
Parallel Programming by Transformation

Noel Winstanley

Department of Computing Science
University of Glasgow

Abstract. This paper presents a system to produce efficient implemen-
tations of parallel array-based algorithms from high-level specifications.
It is structured as a transformation through a series of progressively more
detailed representations. This allows the use of high-level programming
features without losing the fine control of low-level languages. During
the transformation process, parallel implementation decisions are intro-
duced. Finally, a representation is reached which can be translated to
C+MPI.

1 Introduction

The Abstract Parallel Machine (APM) methodology [OR97] is used to struc-
ture complex parallel algorithm derivations by defining parallel operations at an
appropriate level of abstraction. An APM contains a set of computation sites
which cooperate to implement a set of parallel operations. These operations are
defined by recursive equations over the input, output and state of the sites. APM
parallel operations are usually specified in the lazy functional language Haskell
[PHA+97].

The APMs are organised into a directed acyclic graph, where the child nodes
are APMs which implement (at some lower level of abstraction) the opera-
tions provided by the the parent APM. Program derivation is by correctness-
preserving transformation by equational reasoning within and between APMs in
the hierarchy.

Note that the aim is not to parallelise arbitrary functional programs: rather
a functional language is being used in a systematic way to model and transform
imperative parallel algorithms.

Although the specifications are executable and informative, they omit many
of the details required when producing a final imperative implementation. This
is due to the use of high-level language features such as laziness and higher order
functions, and a programming style based on garbage-collected lists rather than
statically allocated arrays.

This paper presents a system to bridge the gap between the abstraction of an
APM algorithm specification and the detail required for efficient implementation.
We define a series of languages, where each one introduces more implementation
details. The languages have APM definitions for their parallel constructs, but
enforce a more imperative programming style than the arbitrary Haskell code
used in higher-level specifications. This means that the languages fit into the

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 858–865, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Parallel Programming by Transformation 859

APM hierarchy, but are more amenable to translation to C+MPI, our target
language.

Figure 1 illustrates the language sequence, where each language is represented
as an oval. The first language in the sequence (Sequential) allows the expression
of array-based algorithms; the following languages in turn: identify potential
parallelism; introduce data distribution; and communication details, until at the
end of the sequence a form is reached that can be translated to C+MPI.

Single Assignment C(SAC)[Sch94] –
Sequential

Independent

Distributed

Explicit
Comms.

S.A.C

C+MPI

Collective view

Processor
View language

translation

vertical
transformation

horizontal

transformation

Fig. 1. Language sequence

a functional variant of C with a system
of extensible high-level array operations
– is used as an intermediate stage in the
translation to C. This simplifies the trans-
lation process, as SAC shares some of the
features of the transformation languages.
Furthermore, the SAC compiler is heav-
ily optimising, producing code compara-
ble with hand-written FORTRAN [Sch98].

In common with the APM methodol-
ogy, derivation proceeds by transforma-
tion from one language to the next. The
transformation is guided by a set of ax-
ioms. Some axioms equate constructs
within a single language (horizontal trans-
formations) and are used to introduce op-
timisations; others (vertical transformations) relate constructs in adjacent lan-
guages in the sequence: these introduce greater implementation detail. The series
of transformations applied to a program can be used for correctness proofs and
for retargetting – the transformations can be unrolled to a common point and
then new machine-specific details introduced.

The languages are implemented in Haskell as libraries of combinators – i.e. as
Domain Specific Embedded Languages [Hud98]. Doing this means that the ben-
efits of the host language are inherited: strong typing of a rich type language;
the infrastructure of compilers and tools; and a semantics that ensures the valid-
ity of equational reasoning. Importantly, the host language provides a common
semantic base with which to relate constructs of the different transformation
languages and more abstract APM specifications.

The next section introduces the first language in the transformation sequence.
The following languages of the sequence are described in section 3, where the
transformation process is informally illustrated with a small example.

2 The Sequential Language

The first language of the sequence forms a common core of algorithmic con-
structs to which later languages add constructs to express parallelism. The main
datatype is the array, supported by a set of whole-array combinators such as



860 Noel Winstanley

those found in APL[Ive62] or SAC. User-defined structures and unions are also
permitted. The update of variables is disallowed: this preserves referential trans-
parency which simplifies the axiomatisation and use of transformations.

To ease the transformation process we must control language features that
do not sit will with an imperative language, such as first-classness, laziness,
higher-order functions and arbitrary recursion.

