hpf_send (STREAM_ID, TASK_ID)

call hpf_recv (data=TASK_ID)

subroutine STAGE1()

integer TASK_ID, STREAM_ID

real, dimension (N,N) :: A

!hpf$ distribute (block, *) :: A

Task NT

Task 2, ..., Task NT-1

call hpf_send (A, dest=NT)

call hpf_send (STREAM_ID, dest=NT)

call hpf_send (TASK_ID, dest=NT)

...

call hpf_recv (A, source=1)

call hpf_recv (STREAM_ID, source=1)

call hpf_send (TASK_ID, dest=1)

call hpf_task_size (size=NT)

call hpf_task_rank (TASK_ID)

!hpf$ distribute (block, block) :: A

real, dimension (N,N) :: A

integer TASK_ID, STREAM_ID

subroutine STAGE2()

...

...

Fig. 5. Task farming for data parallel tasks.

the advantages of the HPF task model based on processor subsets and a sequen-
tial semantic with the advantages of the great flexibility when using message
passing. The concept of the task library goes conform with the other extrinsic
models of HPF and therefore allows the combination with other programming
models, e.g. MPI.

The use of communication via send and receive in a language like HPF seems
to destroy the high level intention. But data parallel computations still do not
need any message passing, it is restricted only to the interaction of running data
parallel tasks where it is indeed quite natural. The high level nature of HPF is
taken into account by providing a high level HPF binding of the communication
routines (no arguments for size, data type, distribution, context, etc.).

The ADAPTOR HPF compilation systems provides task parallelism as spec-
ified in HPF and the task library as described in this paper. This library or a
more standardized library with a similar and improved functionality could be
provided by any HPF compiler vendor as it can be implemented rather easily
by using the HPF runtime system that has to support redistributions in any
case. Experiments so far have shown that the use of task parallelism in HPF is
very user-friendly, no more limited, and, most important, efficient enough to be
a very attractive alternative. Its support became also necessary as ADAPTOR
is intended to support nested process and thread parallelism for hierarchical
systems in future.



844 Thomas Brandes

Acknowledgements

Most thanks are due to Salvatore Orlando (Universita di Venezia) and Raffaele
Perego (CNUCE, Italy) for many valuable discussions and a lot of technical
hints. I am indebted to Mike Delves (NA Software, Liverpool) for the great idea
to make the task library also available in the local HPF model.

References

[1] J. Barnes and P. Hut. A hierarchical O(NlogN) force calculation algorithm.
Nature 4, 324:446–449, 1986.

[2] T. Brandes. Implementation and Evaluation of Nested Task and Data Paral-
lelism for High Performance Fortran within the ADAPTOR Compilation Sys-
tem. Working paper (unpublished), GMD, 1998. available via anonymous ftp as
ftp.gmd.de:/GMD/adaptor/docs/tasking.ps.

[3] T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF
Programs. In K. Decker and R. Rehmann, editors, Programming Environments
for Massively Parallel Distributed Systems, pages 91–96. Birkhäuser Verlag, Apr.
1994.

[4] B. Chapman, M. Haines, P. Mehrotra, H. Zima, and J. Van Rosendale. Opus:
A Coordination Language for Multidisciplinary Applications. Scientific Program-
ming, 6(4):345–361, 1997.

[5] J. W. Cooley and J. W. Tukey. An Algorithm for the machine calculation of
complex Fourier series. Mathematical Computing, 19:297–301, 1965.

[6] P. Dinda, T. Gross, D. O’Hallaron, E. Segall, E. Stichnoth, J. Subhlok, J. Webb,
and B. Yang. The CMU Task Parallel Program Suite. Technical Report CMU-
CS-94-131, School of Computer Science, Carnegie Mellon University, Mar. 1994.

[7] I. Foster, D. Kohr, K. R., and A. Choudhary. Double Standards: Bringing Task
Parallelism to HPF via the Message Passing Interface. In P. Pittsburgh, editor,
Supercomputing ’96, Nov. 1996.

[8] W. Groop, E. Lusk, and A. Skjellum. Using MPI : Portable Parallel Program-
ming with the Message-Passing Interface. Scientific and Engineering Computation
Series. The MIT Press, Cambridge, MA, 1994.

[9] T. Gross, D. O’Hallaron, and J. Subhlok. Task Parallelism in a High Performance
Fortran Framework. IEEE Parallel and Distributed Technology, 2(2):16–26, 1994.

[10] High Performance Fortran Forum. High Performance Fortran Language Specifi-
cation. Version 2.0, Department of Computer Science, Rice University, Jan. 1997.

[11] S. Orlando and R. Perego. COLTHPF , a Coordination Layer for HPF Tasks.
Technical Report Series on Computer Science CS-98-4, Universita ca’ Foscari di
Venezia, Mar. 1998. Paper submitted to Concurrency: Practice and Experience.

[12] S. Ramaswamy and P. Banerjee. Automatic Generation of Efficient Array Redis-
tribution Routines for Distributed Memory Multicomputers. In Proceedings of the
Fifth Symposium on the Frontiers of Massively Parallel Computations (FRON-
TIERS’95), pages 342–394, Feb. 1995.

[13] S. Ramaswamy, S. Spatnekar, and P. Banerjee. A Framework for Exploiting Task
and Data Parallelism on Distributed Memory Multicomputers. IEEE Transaction
on Parallel and Distributed Systems, 8(11):1098–1116, Nov. 1997.

[14] J. Subhlok and B. Yang. A New Model for Integrated Nested Task and Data
Parallel Programming. In PPOPP 97, 1997.


	Introduction
	Related Work
	Support of Task Parallelism in HPF
	The {tt ON} Directive
	The {tt RESIDENT} Directive
	The {tt TASK_REGION} Construct

	The HPF Task Library
	Problems and Design Issues
	Spawning of HPF Tasks
	Communication between Data Parallel Tasks
	Nested Task Parallelism

	Experiments and Results
	Recursive Tree Structured Algorithms
	HPF Task Farming

	Conclusions

