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Abstract. Distributed Caml (D’Caml) is a distributed implementation of Caml,
a dialect of ML. The compiler produces native code for diverse execution plat-
forms. The distributed shared memory allows transmission and sharing of arbi-
trary ML objects including higher-order functions, exceptions, and mutable ob-
jects without affecting the sequential semantics of ML. The distributed garbage
collector reclaims unused distributed data-structures. Examples demonstrate ex-
pressivity of higher-order distributed programming using Distributed Caml. The
paper presents the design, implementation, and preliminary performance results
of the system.

1 Introduction

Due to significant advances in network and platform technologies, exchange of digital
information on the Internet is replacing the traditional methods of information exchange
and has increased the demand for high-quality distributed services and applications
for various use. However development of distributed applications remains hardest in
software development and thus it is getting more difficult to meet the rapidly grow-
ing demand for high-quality Internet software. Obstacles in development of distributed
software, among others, are (i) hardware and software heterogeneity of computers that
participate in distributed computing, (ii) data conversion required for inter-node com-
munication, and (iii) branches of knowledge required for system software development
such as OS system calls, message passing libraries, theories of parallel/distributed/real-
time computing, fault tolerance, security, and variety of libraries for system program-
ming.

Distributed Caml (D’Caml) is a distributed programming language and system be-
ing developed by the authors. Our research goal is to offer a programming system which
alleviates above mentioned obstacles, hereby invite novice programmer to practical dis-
tributed programming.

A D’Caml application is a collection of cooperative distributed processes that exe-
cute on a heterogeneous workstation cluster. Here, “heterogeneity” refers to difference
in hardware resources (instruction set, CPU architecture, memory hierarchy, accessi-
ble hardware devices, etc.) and software configuration (operating system, versions of
libraries, etc.). For instance, our development platform comprises Sun SPARC Stations
(Ultra SPARC/Solaris), Digital workstations (Alpha/Digital UNIX and Linux), and PCs
(Pentium/Linux and Solaris) connected via Ethernet.
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The distributed shared memory (DSM) substrate of the D’Caml runtime system
entirely hides the underlying heterogeneous, distributed environment and provides the
programmer for virtually shared, single address space abstraction. This functionality
enables transmission and sharing of arbitrary ML objects including functional closures
(functions with binding of free variables).

Remote closure invocation is a programming mechanism in D’Caml that allows a
thread to invoke an arbitrary function as a new thread in a remote process. Integration of
distributed shared memory and remote closure invocation offers the programmer a pro-
gramming style similar to single-node multi-thread programming like Java, Concurrent
ML [13], and Objective Caml [9].

Remote closure invocation differs from standard RPC mechanisms, as found in Ada
and Java + RMI, in several important respects. It supports dynamically created func-
tions (closures). When a closure is passed, not only the code pointer but also its free
lexical references are transmitted to the remote site. Secondly, these variables are virtu-
ally shared between the sender and the receiver so that sharing semantics is maintained
consistent with the sequential semantics. On the other hand, in most RPC system, vari-
ables are simply copied and thus violating sharing semantics for them (i.e., side-effect
made on the variable is invisible by remote processes). Thirdly, unhandled exception
is forwarded to and can be caught by the thread that issued remote invocation. Finally,
there is no constraint on the kinds of objects that can be transmitted during remote
closure invocation.

The rest of the paper is organized as follows. Section 2 describes the language and
the system of D’Caml. Section 3 shows the implementation scheme of the system and
Section 4 presents its preliminary performance results. Section 5 compares our work
with others and concludes this paper.

2 The Distributed Caml System

An application produced by the D’Caml system executes as a collection of cooperative
distributed processes running on a (possibly heterogeneous) workstation cluster.

D’Caml supports two kinds of execution platforms . The D’Caml/MPI configuration
utilizes the standard message passing interface [7] for low-level communication. In this
configuration, an application starts as a process which invokes all other cooperative
processes in the cluster. We call the first process that invokes others the host process. A
distributed application created with D’Caml/MPI configuration is static in the sense that
it does not support dynamic creation of processes after the application startup time.1 The
D’Caml/TCP configuration supports dynamic process creation. In this configuration,
an application starts as a single-process application which can spawn a new process at
remote computer arbitrarily.