Monads [Wad92] are a standard technique for structuring computations in
Haskell. The transformation languages can be said to be monad-bound – there
is no way for the programmer to escape from the sequencing that the monad
defines. This gives a fixed execution order and prevents computations relying on
laziness for termination.

In Haskell all types are first-class
for (i = 0; i < B; i++)

arr[i] = f(arr[i]); (1)

seqVect . for (0, (< B), (+1))
(λi→ do v ← arr ! i (2)

f v)

map (λ(i, v)→ f v) arr (3)

Fig. 2. Mapping an array

– any type can be a parameter to
another function or stored in a data
structure. In the transformation lan-
guages, as with typical imperative
languages, there is a discrimination
between the type of procedures and
the values that may be passed to
or returned by them. A further sub-
set of types may be stored in data
structures. Extensible records
[GJ96] and type classes [HHPW96]
are used to encode these constraints

into the type system of the host language.
In functional languages, control is described using recursion, either coded

explicitly or packaged as higher-order functions. As both are problematic to
translate, the transformation languages have iteration constructs similar to those
found in imperative languages.

Compared to the large number of recursion combinators used by a functional
language, imperative languages have a small set of iterative constructs. These
are sufficient because of the use of mutable state – a for loop can be equivalent
to a map, fold or scan depending on how variables are updated in the loop body.

As update is prohibited in the transformation languages, anything altered
within a loop body must be explicitly propagated to the next iteration. This
causes the set of loop constructs required to drastically expand. Although such
explicit description of dependencies between loop iterations is useful for paral-
lelisation, it is inconvenient for the programmer and makes a language unwieldy.

We circumvent this by expressing a loop construct as the composition of two
or three combinators: one that generates a sequence of computations, possibly
one which manipulates this sequence, and one that executes the sequence and
return a result.

This is best illustrated by example: each blocks of code in Fig. 2 performs a
map over an array. The C code (1) applies f to each element of arr . The equiva-
lent code in our sequential language (2), uses the for loop generator to create a



Parallel Programming by Transformation 861

sequence of computations. The loop body is a lambda-abstraction over the loop
index i . The loop executor seqVect executes a sequence of computations, and
produces a vector of their results. Due to the functional nature of the language
a new array must be created rather than updating the old array in place.

Since mapping over arrays is
sum = 0;
for (i = 0; i < B; i++) (4)

sum + = arr[i];

final
. forAccum (0, (< B), (+1)) 0

(λi sum→ sum + arr ! i) (5)

foldSeq (λa b→ return (a + b)) 0
. for (0, (< B), (+1)) (6)

(λi→ arr ! i)

fold (λa b→ return (a + b)) 0 arr (7)

Fig. 3. Folding an array

such a common operation, a
whole array combinator map is
provided. Equivalent code using
this construct is given in (3).

Figure 3 gives another exam-
ple of iteration constructs. The
C code in (4) folds an array by
summing the elements using an
accumulating variable. A direct
translation to our sequential lan-
guage would produce (5). Here,
the forAccum loop generator
constructs a sequence of compu-
tations where the result of one
computation is passed as a pa-
rameter to the next. The final
loop combinator executes the se-
quence and returns the result of the final computation in it.

Alternatively, this could be expressed using the foldSeq loop executor (6)
which combines the results of a sequence of computations using an auxiliary
function. We can now substitute a for loop generator for the forAccum. This
implementation had the advantage of removing the data dependency between
one loop iteration and the next, introducing the possibility of parallelising the
execution of loop bodies. As folding an array occurs frequently, a whole-array
combinator is provided. The equivalent code for fold is shown in (7).

3 The Language Sequence

The language introduced in the previous section allows the description algo-
rithms, but not their parallel behaviour.

Programs expressed in this language can
a ← gen bnd f
b ← fold op v a
c ← map g a

Fig. 4. Sequential program

be viewed as executing sequentially, or as
specifying the behaviour of a parallel algo-
rithm without committing to implementa-
tion details.

This section introduces the other
languages in the transformation sequence.
The program fragment in Fig. 4 will be used
to illustrate how each language in the sequence introduces extra detail. The gen
generates a new array of bounds bnd where each element is defined by f – a



862 Noel Winstanley

function from array index to element value. The array a produced is involved
in two subsequent computations – a fold and a map. For conciseness, this ex-
ample contains only array combinators. However, each languages has equivalent
constructs for loop combinators.

