
FITS—A Light-Weight Integrated Programming

Environment?

B. Chapman1, F. Bodin2, L. Hill3, J. Merlin4, G. Viland3, and F. Wollenweber5

1 Department of Electronics and Computer Science, University of Southampton,
Highfield, Southampton SO17 1BJ, U.K.

bmc@ecs.soton.ac.uk
2 IRISA, Campus Universitaire de Beaulieu, 35042 Rennes, France

3 Simulog Sophia Antipolis, Les Taissounieres HB2, Route des Dolines,
06560 Valbonne, France

4 VCPC, University of Vienna, Liechtensteinstr. 22, 1090 Vienna, Austria
5 Eumetsat, Am Kavalleriesand 31, 64205 Darmstadt, Germany

Abstract. Few portable programming environments exist to support
the labour-intensive process of application development for parallel sys-
tems. Popular stand-alone tools for analysis, restructuring, debugging
and performance optimisation have not been successfully combined to
create integrated development environments.

In the ESPRIT project FITS we have created such a toolset, based
upon commercial and research tools, for parallel application develop-
ment. Component tools are loosely coupled; with little modification, they
may invoke functions from other components. Thus integration comes at
minimal cost to the vendor, who retains vital product independence. The
FITS interface is publically available and the toolset is easily extensible.

1 Introduction

Integrated software development environments are popular. It is easier to use a
suite of functions which have been crafted to complement each other, than to
learn how to apply a set of individual tools, possibly with different conventions
and terminology and overlapping functionality; moreover, the developer may
then access different kinds of information on a program concurrently.

There have been a number of efforts to build programming environments for
the creation and maintenance of parallel programs. However, the only toolsets
that have been truly successful are those which have been constructed by a single
vendor; these tend to run on a restricted range of platforms or are limited in their
scope. Whilst some individual development tools (e.g. TotalView) have been
remarkably successful, efforts to provide environments based upon a collection
of such tools have not been so. Indeed, the only levels of “integration” that have
been adopted in practice are interaction at the operating system level, e.g. via

? The work described in this paper was supported by the European Union ESPRIT
project 23502, ‘FITS’.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 125–134, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



126 B. Chapman et al.

Unix files, and incorporation within a simple graphical user interface. Thus a
tool may benefit from the output of another tool, but no further interaction is
implied.

There are sound reasons for this. The complexity of each part of the par-
allelisation process has led to the specialisation of tools (and their suppliers),
which usually handle just one aspect of the parallelisation problem. Thus each
potential component of a toolset is developed in isolation from other tools. Each
tool has its own internal data structures and programming conventions. The
vendors are unlikely to share details of these, let alone adapt existing structures
and productisation plans to fit in with those of another product.

In the Fortran Integrated ToolSet (‘FITS ’) project we have tried to learn
from the lessons of the past regarding tool integration. This ESPRIT-funded
project has created a parallel programming environment incorporating two ex-
isting, separately developed and marketed products, and includes functionality
from two research prototypes. In order to permit interoperability, we have sought
a light-weight solution which avoids any major re-engineering of the component
tools and does not require complex interfaces. As a consequence, continuing
product independence is also assured. The result is the FITS toolset, an exten-
sible, portable programming environment for the development and maintenance
of parallel applications written in Fortran.

This paper is organised as follows. First we describe the tasks involved in a
typical parallelisation project. Then we introduce the components of the FITS
toolset and show how they support this process. We outline the functionality of
the integrated toolset and give a few examples of the benefits of the FITS tool
interaction before describing the mechanisms employed to realise it. We conclude
with a summary of related work and future plans.

2 The Manual Parallelisation Process

Coarse-grain parallelisation is a particularly demanding task in terms of the
manual labour it involves. A suitable global parallelisation strategy must be
devised and implemented, requiring a good understanding of the entire code.
Tuning is an intricate process which must be performed separately for distinct
architectures, implying that several different parallel program versions may be
created and require maintenance. The main activities in the program paralleli-
sation cycle are as follows:

1. Analysis: The code is first statically and dynamically analysed in depth in
order to fully understand its data usage, to identify computationally intensive
regions, and to select a parallelisation strategy.

2. Restructuring: The code is cleaned and restructured in preparation for
parallelisation and to facilitate subsequent program maintenance. Non-stan-
dard constructs are removed to achieve a portable version.

3. Debugging / verification: It is debugged and its correctness is verified.
The result is now suitable for use as a baseline version for parallelisation.



