LUX: An Heterogeneous Function Composition Parallel
Computer for Graphics

Stéphane Mancini and Renaud Pacalet

Ecole Nationale Supérieure des Télécommunications, Paris, France

Abstract. In this paper, we present an heterogeneous parallel computer dedi-
cated to high realism computer graphics. A small network, with a reduced chip
set, allows us to reduce rendering time by a very attractive factor. The low level
mechanisms of the network are designed to manage the wide variety of data and
algorithms used in computer graphics. Some nodes of the network may be spe-
cialized in the most time consuming parts of the algorithm and have specific data
paths. Thanks to the function composition scheme, we unify both the manage-
ment of specialization and of parallelism. Those mechanisms allow flexibility
and easy design of programs.

1 Introduction

The graphic community is in need of very high computational power to achieve high
realism pictures at interactive rates. We observe that single general purpose comput-
ers can’t provide the needed performance, and general parallel computers hardly reach
them, and for a high financial cost. In this paper, we present an heterogeneous parallel
computer which may reach expected performances, with a reduced chip-set and this for
a low financial cost.

We are particularly interested in the speed up of Ray-Tracing algorithms. They simu-
late the propagation of light in an environment, the scene, made of geometric primitives.
The most time consuming part of such algorithms is the computation of the intersection
between the rays and the scene. The computation of surface lighting characteristics can
also be quite expensive. The graphic community has developed many algorithms to re-
duce the rendering time, essentially by reducing the number of ray-object intersections,
but it’s still quite high.

We propose to design specialized data paths to speed-up the most time consuming parts
of the algorithm. Those specialized units are interconnected through a dedicated net-
work to form an heterogeneous parallel computer.

In the second part of this paper, we briefly recall the Ray-Tracing algorithm and the
way we want to accelerate it. In part[3, we show how we manage specialization and
scheduling with the function composition scheme. In the two next parts @ and[3), we
precise the architecture and the load balancing strategy. At last, before the conclusion,
we show the tool developed to help us to make architectural choices.
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2 Motivation

2.1 Ray Tracing

The Ray-Tracing algorithm simulates the propagation of light in a scene. More exactly,
we follow the inverse path of light to determine which object is seen by the observer
at a given pixel of the picture. A primary ray is sent, originating at the observer and
passing through the considered pixel, and we compute its intersection with the scene
to determine which object is visible. Once the intersection is found, we determine the
amount of light at this point by sending secondary rays. We send rays to each light
source to compute the intensity of direct lighting and we send refracted and reflected
rays, depending on the local illumination law of the surface, to determine the amount
of indirect lighting. The Ray-Tracing algorithm is recursive, and we stop the recursion
when we reach a given criteria (recursion depth, contribution threshold, ...).

This basic algorithm is improved in several ways to deal with effects like indirect light-
ing through glasses and other realistic effects but the main point is that they’re built over
the computation of the intersection between a ray and the scene.

The Ray-Tracing algorithm needs very high computational power. Indeed, we need to
compute the intersection of several millions of rays with millions of geometric prim-
itives. That’s why the graphic community has developed many algorithms to reduce
the number of intersections to compute but the rendering times are still quite high. To
accelerate it again, we need to increase computational power.

2.2 Parallelization

The Ray-Tracing algorithm can easily be parallelized. For example, the computation of
two pixels is independent, and the intersection of a ray with two objects can be done in
parallel. In the literature, we find two main strategies, implemented on general purpose
parallel computers:

— “Control parallelism”: part of the picture are mapped to nodes which exchange
objects
— “Data parallelism”: the scene is split over nodes which exchange rays

The choice between such solutions is often empirical but some ([2]) proposed a mix
strategy where rays and objects move at the same time. The main advantage of general
parallel computers is that programmers can reuse existing graphic software, especially
in the first strategy. But the speed-up is at best linear with the number of nodes and
mainly depends on the amount of memory of each node and on the buses bandwidth.

2.3 Specialization

Mainly all previous specialized solutions ([4], [3]], [I]) failed because they didn’t offer
enough flexibility, which is essential in computer graphics. For example, (|3]) hard-
wired Constructive Solid Geometry (CSG) but didn’t provide algorithmic acceleration.
[1] tried to design very specialized processors but that time technology didn’t allow
their realization. Also, the bottleneck would have been the host computer because their
processors didn’t accelerate all the parts of the algorithm at the same rate.
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To be attractive enough, custom hardware must provide a computation power difficult
to reach with a general purpose processor and, this, for a low financial cost. A flattening
and unification of the Ray-Tracing algorithm shows us the possibility to design different
specialized data paths for various parts of the algorithm. For example, we are able to
design a chip computing 25 millions ray-triangle intersections per second, to be com-
pared to 1 million/s on a general purpose processor at 400 MHz.