The D’Caml language is a superset of Objective Caml (O’Caml) [9] developed at
INRIA. In addition to functionality supported by O’Caml, D’Caml offers distributed
shared memory, types and functions for distributed computing as summarized in Fig-
ure 1), and distributed garbage collector.

1 The lack of dynamic process creation is due to the specification of MPI 1. MPI 2 proposal
suggests inclusion of this facility.
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type node
val current node: unit -> node
val is host: unit -> bool
val get nodes: unit -> node array (* only for MPI *)
val start node: string -> string -> string -> node (* only for TCP *)

val spawn: node -> (unit -> ’a) -> unit
val rcall: node -> (unit -> ’a) -> ’a

Fig. 1. Some of the primitive functions defined in the Dcaml module

The node type is an abstraction of the distributed processes which encapsulates
heterogeneity of the underlying hardware and software resources. An instance of the
node type identifies one of the distributed processes that participate in the distributed
computing. The function current node gives the node that corresponds to the process
where this function is executed. The function is host tells if the current process is the
host process.

In the D’Caml/MPI configuration the get nodes function gives an array of the partic-
ipant nodes In the D’Caml/TCP configuration, the start node function is used to spawn
a new D’Caml process at a remote site. Three parameters specify the network address,
the working directory, and path to the D’Caml executable code.

All the D’Caml processes execute the same Caml program in a SPMD manner.
However typical D’Caml application initiates execution only at the host process which
serves as the master process using the is host primitive:

if Dcaml.is host () then print string (Unix.gethostname ())

Two functions, spawn and rcall, achieves remote closure invocation. They take a
node and a closure, send the closure to the remote node, and invoke the closure as a new
thread in the remote address space of the node. The spawn primitive is asynchronous:
its execution immediately finishes and the remote thread runs independently with the
current one. On the other hand, execution of rcall synchronizes with the termination of
the remote thread and takes its return value as its own return. In this way, rcall behaves
like a remote procedure call. The following program collects host names for all the
nodes in an array hostnames using the rcall primitive.

if is host () then
let nodes = Dcaml.get nodes () in
let hostnames = Array.make (Array.length nodes) "" in
Array.iteri

(fun i node ->
Dcaml.rcall node

(fun () -> hostnames.(i) <- Unix.gethostname ()))
nodes

This program is interesting in two aspects. The lexical scope of the closure being
rcalled contains free references to local names, hostnames and i. As mentioned ear-
lier, these free references are sent as part of the closure and become accessible by the
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rcalled closure to a remote node. Secondly, values referenced by these free references
are shared between distributed nodes. Therefore side-effect made on them by one node
is observable by the others. In the above example, the host node can retrieve hostnames
assigned by remote nodes.

Inter-node communication using remote closure invocation is advantageous in com-
parison with standard message passing because the programmer is released from imple-
menting with communication protocols. D’Caml offers basic communication protocols
as functions (e.g., spawn and rcall). Higher order functional programming allows us to
build higher-level communication protocols from lower-level primitives. For example,
let us consider the future primitive as found in Multilisp [8]. The future primitive takes
a node and a function and executes the function at the designated node. Execution of
the future primitive immediately finishes and returns a handle for the return value which
can be used to retrieve the return value in an arbitrary future time.

let future node f = (* node -> (unit -> ’a) -> (unit -> ’a) *)
let rbox = ref None in
let sem = Mutex.create () in
Mutex.lock sem;
Dcaml.spawn node

(fun () -> rbox := Some (f ()); Mutex.unlock sem);
(fun () -> Mutex.lock sem; match !rbox with Some v -> v);;

let touch = future some node a closure
in ...

let result = touch () in ...

In this implementation, the function f is spawned to the designated node and its
result is stored in a reply box. The handle to the reply box is represented by a function
which synchronizes with the execution of f using a semaphore.