FITS—A Light-Weight Integrated Programming Environment 127

4. Parallelisation: Results of the program analysis and data locality informa-
tion are used to parallelise the program, either explicitly under the message-
passing paradigm or by inserting directives if a higher-level paradigm such
as HPF or OpenMP is used.

5. Debugging / verification: The parallel program version is debugged and
its correctness established.

6. Tuning: The performance optimisation cycle begins. The application is run
several times on the target architecture. Results are visualised by a per-
formance tool, communication hot spots identified and the corresponding
source code re-examined. It may need modification to reduce or re-organise
communication. Transformations are applied to optimise the single node per-
formance, in particular to better utilise the memory hierarchy. This process
terminates when results are satisfactory.

7. Maintenance: The verified parallel version becomes the main production
version, and program maintenance becomes the dominant activity.

Many of the individual tasks in the migration process are conceptually sim-
ple, but daunting in view of the size of programs and the number of details to be
considered. For example, coarse-grain parallelisation, like other large-scale pro-
gram modifications, requires evaluation of the data and control flow throughout
the entire program. Yet a program such as the global weather forecast model
IFS [2], developed and used in production mode on a parallel system at the
European Centre for Medium-Range Weather Forecasting (ECMWF), consists
of over 300,000 lines of code spread throughout many files; there are some 1,400
subroutines. Instances of Fortran storage and sequence association must be iden-
tified and, if an impediment to parallelisation, removed. This involves comparing
actual and formal arguments at call sites throughout the program, comparing
the declarations of common blocks in the entire code, and searching for other
forms of implicit and explicit equivalencing of data. But IFS has over 300 dif-
ferent common blocks, involving a large number of variables. Some subroutines
have hundreds of arguments in their interface. Codes such as this have often
been highly vectorised and may contain proprietary language extensions. Re-
engineering of data structures and loops may be needed in order to achieve good
performance on a parallel system.

An estimate of the effort required for each of the major steps in the paralleli-
sation of IFS is in general agreement with an early user survey [11]. At ECMWF,
about 25% of the effort went into code analysis, and another 25% into clean-
ing and restructuring the baseline code, to remove vendor-specific code features,
reorganise control flow and data structures, and convert it to Fortran 90. A
further 20% went into the initial parallelisation. Finally, debugging and perfor-
mance tuning each took about 15% of the overall effort. Our estimates suggest
that the fraction of this effort that is supported by a typical vendor-supplied
toolset, likely to consist of a compiler, runtime system, debugger and some kind
of performance tool (possibly no more than a profiler), is no more than 30%; in
particular, it is unlikely to be of use in the significant initial program analysis
and restructuring phases.



128 B. Chapman et al.

3 The FITS Toolset

The FITS project has created an extensible toolset facilitating the development
of parallel applications. The tools it contains support almost all of the major
activities in parallel application development, as outlined above.

We now describe the main components of the FITS toolset, and conclude
this section with an overview of the mechanisms used to integrate them.

3.1 FITS Components

The following tools have been input to the development of the FITS environment:

FORESYS: a Fortran source code restructurer, providing source code display,
checking, analysis and transformation, including conversion to Fortran 95.

TSF: a module for the user-driven application of source code transformations.
VAMPIR: a trace generator and performance analysis tool.
ANALYST: a research prototype interactive Fortran program analyser with

a sophisticated graphical user interface.

In addition, ideas from another tool, IDA, were used to design GIM’s displays.
FORESYS [13], from Simulog, is itself an integrated collection of tools to

check, analyse and restructure Fortran programs. It accepts Fortran with many
extensions, and can transform it into standard-conforming Fortran 77 or For-
tran 95 and ensure that it meets quality assurance standards. It ‘pretty prints’
the source code, using colour and a variety of fonts to make the code structure
clearer. It includes an editor, thus permitting code modifications from within
the system. It performs a variety of interprocedural checks, and can also display
data dependence graphs. This tool is thus particularly useful in steps 1, 2, 4 and
7 of the development process outlined in Section 2.

The TSF module [3] is an extension to FORESYS that provides a set of
source code transformations for performance enhancement. Examples are loop
transformations such as loop blocking, unrolling, interchanging, etc. These are
applied under the user’s control, usually in conjunction with steps 2 or 6 in the
above description. TSF also provides a scripting mechanism that allows users to
write their own transformations and to access program information stored in the
FORESYS system. This allows the automation of many of the repetitive tasks
that arise at various stages of code parallelisation.