So, we propose the design of a MIMD parallel computer built on a network of special-
ized processors. The network provides low level mechanisms to manage parallelism,
specialization of the nodes and flexibility. The load balancing strategy should allow to
increase the computation power dedicated to a given part of the rendering process by
multiplying the number of processors specialized in it. We also want it to take into ac-
count the possibility to process a task at various computing powers because we may
update the nodes to follow technological improvements.

3 The Function Composition Scheme

3.1 Grain of Parallelism

o} Bty D) T The main problem of the design of parallel pro-
() csaon grams is to find an adapted level of parallelism
Hment [ Trnsformtion because it has a direct impact on the ratio be-
<> poudingvome | LWECT computation time and data transfers. We
have seen that the Ray-Tracing algorithm pro-
vides many levels of parallelism, so we have to
choose one suitable for specialization.
/5\%@[ f scgmen The Ray-Tracing algorithm has something spe-
segmen oy} [ seement cific in the way that it is data driven: the se-
quence of computations depends on the scene
description. The scene is represented by a graph,
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ometric primitives, colorimetric informations
Fig. 1. Scene tree and algorithmic accelerations. The computation

of the intersection of a ray with the scene is per-
formed by a run on the tree. On figure[T}, the rays propagate from top to bottom and the
results of intersections propagate from bottom to top.
At this point, we note that the same function may have different behaviors, depending
on the types of data which describe leaves or nodes (CSG operation, triangle, quadric,
etc ...). So, we type data and we distinguish a function and its instantiation. Once we
know the function to compute and its arguments, we select the corresponding instan-
tiation depending on the type of the arguments and available hardware computational
resources.
So, we choose to set the level of parallelism at the level of the nodes and leaves of the
scene graph. This allows us to have an uniform grain of parallelism at each step of the
Ray-Tracing algorithm, from rendering to shading. To increase the grain of parallelism
and make a better use of Ray-Tracing properties, clusters of rays propagate in the scene
graph instead of single rays.
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I Intersect Ray Triangle(ray,triangle,destination)
segment=intersect triangle(ray,triangle)
Set Argument (destination, segment)

I Intersect Ray CSG Add(ray,node,destination)

T add=Create Task (Add segment,nil,nil,destination)

T left=Create Task (Intersect,ray,node-left, (T add, 0))

T right=Create Task (Intersect,ray,node-right, (T add, 1))

Fig. 2. Sample pseudo code

3.2 Tasks

Our system provides mechanisms to manage the stack created by the recursive run on
the scene tree. As we don’t want to centralize the stack, we give a task informations on
the task to compose with.

To call a function, we create a task which is a data structure composed of two elements:
an identifier of the function it uses and an array of arguments. We will note:

F = (f, (argy,arg,, ..., arg,))

f is the function associated with the task F'. Arguments are pointers on the data needed
by the function. A task is said sleeping until all the arguments are set, otherwise the task
is said activated and, then, may be processed. Task composition is achieved by indicat-
ing a function the argument of the task to compose with. When a task produces a result,
it sets the corresponding consumer task argument to the result’s address. The consumer
task may then be activated and move over the network to be processed somewhere.
Figure [2 illustrates this mechanism with a program sample. It shows the instantia-
tion’s pseudo-code of the ray/primitive or ray/CSG object intersection. The function
Create_ Task returns a pointer on the created task and the notation (Task,n)
points on the nth argument of the task. The function Set Argument creates a low
level task which sets the argument of a task to a pointer on the specified list. We note
that the two tasks T leftand T right can be processed in parallel because they are
both activated. The two segments “left” and “right” are destroyed by the task T add.

3.3 Task Migration

The management of specialization is distributed over the nodes. When a node receives
a tasks, it decides or to send it to a distant node or to process it locally. The diversity
of load balancing strategies and migration law is coded in the function’s genus. We
have the types: “Sedentary”, “Universal”, “Specialized” and “Follower”. A “Sedentary”
task can only be executed on a specific node. At opposite, an “Universal” task can
be processed everywhere. The management of specialized hardware is done through
“Specialized” tasks which migrate according to the type of their arguments. And, at
last, a “Follower” task migrates until it reach its first argument. The type of a task can
have a great impact on the performances of the system.
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3.4 Data Structures

We type data with three fields: (Class, Species, Type), called a genus. The data struc-
tures are unified in lists which are coded linearly, like we would write them by hand.
Tasks are also coded within lists. A task is coded in a list of three elements: a function,
the list of arguments and a data list. An argument can be a pointer on a list or a reference
to a sub list of the data list. This late one allows us to move task and data together. We
distinguish system tasks from applicative tasks with the function’s genus.