The last example in this section demonstrates how standard parallelizing techniques
are expressed in D’Caml. The program presented in Figure 2 paints a graphical image
of Mandelbrot’s fractal set defined over the complex number space. Because each pixel
color can be computed independently from others, this computation is an inherently par-
allel computation. The program achieves parallelism in a master-workers style: single
master process divides the entire computation into smaller sub-computations and feed
them to multiple worker processes. In the program, computation for a two-dimensional
matrix is divided into many sub-computations that calculates pixel colors in a row. The
host node serves as the master and all other become workers. For each worker, the host
node starts a master thread which continuously feeds the corresponding worker node
with a new job until entire computation finishes.

3 Implementation

In this section, we describe the implementation scheme of the D’Caml system. We
briefly overview its software organization in the next subsection. Subsequent subsec-
tions describe the implementation scheme in detail.
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exception Done;;

let size = 500;;
let image = new image size size and next = ref 0;;

let mandelbrot i j = ...;;

let compute row i =
let row = Array.create size 0 in
Array.iteri (fun j point -> point <- mandelbrot i j) row;;

let new job () =
let i = !next in
if i < size then (incr next; fun () -> compute row i)
else raise Done;;

let master node =
try while true do paint image (Dcaml.rcall node (new job ()))

done
with Done -> ();;

if Dcaml.is host () then
Array.iter (fun node ->

Dcaml.spawn (Dcaml.current node ()) (fun () -> master node)
(Dcaml.get nodes ())

Fig. 2. Master-workers style parallel computation of the Mandelbrot set

3.1 Software Architecture

MPI or TCP/IP

SPARC
Code

Alpha
Code

Pentium
Code

Local Area Network

Solaris
SPARC

Linux
Pentium

Digi. UNIX
Alpha

D’Caml compilerD’Caml Program

D’Caml Distributed Shared Memory

Fig. 3. Software architecture of the Dis-
tributed Caml system

Figure 3 illustrates the software architec-
ture of the Distributed Caml system. A
D’Caml application runs on a heteroge-
neous workstation cluster. Given a Caml
program, the D’Caml compiler produces
native code for all architectures involved
in the cluster.

D’Caml DSM is a software-only im-
plementation of single address space
that spans over heterogeneous, physi-
cally distributed address spaces. Major
difficulties implementation of a DSM
for a functional language, namely trans-
mission of functional closures (Subsec-
tion 3.2) and dealing with shared mutable
objects (Subsection 3.3). Low-level mes-
sage transmission is established by per-
node thread that we call message handler (Subsection 3.6).
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3.2 Marshaling

To transmit Caml objects over the network we need a way to convert their internal data
representation to and from their architecture-independent forms, namely marshaling
and unmarshaling.

With most implementations of functional languages, each runtime data is attached
with GC tag which gives its structural information, size and sort of object (e.g., constant,
arrays, or pointer aggregates, etc). This gives sufficient information for marshaling most
heap allocated Caml objects. In fact, the built-in marshaling mechanism of O’Caml
traces the data structure using this information.

The marshaling mechanism of O’Caml, however, does not deal with distributed and
heterogeneous environment because it is assumed that the marshaled data will be loaded
back by the same process at later time. D’Caml extends the marshaling mechanism of
O’Caml by support for distributed data structures and ability to safely transmit closures.
Distributed data structures are expressed using remote pointers as described in Subsec-
tion 3.3. A difficulty in passing a closure over the network is the representation of code
that implements the closure. This issue is discussed in Subsection 3.4.

3.3 Remote Pointers

(n1, i)
i)

remote
pointer

referenced
object

Node n1 Node n2

import tableexport table

Fig. 4. Implementation of remote pointers.

In order to express distributed data struc-
tures, D’Caml DSM incorporates the no-
tion of remote pointers by which a data
can remotely reference an object allo-
cated in a remote address space. Figure 4
illustrates the representation of a remote
pointer. A remote pointer points to an en-
try in a statically allocated import table
whose entry consists of the node identi-
fier n1 and entry index j of the referenced
object. The pair of n1 and j identifies an
entry in the export table of the remote
node, which contains a regular pointer
pointing the remotely referenced object.