VAMPIR [10], from Pallas, is a tool which supports the program optimisa-
tion step by visualising its execution behaviour. It does so by displaying infor-
mation obtained by tracing a program run. It can gather and present a range
of information, including the execution of message-passing constructs, collective
communication and procedure calls, and it can present this as system snapshots
or animated sequences. It has many measurement options and a range of graph-
ical displays. The user may zoom in on arbitrarily small time intervals of the
trace.

ANALYST [5, 6] is an interactive Fortran program analyser. It allows the user
to browse through a Fortran code and request various kinds of information about



FITS—A Light-Weight Integrated Programming Environment 129

it. Information is presented in both graphical and text formats. The displays
are themselves interactive: thus a user may click on an arc of a callgraph to
obtain details of the subroutine invocations it represents, or may access the
source text of a program unit by clicking on the corresponding node or its name
in a list of subprograms. Filter options enable the extraction of data from large
graphs. Displayed information is consistently related to the corresponding region
of source code; program information is thus provided together with the relevant
source text. ANALYST formed the basis for developing the FITS Graphical
Interface Module, GIM.

IDA [8] is a command-line-driven tool for interactive program analysis. It is
very easy to use and, where its functions are sufficient for the task at hand, is
thus a particularly convenient tool. In particular, it can provide a quick textual
display of a program’s callgraph. It has inspired the provision of similar textual
representations of some information in the FITS toolset.

Figure 1 shows how these components are linked together.

vampire
trace

Foresys

GIM

Vampire
Execution on a parallel computer

Forlib

TSF

Fig. 1. Overview of the FITS toolset components.

3.2 FITS’ Capablilities

As shown in Figure 2, the FITS toolset contains functions to support the major-
ity of tasks in the parallelisation process. It is portable and extensible, permitting



130 B. Chapman et al.

Analysis of a program’s runtime
behaviour with VAMPIR allows to

identify performance bottlenecks, helps
to assess the effect of transformations,

and provides guidance in the selection of
tuning options.

HPC Fortan Applications Lifecycle

FITS detailed and Fortran90 aware
interactive analysis and parallelization
support modules will  allow a cost effective
production of parallel versions of Fortran

applications

F90 +
MPI or HPF

Clean F90

REVERSE-ENGINEERING
PROCESS

PARALLELISATION
PROCESS

Old F77

PERFORMANCE TUNING
SOFTWARE

MAINTENANCE

FITS reverse engineering module will
help scientific programmers to
convert scientific "dusty deck"

applications to clean Fortran 90

FITS, with new modules providing
analysis for message passing or HPF
parallel applications, will continue to

boost HPC software productivity during
the maintenance phase of lifecycle

Fig. 2. Application life cycle.

the inclusion of additional tools. Although not exclusively developed for MPI [9],
it provides specific functionality to support the development of MPI code.

It provides the following functions to support the parallelisation activities
described in Section 2:

Static and dynamic program analysis (for steps 1 and 6):
– Graphical displays of the source program structure, for example its call-

graph, USEgraph, and data and control flow. These displays may be ma-
nipulated to isolate features of interest, and a graphical element may be
linked to a display of the corresponding source text.

– Display of the data dependence graph for a code region, and details of
the dependence relationships it represents.

– ‘Pretty printing’ of the source program.
– Support for analysing a program’s runtime behaviour, with the ability

to view a source code statement or region together with a display of its
execution behaviour.

Code transformations (for steps 2, 4, 6 and 7):
– Code cleaning (e.g. GOTO elimination, etc.) and translation to Fortran 95.
– Support for inserting MPI constructs into a code.
– Automatic insertion of instrumentation code to generate a VAMPIR

tracefile.
– An extensible set of user-applied transformations to improve the perfor-

mance of a parallel or sequential program, for example to tune it for the
memory hierarchy.



FITS—A Light-Weight Integrated Programming Environment 131

Verification (for steps 3 and 5):
– Checking the consistency of parameter passing and common block dec-

larations.
– Static analysis of MPI message-passing in a parallel application.
– Fortran dialect checking.