4 Architecture

4.1 General

LUX is an heterogeneous MIMD parallel com-
puter and nodes of the network are specialized
in parts of the rendering process. Nodes are in-
terconnected through a service network and a
w19 data network. The service network interconnects
) all the processors through a ring and is dedi-
cated to system communications like load bal-
ancing or specialization. The data network is a
hierarchical network and is dedicated to local
communications. In order to unify communica-
Fig. 3. Node architecture tions, processors only exchange tasks; even sim-
ple data are enclosed in tasks. The topology of
the data network is free and we can build sub networks which can be considered by the
rest of the network as single nodes.
Memory is distributed over the nodes of the network and addressing is unified through
pointers; A pointer refers to a processor and to the local address of the data. Conse-
quently, we have to transfer data and store them during computation of tasks. To do
so, the private memory of each node is split between local data and cached data. This
cache is made of copies of lists originally located on other processors. We note that the
function composition scheme doesn’t need the management of cache coherency. A data
propagates on the tree and is destroyed when it has run everywhere it’s needed. So, a
list can be created or destroyed but not modified, except tasks. This policy may increase
data transfers and memory resources but allows simple and fast mechanisms. Memory
resources of processors is free and the larger they are the more we reduce communi-
cations. Nevertheless, high memory quantities, like mass memory, can be managed by
specific processors to deal with large databases.

Task overflo|

4.2 Node Architecture

The main functionality of a node is the task pipeline execution which steps are “Migra-
tion” step, “Load” step and “Compute” step.

At the “Migration” step, the node determines the target node depending on the migra-
tion law of the task and on the load balancing strategy. A task may continue the pipeline
or be sent to another node.
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Next, at the “Load” step of the pipeline, the node loads distant data. Cached lists are
stored in cache cells. When there’s a cache miss, the task is removed from the task
pipeline and the node creates tasks to load the data. When the cell is loaded, the tasks
which use it continue the pipeline. If there aren’t enough available cells, the task is put
on the bottom of a stack for a further try. We note that cache cells are locked until the
end of the computation of tasks which use them.

The task function is computed at the third step. To simplify the design of processors,
we suggest to standardize the units which manage all the system mechanisms and adapt
the applicative unit, like shown on figure [l

We introduce FIFOs between each stage of the task pipeline to smooth access on the dif-
ferent units. To prevent interlocking, we use FIFOs of virtual infinite capacity. Indeed, if
the stacks were of finite size, when they would be full, the node couldn’t receive neither
create any active task which may solve the situation. So, to prevent interlocking, when
one stack is full, a part of its content is saved in external memory. The saved content of
the stack is restored when the stack is above a threshold. So, stacks are managed both
by a local unit and by a distant manager. This way, we can consider that the stacks are
of potential very large size and we prevent interlocking efficiently.

5 Load Balancing Strategy

5.1 The Algorithm

The resolution of the function migration law of a task may give us several target pro-
cessors where to compute the task. We have to make a local choice in order to minimize
the global computing time. The difficulty is that the different processors may have var-
ious computing powers. We choosed a policy based on the dynamic evaluation of the
computing time of tasks depending on specialization and target processor.

For each possible processor, we estimate the time it has to run and the target processor
is the one with minimum total time. The estimated run time of each processor is given

by the following equation:
T=> ng =Ty

Where n;, is the number of instantiation 4 of the tasks in the pipeline and 77, the eval-
uation of the computing time of the instantiation. In practice, we only take into account
the time of the applicative tasks and the run time of a node is incrementally estimated
when a task passes the migration step and when the computing of a task ends.

So, each processor needs to have knowledge about the state of others. Those informa-
tions are propagated through the service network at low rate. To reduce communica-
tions, we only send the estimated run time when its difference with the previous one is
superior to a given threshold.

To take into account transfers on the buses, we attribute a factor of correction to the
evaluation of the run time of each distant node. This policy allows us both to avoid
ping-pong effects while a node discharge its tasks to a node with same specialization
and to maintain locality of computations on subnetworks.
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5.2 Qualitative Study

We have to ensure us that this algorithm is stable and allows a good load balancing of
the nodes. Here, we don’t show a mathematical proof but give some qualitative results.
Instability would come from the delay between the moment we take a decision and the
moment we have knowledge of its results. We send tasks to the wrong node until we
get an evaluation of the estimated run time. One of the determinant factor is the time of
the travel of the task from its originating node to the target node. The more the buses
are loaded, the more we make wrong decisions. The delay due to the communication of
the time after its estimation, at the end of the processing of the task, also has influence
until the estimated time of the instantiation is stable. To reduce the delay, we can try to
predict the computing time of distant nodes. To do so, we modify the evaluation of the
computing time at the moment we make the decision. When we set the target node of a
task, we add to the distant node run time the task’s distant time.

The presence of many nodes with same specialization on the network has a drawback:
we increase the communications on the buses. Indeed, a data used by many tasks may
be loaded on each node cache cell and travel through the bus each time. On the other
hand, the Ray-Tracing algorithm produces many tasks which use the same rays in a
short time. The wrong choice of the target node, previously disputed, may send all
those tasks to the same node and save some bandwidth.