The export table is contained in the GC root set of the per-node local garbage col-
lector so that remotely referenced object is not collected even if it is not referenced
locally.

Import table achieves fast dereference of regular pointers. Dereference of a possi-
bly remote pointer requires to determine if it is a remote pointer (pointer testing). In
D’Caml, pointer testing is issued for each access to possibly remote pointer. Because
import table is statically allocated each pointer testing is as cheaply done as single ad-
dress comparison.

Now, we discuss the data transmission scheme and how remote pointers are intro-
duced there. Types of data transmission in D’Caml falls in three cases: (1) Remote
closure invocation transmits a closure which may contain various Caml objects in its
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defining environment. (2) Dereference of a remote pointer requires the remotely refer-
enced object to be transfered. (3) Update of remotely referenced object requires a value
to be sent and stored in the remote object.

When a node transmits a D’Caml object to other node, it replicates the object in the
remote node substituting all regular pointers referencing mutable objects with remote
pointers. This scheme guarantees that mutable objects are not replicated but referenced
through remote pointers.

D’Caml compiler takes advantage of the fact that immutable objects are always
pointed to by regular pointers and removes pointer testing for them. Therefore D’Caml
program coded in mostly functional style does not suffer from pointer testing overhead.
The type system of ML, which covers object mutability, offers the compiler precise
information and enables this optimization.

3.4 Closure Passing

A closure is a function defined in a local scope. The value assignment environment for
the variables in the lexical scope is called the defining environment for the closure. The
defining environment is a set of value assignments to variables that occur free in the
function definition.

In modern implementation of functional programming languages, runtime closure
representation comprises the code fragment that implements the function and an array
of values assigned to the free variables. In native implementation, the code is actually
represented by the address of the entry point of the code fragment of the function im-
plementation which we call entry address.

In order to transmit closures across the heterogeneous network, we need to interpret
an entry address used in one address space into another entry address which correctly
points to the corresponding code fragment in the remote address space.

The D’Caml compiler assumes that all the D’Caml processes are running native
code that is produced from the same Caml program. Given this, the D’Caml compiler
and linker assigns for each code fragment a unique identifier (entry point identifier) and
the runtime system translates entry addresses to and from entry point identifiers.

Node n1

Code for
(fun z -> E)

Code for
...

Code for
...

Node n2

Code for
(fun z -> E)

Code for
...

Code for
...

y = b
x = a

y = b
x = a

1

2

3 1

2

3

ID = (m, 1), x = a, y = b

Fig. 5. Remote closure passing scheme

Figure 5 sketches our remote clo-
sure passing scheme. The D’Caml com-
piler processes module source programs.
The code generator of D’Caml assigns an
architecture-independent, module-wide
unique number for each entry point in
the produced code. The module identi-
fier assigned by the statup-time linker
and the entry point number produced by
the D’Caml compiler together serve as
network-wide, unique identifier of the
code fragment. Figure 5 depicts pass-
ing of the following closure defined in a
module identified by m from node n1 to
another node n2:
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let x = a and y = b in (fun z -> E)

A variant of this address translation technique is used to implement remote excep-
tion handling and transmission of atomic objects.

3.5 Garbage Collection

The D’Caml system supports automatic reclamation of unreferenced objects by coor-
dination of per-node local garbage collectors and a distributed garbage collector. The
local garbage collector is a slightly modified version of O’Caml garbage collector. It
deallocates unreferenced heap-allocated objects. As mentioned before, the GC root set
includes the export table, to inform the local garbage collector of remote references.

The distributed garbage collector deallocates unused entries in the export tables
which point to heap-allocated objects. If these objects are not locally referenced, they
will be deallocated at the next attempt of local garbage collection. The distributed
garbage collection mechanism is based on a variant of reference counting algorithm
called weighted reference counting (WRC) [3].

3.6 Message Handler

Each D’Caml process executes a thread called the message handler which sends out-
going messages and dispatches incoming requests. Types of messages include requests
for remote closure invocation, requests for dereference and update of remote pointer,
and reply for remote dereference, and messages used by the runtime system such as the
distributed garbage collector.