The combined toolset extends the functionality of the individual tools in
several ways. For example, FORESYS can automatically instrument a program
so that it generates a tracefile for display by VAMPIR. VAMPIR can then not
only visualise the execution behaviour, but it can also invoke FORESYS to
display the corresponding location in the source text and/or GIM to display the
relevant node in the callgraph, and vice versa. As another example, TSF uses
FORESYS to implement program transformations, and these transformations
may be invoked from a GIM display.

3.3 Tool Integration Mechanisms

At the heart of the toolset is a database created by FORESYS, called a For-
Lib. This contains detailed information about the source program, and it also
keeps track of other files related to the program such as Makefiles and VAMPIR
tracefiles.

Two types of integration are employed within FITS, depending on which
tools are coupled.

The displays produced by GIM and the code transformations produced by
TSF require a large amount of information to be exchanged with the ForLib.
Therefore GIM and TSF are tightly integrated with FORESYS so that they have
a fast and efficient connection to the ForLib database.

The coupling between FORESYS and VAMPIR is of a different nature. In
this case the tools do not exchange information, but rather each tool can remotely
control the other. For example, VAMPIR can request that FORESYS provides
a source code display, and FORESYS can request that VAMPIR displays some
execution events or statistics. Therefore these tools are coupled using a light-
weight integration mechanism.

The latter mechanism has been designed for ease of use and extensibility.
Although it does not provide the close interaction that is possible when a set
of tools is designed and constructed by a single organisation, it does permit a
variety of useful interactions between them and enhances the functionality of the
individual components accordingly. This approach does not require any complex
interfaces between the component systems and hence eliminates the need for
close coordination of their development.

The general architecture of the FITS integration scheme is shown in Figure
3. Its major components are as follows:

The fits notify utility: This utility program contains functions for remotely
controlling tools in the FITS environment. Each participating tool can invoke
fits notify, e.g. by calling system(), to cause another tool to perform an



132 B. Chapman et al.

Fig. 3. FITS integration scheme.

action. The protocol is asynchronous; no reply is sent and the calling tool
should not depend on the action being executed immediately. The syntax of
the call permits the kind of remote action to be specified, thereby implicitly
also selecting the target tool, and enables arguments to be given, including
such things as a location within a program or trace file.

A set of command-line routines: These enable a tool to interact with the
ForLib, the database containing source program information.

Interactive routines: These invoke FORESYS functions in order to obtain
graphical displays of the source program.

Specified file formats: For example, a specification of the VAMPIR tracefile
and configuration file formats.

The realisation depends strongly on the ForLib structure. Among the For-
Lib’s publically accessible attributes are: its name, which identifies a specific
version of an application development; the list of files and include files compris-
ing the program, with their directory paths; the list of Fortran program units;
the Fortran dialect in which the program is written; a list of program analysis
options to be applied; and the location of files related to the program such as
Makefiles and VAMPIR tracefiles.

Operations may be run in batch mode and produce non-graphical output,
mainly in text or HTML, or they may be interactive operations that provide
graphical output via the displays of FORESYS and GIM. The batch commands
enable a user or tool to obtain all public information on the contents of a ForLib,
and permit its modification, e.g. by adding or removing Fortran files from it.
Command-line routines are available to create a ForLib and to specify analysis
and transformations to be applied to it. The interactive mode allows a third-
party tool to request operations such as the display of a call graph, or the display



FITS—A Light-Weight Integrated Programming Environment 133

of the source code of a program unit, perhaps with highlighting of a particular
location in it such as an executable statement.

Additional interaction possibilities are provided via TSF and via the VAM-
PIR configuration file. The latter enables a user or tool to specify options gov-
erning the creation and display of tracefiles. The VAMPIR tracefile format is
also available as part of the FITS public interface, permitting a tool to read and
process the trace information itself. In interactive mode, it is possible to load
a tracefile and configuration file, to open certain VAMPIR displays, perhaps
related to a particular module, and from there to also request source code views.

4 Related Work

In addition to vendor-supplied parallel program development toolsets, there is
a range of product suites from individual vendors which combine several fea-
tures of the above. These include the Kuck and Associate product line [7] for
shared memory parallelisation. The FORGE parallelization tools [1] from Ap-
plied Parallel Research enable source code editing and offer control and data
flow information, in combination with an HPF compiler. VAST [12] from Pa-
cific Sierra Research helps a user migrate from Fortran 77 to parallel HPF code
by automatic code cleanup and translation to Fortran 90 and HPF. It can be
augmented by an HPF compiler and by a performance analysis tool, DEEP.

