
Write Detection in Home-Based Software DSMs?

Weiwu Hu, Weisong Shi, and Zhimin Tang

Institute of Computing Technology
Chinese Academy of Sciences, Beijing 100080
{hww,wsshi,tang}@water.chpc.ict.ac.cn

Abstract. Write detection is essential in multiple writer protocols to
identify writes to shared pages so that these writes can be correctly
propagated. This paper studies different write detection schemes in a
home-based software DSM system called JIAJIA. It compares the perfor-
mance of three write detection schemes: the traditional virtual memory
page fault write detection scheme which write-protects both home and
cached pages at the beginning of an interval, a cache only write detection
scheme which does not detect writes to home pages but invalidates all
cached pages at the beginning of an interval, and an API write detec-
tion scheme which requires the programmer or pre-complier to explic-
itly records writes in program. Evaluation with some well-known DSM
benchmarks reveals that tradeoffs of different write detection schemes
vary with data (home) distribution and memory reference patterns of
applications.

1 Introduction

Most recent software DSM systems employ the multiple writer cache coherence
protocol alleviate the impact of false sharing caused by large granularity of co-
herence in software DSM systems. The multiple writer protocol needs to detect
writes to shared memory so that the protocol can be activated to correctly prop-
agate the writes. Write detection of home-based software DSMs is more complex
than that in homeless software DSMs because detecting of writes to home pages
has to be taken into account as well. This paper studies different write detection
schemes with a software DSM system called JIAJIA[2]. These write detection
schemes include: (1) The traditional virtual memory write detection (VM-WD)
scheme which identifies writes to shared pages through page faults and twins.
With this scheme, both home pages and cached pages are write-protected at the
beginning of an interval to detect writes to shared pages in that interval. (2)
A cache only write detection (CO-WD) scheme which does not detect writes to
home pages. Only writes to cached pages are detected to generate diffs which are
sent to their home at the end of an interval. This scheme does not write-protect
home pages but invalidates all cached pages at the beginning of an interval
previously. (3) An API write detection (API-WD) scheme which requires the
? The work of this paper is supported partly by National Climbing Program of China

and National Natural Science Foundation of China (Grant No. 69703002).

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 909–913, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



910 Weiwu Hu, Weisong Shi, and Zhimin Tang

programmer or pre-complier to explicitly records writes in program. Instead of
detecting writes by the software DSM system automatically, this scheme provides
a function jia wtnt() in the API to record writes to the shared locations.

Evaluation with some widely accepted DSM benchmarks indicate that, the
tradeoffs of different write detection schemes vary with data distribution and
memory reference patterns of applications, performance can be significantly im-
proved if proper write detection is adopted in accordance with the data distri-
bution and memory reference pattern of the application.

2 The JIAJIA Software DSM System

JIAJIA characterizes itself with a new lock-based cache coherence protocol and
novel memory organization scheme which combines the physical memories of
multiple workstations to form a large shared address space. Like many research
or commercial systems such as TreadMarks[4], JIAJIA is implemented entirely as
a user-level library and currently runs on many mainstream Unix platforms and
Windows NT platform. One important characteristic of JIAJIA is its supporting
of home migration scheme, which is the first home-based software DSM system
that implements this idea. Multiple writer technique is employed to alleviate
false sharing.

3 Write Detection in JIAJIA

3.1 Virtual Memory Write Detection (VM-WD)

With the VM-WD scheme, both home and cached shared pages are initially
write-protected at the beginning of an interval. A SIGSEGV signal is delivered
when a processor first writes to a shared page in the interval.

For a write fault on a cached page, a twin of the page is created and a write
notice is recorded for this page in the SIGSEGV handler. Write protection on
the shared page is then removed so that further writes to this page can occur
without page faults. At the ending of the interval, a word-by-word comparison
is performed between the written page and its twin to produce diff about this
page. Write notices and diffs are then sent to the associated lock and home
respectively.

If the SIGSEGV signal is caused by a write fault on a read-only page, then a
write notice is recorded for this page and write protection on the shared page is
removed. At the ending of the interval, write notices about home pages are sent
to the associated lock too.

3.2 Cache Only Write Detection (CO-WD)

The above VM-WD scheme detects writes through page faults and entails addi-
tional runtime overhead on the protocol. Our previous experiments with JIAJIA



Write Detection in Home-Based Software DSMs 911

shows that, write-protecting home pages causes significant overheads for appli-
cations with large shared data set and good data distribution so that most writes
hit in the home.

The CO-WD scheme reduces the overhead of home pages write detection at
the cost of some extra cache miss. In the CO-WD scheme, all cached shared pages
are conservatively assumed to be obsolete and are invalidated at the beginning
of an interval. No write detection about home pages is required in CO-WD
because the purpose of detecting write notices of home pages is to maintain
coherence through invalidating associated cached pages, and the CO-WD scheme
has already invalidated all cached pages when starting an interval. Only writes
to cached pages are detected to generate diffs which are sent to their home at
the end of an interval. Diffs are generated through comparing the dirty page
with its twin as in the VM-WD scheme.

3.3 API Write Detection (API-WD)

The API write detection scheme is similar to the dirtybit approach[7] except that
it depends on the programmer or pre-complier instead of the complier to record
writes.