During derivation, a program spends much time ‘between’ languages – where
some code has already been vertically transformed into the next language while
the remainder is still expressed in constructs of the previous language. It would
be constricting to force the programmer to transform the entire program from
one language to the next before the program had a defined semantics. To solve
this problem, adjacent languages in the transformation sequence can be freely
mixed within a program. As every transformation produces an executable inter-
mediate program incremental development and testing is much easier.

3.1 Independent Computation

The second language in the sequence identifies potential parallelism: the machine
model is an idealised parallel machine with infinite processors and no commu-
nication cost. The language introduces variants of the constructs provided by
the original sequential language; these distribute computation over the idealised
machine and perform implicit communication to return results to the main co-
ordination program.

The computation performed by such a construct represents one macro-step
in the SPMD programming methodology. Once all computations in a macro-step
have completed, a result is returned to the the main program which redistributes
it to the constructs which comprise the next macro-step.

As much of program as possible is transformed to use these macro-step con-
structs. In many algorithms there are sequential parts that cannot be paral-
lelised; these are moved into a sequential macro-step containing one processor.
The main program is now a description of the communication patterns between
macro-steps, with all computation taking place on (unnamed) processors.

The code in Fig. 5 is equivalent to the
a ← indepGen bnd f
(b, c) ← onProc (fold op v a)

<|> indepMap g a

Fig. 5. Identifying parallelism

previous program fragment but has been
vertically transformed to the second lan-
guage in the sequence by introducing par-
allel constructs.

The gen has been substituted by a
indepGen construct. This produces an
array where each element is computed in-

dependently on a separate processor. As there are no data dependencies between
the fold and map, they may be computed in parallel – the <|> operator ex-
presses this and returns a tuple of the results. The fold is sequential and so is
placed on a single processor by using the onProc keyword, while the map can
be parallelised using the indepMap construct. Therefore the above code has
two macro-steps, with an implicit redistribution of a taking place so that the
fold can be computed on a single processor.



Parallel Programming by Transformation 863

3.2 Distributed Computation

In the previous language parallelism was introduced and the program partitioned
into macro-steps. Transformation of the program to the third language maps the
unbounded algorithm onto a machine with a finite number of processors.

This language has a set of parallel constructs similar to those in the pre-
vious language. However, most take an extra parameter: a data distribution
that describes the distribution of the computation performed by the construct.
These data distributions are an adaptation of parameterised distribution func-
tions [RR95] which Rünger and Rauber use to describe the distribution of array
elements amongst processors; they are capable of expressing irregular, block,
cyclic and block-cyclic distributions.

Before any parallel computa-

mg ← getMainGroup
ag ← drop 1 mg
tp ← mkTopol (x , y) ag

...
a ← distGen (block tp) bnd f
(b, c) ← on 1 (fold op v a)

<|> distMap (block tp) g a

Fig. 6. Adding data distribution

tion can take place, the processor
groups and topologies used must
be defined. Figure 6 shows the
block of code transformed to the
third language, with processor
group and virtual topology defini-
tions added at the start of the pro-
gram. The getMainGroup con-
struct returns a sorted vector of
the machine’s processor identifiers.
A new group (ag) is declared, con-
taining all processors of the main
group apart from processor 1 – which is used to compute the fold. A two-
dimensional processor topology tp of dimensions (x , y) is then defined; this maps
from two-dimensional coordinates to the processors identifiers in ag .

The array is now created using distGen and is distributed in a block-wise
manner over tp. The distMap produces a new array with the same distribution
as a. Meanwhile, the fold is performed on processor 1.

3.3 Explicit Communication

Due to scoping the results of one macro-step are available for use in later macro-
steps. Therefore values resident on a processor may be accessed by a computation
executing on a different processor. This non-local access means that a hidden
communication is being performed. In the language implementations, array val-
ues maintain a record of the distribution of their elements. Operations that
access the elements of distributed arrays check that the element is present on
the local processor. If a non-local access is attempted, the program continues,
but issues a warning.

The next stage of the transformation makes these hidden communications
explicit by adding communication primitives to the program. Communications
such as broadcast or scatter are represented as permutation functions, mapping



864 Noel Winstanley

from one data distribution to another. Applying a communication primitive to
a distributed array returns a copy of the array that has the new distribution.

a ← distGen (block tp) bnd f
a′ ← gather 1 ag selAll a
(b, c) ← on 1 (fold op v a′)

<|> distMap (block tp) g a

Fig. 7. Explicit communication

In Fig. 7 a gather collective
communication has been added
to the running example. This sat-
isfies the non-local accesses of a
on processor 1 by communicating
to that processor all elements of
the array resident on processors
in ag . The other parameter to the
communication, selAll, is a se-
lector – a predicate on indexes that indicates which array elements to commu-
nicate.