There have been attempts to integrate products from different vendors. The
ESPRIT project PPPE (Portable Parallel Programming Environment) [4] en-
hanced the functionality of a range of programming tools. It began with the
ambitious goal of integrating them within the PCTE framework. However, de-
spite the undoubted power of PCTE and its benefits in terms of opportunities for
closer tool interaction, the process of integration proved to be too complex and
time-consuming for both users and vendors, and this approach was abandoned.

5 Conclusions and Future Work

In this paper we have described the FITS programming environment for the
development of parallel Fortran applications. The environment is both portable
and extensible. The method for tool interaction was chosen to satisfy the need of
software vendors for independence, and to permit the inclusion of additional tools
with relative ease, possibly to create customised environments at individual user
sites. The realisation has required a central repository of information on a specific
application development, the ForLib, and a set of functions which permit the
asynchronous, remote invocation of functionality provided by component tools.
The result is a working environment which will soon be available on the market.

During its development, the toolset was used by two end-user companies in
the FITS project, Battelle and QSW, to parallelise two large industrial applica-
tion codes, namely a CFD code and an electromagnetic scattering simulation.
Their feedback provided an important input to the design and development of
FITS.



134 B. Chapman et al.

The capabilities of the resulting toolset offer the opportunity to explore new
approaches to some parallelisation problems, including introducing interactive
guidance for the process of program transformation.

Acknowledgments

We thank our colleagues in the FITS project, especially Markus Egg (VCPC),
Yann Mevel (IRISA), Hans-Christian Hoppe and Karl Solchenbach (Pallas),
Wolfgang Nagel and Holger Brunst (TU Dresden), Aron Kneer (Battelle), and
Ornella Fasolo, Agostino Longo and Carlo Nardone (QSW). We also thank Jerry
Yan (NASA Ames) for his valuable comments and suggestions about FITS.

References

[1] Applied Parallel Research: APR’s FORGE 90 parallelization tools for High Per-
formance Fortran. APR, June 1993

[2] S.R.M. Barros, D. Dent, L. Isaksen, G. Robinson, G. Mozdzynski, and F. Wollen-
weber, The IFS model: A parallel production weather code, Parallel Computing
21, 1621–1638, 1995

[3] F. Bodin, Y. Mevel, and R. Quiniou, A user level program transformation tool ,
Proc. Int. Conf. on Supercomputing, 1998

[4] B. Chapman, T. Brandes, J. Cownie, M. Delves, A. Dunlop, H.-C. Hoppe and
D. Pritchard. The ESPRIT PPPE project: a final report. Technical report VCPC
05-96, University of Vienna, 1996.
URL: www.vcpc.univie.ac.at/activities/reports/doc-files/tr 05-96.ps.

[5] B. Chapman, M. Egg and F. Wollenweber, ANALYST Version 1.0 User’s Guide,
VCPC, April 1996, rev. February 1997

[6] B. Chapman, M. Egg, ANALYST: Tool Support for the Migration of Fortran
Applications to Parallel Systems, Proc. PDPTA’ 97, Las Vegas, June 30–July 3,
1997

[7] Kuck and Associates. KAP/Pro Toolset for OpenMP . See www.kai.com/kpts/

[8] J.H. Merlin and J.S. Reeve. IDA—an aid to the parallelisation of Fortran
codes. Technical report, Dept. of Electronics and Computer Science, Univer-
sity of Southampton, Sept. 1995. Software and documentation are available from
www.vcpc.univie.ac.at/information/software/ida/.

[9] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Int. Journal Supercomputing Applications, Vol 8 3/4, 1994.

[10] W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe and K Solchenbach. VAMPIR:
Visualisation and analysis of MPI Resources. Supercomputer 63, 12(1), 69-80,
1996

[11] C.M. Pancake and C. Cook, What users need in parallel tool support: survey
results and analysis, Proc. Scalable High Performance Computing Conference,
1994

[12] C. Rodden and B. Brode. VAST/Parallel: automatic parallelisation for SMP sys-
tems. Pacific Sierra Research Corp., 1998.

[13] Simulog SA, FORESYS, FORtran Engineering SYStem, Reference Manual Ver-
sion 1.5 , Simulog, Guyancourt, France, 1996


	Introduction
	The Manual Parallelisation Process
	The FITS Toolset
	FITS Components
	FITS' Capablilities
	Tool Integration Mechanisms

	Related Work
	Conclusions and Future Work