In the API-WD scheme, each node of JIAJIA maintains a dirty bit for each
home page and a dirty bit vector for each cached page. Setting the dirty bit of
a home page indicates that the page is modified, while setting the ith bit of a
cached page’s dirty bit vector indicates that the ith words of the page is modi-
fied. A function jia wtnt(addr,len) is provided to record writes to the shared
locations from addr to addr+len. The recorded shared region [addr,addr+len)
can across page boundary. The programmer (or a pre-complier) bears the respon-
sibility of inserting a jia wtnt(&a,len) after every write to shared variable a.
The dirty bit of each home page and the dirty bit vector of each cached page is
reset at the beginning of an interval. At the ending of an interval, the dirty bits
and dirty bit vectors are checked to determine whether a page is modified and
which part of a cached page is modified in the interval.

4 Performance Evaluation and Analysis

The evaluation is done in the Dawning-1000A parallel machine developed by the
National Center of Intelligent Computing Systems. The machine has eight nodes
each with a 200MHz PowerPC 604 processor and 256MB memory. These nodes
are connected through a 100Mbps switch Ethernet.

We port some widely accepted DSM benchmarks to evaluate the effect of
home migration in JIAJIA. This paper shows the results of seven applications,
include LU from SPLASH2[6], EP and IS from NAS Parallel Benchmarks[1], and
TSP and SOR from Rice University[5].

Table 1 shows characteristics and execution results of the benchmarks. It can
been seen from Table 1 that, both CO-WD and API-WD outperform VM-WD
significantly in LU and SOR, while VM-WD slightly outperforms CO-WD and



912 Weiwu Hu, Weisong Shi, and Zhimin Tang

Table 1. Characteristics and Execution Results of Benchmarks

Appl. Size Shared Seq. 8-proc. Time SEGV # Remote Accesses
Mem Time VM CO API VM CO API VM CO API

LU 2048 32MB 84.86 25.11 24.64 24.92 32663 12072 12072 18135 20032 18135
EP 224 4KB 49.69 6.25 6.27 6.26 22 21 21 14 14 14
IS 224 4KB 30.10 4.79 4.76 4.70 230 210 210 140 140 140
SOR 2048 16MB 6.97 2.14 1.20 1.13 41200 280 280 280 280 280
TSP 19 cities 788KB 258.33 37.48 38.06 38.71 5880 6179 5711 4733 5218 4775

API-WD in TSP. The difference among three write detection schemes is trivial
in EP and IS.

In LU and SOR, matrices are distributed across processors in a way that
each processor only writes to its home part of the matrices in the computing.
Since the computation of an iteration is synchronized with barriers and passing
a barrier causes all shared pages to be write-protected in VM-WD, page faults
occur for writing all home pages in an iteration. The CO-WD and the API-WD
scheme, on the other hand, does not write protect shared pages on a barrier,
and writing to home pages of a processor can process smoothly without any
intervention. Table 1 shows that the CO-WD and API-WD scheme causes much
less page faults than the VM-WD scheme in LU and SOR.

In TSP, the number of shared pages is not large and all shared pages are
allocated at host 0. As a result, the advantage of CO-WD and API-WD over VM-
WD in keeping home pages writable on a synchronization point is not significant.
Since CO-WD invalidate all cached pages on an acquire, it has largest number
of page faults among three write detection schemes. On the other hand, TSP
is an application with the tight sharing memory reference pattern, a cached
page is usually invalidated by the coherence protocol on an acquire because it
has been written by other processors, the disadvantage of VM-WD over API-
WD in write-protecting writable cached pages on synchronization points is also
not significant, while the extra overhead of executing jia wtnt() in API-WD
dominates and VM-WD slightly outperforms API-WD.

5 Conclusions and Future Work

It can be seen from the above evaluation and analysis that write detection con-
stitutes a significant overhead for home-based software DSMs. Evaluation results
show that the tradeoffs of different write detection schemes vary with data dis-
tribution and memory reference patterns of applications, performance can be
significantly improved if proper write detection is adopted in accordance with
the data distribution and memory reference pattern of the application.

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS Parallel Benchmarks”,
Technical Report 103863, NASA, July 1993.



Write Detection in Home-Based Software DSMs 913

[2] W. Hu, W. Shi, and Z. Tang, “JIAJIA:An SVM System Based on A New Cache
Coherence Protocol”, in Proceedings of the 7th High Performance Computing and
Networking Europe, pp. 463-272, April 1999.

[3] L. Iftode, J. Singh and K. Li, “Scope Consistency: A Bridge Between Release
Consistency and Entry Consistency”, in Proceedings of the 8th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, June 1996.

[4] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “TreadMarks Distributed
Shared Memory on Standard Workstations and Operating Systems”, in Proceed-
ings of the 1994 Winter Usenix Conference, pp. 115–131, January 1994.

[5] H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “Quantifying the Performance
Differences Between PVM and TreadMarks”, Journal of Parallel and Distributed
Computing, Vol. 43, No. 2, pp. 65–78, June 1997.

[6] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations”, in Proceedings of the 22th
Annual Symposium on Computer Architecture, pp. 24–36, 1995.

[7] M. Zekauskas, W. Sawdon, and B. Bershad, “Software Write Detection for a Dis-
tributed Shared Memory”, in Proceedings of the first International Symposium on
Operating System Design and Implementation, pp. 87–100, November 1994.


	Introduction
	The JIAJIA Software DSM System
	Write Detection in JIAJIA
	Virtual Memory Write Detection (VM-WD)
	Cache Only Write Detection (CO-WD)
	API Write Detection (API-WD)

	Performance Evaluation and Analysis
	Conclusions and Future Work