In this case, the entire array is communicated. More subtle patterns can
be expressed by using subsets of the group of processors the array is resident
on or by using a different selector. There are a set of pre-defined selectors and
logical connectives: using these, complex strides and halo communications can
be expressed concisely.

3.4 Per-Processor View

Conventional sequential languages such as C present a per-processor view of the
parallel machine; they describe the computation performed on each processor,
but the behaviour of the entire machine is hard to ascertain. In contrast, the
transformation languages presented so far give a collective view of the parallel
machine – a program describes how the entire machine performs a computa-
tion. We believe that this has advantages over the per-processor view, as all
parallelisation and distribution information is represented within the program.

The final stage in the derivation transforms the collective view program to a
transformation language providing a per-processor view similar to C.

The transformation involves substituting the collective language constructs
for equivalent processor-view constructs which test on the processor identifier
so that only computations distributed to the current processor are executed.
Likewise, the collective view communications primitives are replaced with their
processor-view equivalents – i.e. MPI library calls.

Optimisations can now be performed, such as bundling similar communica-
tions together, reordering computations and partially evaluating parameters to
constructs. The program is now in a form that can be straightforwardly trans-
lated to SAC+MPI which will then compile into a heavily optimised C+MPI
program.

4 Conclusions & Further Work

In this paper we present a system for producing implementations from high-level
parallel algorithm derivations by transformation through a series of languages.



Parallel Programming by Transformation 865

The languages progressively introduce more implementation details until a form
is reached that can be translated to C+MPI via SAC.

The languages produced are restrictive in some ways; due to their compi-
lation method they must have an imperative flavour, but must still preserve
referential transparency. Case studies in progress, taking APM specifications as
their starting point, will show how troublesome this actually is.

Performing transformations by hand is tedious and error-prone. Some of the
transformations are automatable: we plan to write tools to support these. How-
ever we do not aim to build a parallelising compiler – there is no requirement to
automate every stage. Stages that require human insight will be supported by
interactive tools.

Acknowledgements. I wish to thank my supervisor John O’Donnell, Joy Good-
man, Richard Reid, Meurig Sage & Keith Sibson for helpful discussions and
feedback.

References

[GJ96] Benedict R Gaster and Mark P Jones. A polymorphic type system for
extensible records and variants. Technical Report NOTTCS-TR-96-3, De-
partment of Computer Science,Univerity of Nottingham, November 1996.
http://www.cd.nott.ac.uk/Department/Techreports/96-3.html.

[HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems, 18(2):109–138, March 1996.

[Hud98] Paul Hudak. Modular domain specific languages and tools. In Fifth
International Conference on Software Reuse, 1998.

[Ive62] K E Iverson. A Programming Language. Wiley, New York, 1962.
[OR97] John O’Donnell and Gudula Rünger. A methodology for deriving parallel

programs with a family of abstract parallel machines. In Third Interna-
tional EuroPar Conference, pages 662–669, 1997.

[PHA+97] John Peterson[editor], Kevin Hammond[editor], Lennart Augustsson,
et al. Haskell 1.4, A non-strict, purely functional language. Report
YALEU / DCS / RR-1106, Department of Computer Science, Yale Uni-
versity, April 1997.

[RR95] Thomas Rauber and Gudula Rünger. Parallel numerical algorithms with
data distribution types. Technical Report 07-95, University of Saabrücken,
1995.

[Sch94] Sven-Bodo Scholz. Single Assignment C – functional programming using
imperative style. In IFL ’94. University of East Anglia, Norwich, UK,
1994.

[Sch98] Sven-Bodo Scholz. A case study: Effects of WITH-loop-folding on the
NAS benchmark MG in SAC. In IFL’98. University College, London,
UK., 1998.

[Wad92] Philip Wadler. The essence of functional programming (invited talk).
In Conference record of the Nineteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: papers presented at
the symposium, Albuquerque, New Mexico, January 19–22, 1992, pages
1–14, New York, NY, USA, 1992. ACM Press.


	Introduction
	The Sequential Language
	The Language Sequence
	Independent Computation
	Distributed Computation
	Explicit Communication
	Per-Processor View

	Conclusions & Further Work