In the D’Caml/MPI configuration, the message handler waits for the message by
polling every few milli-seconds. This active polling consumes noticeable CPU time and
reduces system’s response time for a communication-intensive applications. This design
is due to thread unawareness of the underlying MPI implementation. This overhead is
eliminated in the D’Caml/TCP configuration.

4 Evaluation

This section presents some of preliminary evaluation results of the D’Caml/MPI.

Speed-up: The first result shown in Figure 6-(a) is obtained from running the program
shown in Figure 2 for 500 × 500 matrix on varying number of nodes in the cluster.
The cluster consists of 15 nodes of SPARC Station 20 running Solaris 2.5.1 connected
with 100 Base-T Ethernet. The result is the average of 10 runs of the program ranging
the number of clients for 1, 3, 6, 9, and 12 nodes. The result does not say much but it
suggests D’Caml effectively utilizes inherent parallelism in a small scale workstation
cluster.
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Fig. 6. Evaluation results

Size of marshaled closures: A closure involves all its free references to other closures,
which in turn involves other closures, and so on. The reader may fear that the external
representation of closures can be huge making sending over the network impractical. It
turned out, however, the extern-ed closures are practically small enough. Figure 6-(b) is
the result we obtained from measuring the size for each marshaled string of 262 func-
tions defined in the standard library. About 90% of them occupy less than 100 bytes
and all of them fit in an Ether packet whose size is about 1,000 bytes. The reason for
their smaller size against our intuition is that highly optimizing closure conversion [1]
mechanism of the O’Caml compiler excludes top-level defined functions from closure
representation. We have found aggressive use of this technique can further be applied to
reduce extern-ed closure size. This technique reduces the largest closure (683 bytes) to
150 bytes and others less than 100 bytes. Currently we have not adopted this optimiza-
tion because the changes required for closure representation introduces small invocation
overhead.

5 Related Work and Conclusions

There are several projects working on distributed functional programming languages.
ParaML [2] is a distributed ML based on SPMD computation model and Distributed
ML [6] allows channel based inter-node communication. Both of them do not consider
heterogeneous environment.

Facile [14] is a mobile programming language that integrates a concurrent calculus
with ML. It allows passing ML modules across the heterogeneous network and exe-
cute them native by using dynamic compiler and linker. It does not support distributed
address space and is incapable to send closures across the network.

The dML [11] incorporates dynamic types in the ML type system and proposes
a theoretical foundation of inter-node communication between independent ML pro-
grams.
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Kali Scheme [5] and NeXeme [10] are distributed dialects of Scheme and Obliq [4]
is a mobile programming language. They offer single address space abstractions (or in
Obliq’s terminology distributed scope) and support heterogeneous environment. Kali
Scheme and Obliq provides automatic coherence protocol for distributed shared muta-
ble objects but the NeXeme leave this programmers’ responsibility allowing develop-
ment of relaxed coherence protocols. All of them are executed by bytecode interpreters.

An alternative to native implementation like D’Caml is the combination of bytecode
compiler and just-in-time technology. Attempts have been made to target functional
languages for JVM (e.g, Kawa scheme) but currently JIT fails to accelerate such imple-
mentations as efficient as standard implementation. As for distributed implementation,
inability to modify the VM leads to significant degradation of execution efficiency due
to pointer-testing overhead.

Distributed dialects of Scheme [12, 5] typically prohibit assignment to variables
but incorporate mutable data structures called boxes, similar to ref type in ML. The
purpose of boxes is for optimization of DSM and its coherence protocol [12]. In ML,
the type system precisely tells mutability information and thus we can apply the same
optimization without affecting the syntax and semantics of the language.

Distributed Caml offers a single address space for native code distributed applica-
tion that executes on a heterogeneous network cluster. Integration of higher-order pro-
gramming and communication based on remote closure invocation achieves a flexible
and extensible environment for distributed programming. Two important limitation of
our system are (1) communication between independently developed Caml programs
and (2) the support of mobility. These issues require future work.
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