At this point, we understand that it’s quite difficult to give an a priori estimation of the
performances of our system. That’s why we provide a simulation tool to help us to make
architectural decisions.

6 Simulation Framework

6.1 Simulator Engine

We’ve developed a simulation framework of the system to help us to make choices
about network architecture, specialization, computational power, load balancing strate-
gies and various parameters value. The simulator engine of the framework is written in
C and the configuration tool in Tcl/Tk. We choosed C rather than VHDL, which would
allow a fine description from top level to gates, because VHDL would have been too
slow. The C code is divided in three parts:

— The core simulation engine
— Configuration and instantiation of the network
— The rendering program, collection of function’s instantiations

The simulator is an event driven simulator and we attribute instantiations a time model.
This model allows to simulate the different computational powers of each processor,
depending on its supposed specialization. Each action is timed and the simulator freezes
the different units until they finished their job. So, with probes set at various places, we
can have a fine analysis of task migration and data flows.
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Table 1. Architecture and scene influence

|Architecture|Bus width|Scene |Picture size”Time |Chip load |Bus load
32 sceneq |S0*50 27ms (T =1 B =0.23
100*100 118 ms|T =1 B=0.1
scenez |100*100 41 ms [T'=10.9 B=0.7
64 scenez |100*100 41ms |T"=0.9 B=04
: e 32 scenez [100¥100 |41 ms |T = 0.9 Br =0.5
a By =03
4 32 Id.  |Id. 41ms [T =09 Br=0.5
- By =0.1 By =02
32 d. [id. 44ms |T = (0.4,0.5)|B = 0.9
64 . |Id. 30ms T =06 B=0.6
el 132 1d. 1d. 30ms |T'=0.6 Br=20.6
[ B =04
e 32 d. [1d. 30ms |7 =0.6 Br =06
o
B; =0.2 Bu =03

6.2 Program Design

The first step to write a program is to list the different functions involved and attribute
them an identifier. The second step is the design of each function’s instantiations. Some
instantiations may create sub tasks to be executed and that for, they create a task with the
function field set to the corresponding identifier. The system will automatically man-
age task’s activation, like shown with the sample code on figure[2l The third step is the
compilation and installation of the different instantiations on their processors. Finally,
we establish a local link between each function and its instantiation, depending on the
migration law. We note that, as we need to have an overall view of the different kind
of processors to identify the functions, the steps declaration, compilation and establish-
ment of link are done by a supervisor.

Finally, each processor communicates its specialization to others through the service
network. An important point is that the design of the program is independent from the
data network. Task migration, data access and load balancing is automatically managed
by low-level mechanisms.

7 Results

7.1 Simulation Parameters

In this section, we give some results of simulation to show the influence of various pa-
rameters like scene description, network architecture and program design.
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The simulations are done with a scene which contains a ground plane, a tower and a
space station and is lighted with a punctual light source. The tower is made of boxes
CSG added and subtracted. The space station is a mesh of about 10000 triangles split in
an octree. In sceneq, the octree has a maximum subdivision depth of 6, with a maximum
of 20 triangles per node. In scene, the maximum depth is 8 with 10 triangles per nodes.
The nodes of the network are:

T Ray N triangle [P Ray N polyhedra|C' CSG
T'r Transformation|F' Filter R Rendering

The T node computes the intersection between a ray and a triangle in 4 clock cycles at
a 100 MHz frequency, which is an extreme computational power. To simplify the paper,
all the system is synchronous, at 100 MHz, and all the buses have the same bandwidth,
specified on the table of results. The computing power of all other processors is not
critical but they have side effects. The load balancing is the one in its basic version.

On all the simulations, for the clarity of the paper, we only give measures for the triangle
processor and buses (the buses subscripts are: 1=left, r=right, u=up and b = bottom).

7.2 Analysis

The table [l shows us the influence of the re-
lation between computation power and bus
bandwidth. The results obtained with the first
architecture shows us that the bottleneck is the
. T node when we do the computation with the
. scene scene; which contains a few complex
0 primitives. In scenes, we have many small prim-
. itives and the bottleneck becomes the bus which
B as to transfer the primitives and the results of in-
tersections.
Fig. 4. Load balance The three first architectures have approximately
the same performances because the bottleneck
is the triangle processor. Their behavior is different when we add a second triangle
processor because the bottleneck becomes the bus bandwidth. To reduce the rendering
time, we have to reduce the bus load. To do that, we can increase the bus bandwidth or
split the bus.
We observe that the balance between the two triangle processors is quite good: we have
less that 1% of difference of efficiency when they have the same computational power.
The figure B shows the evolution of the balance between two processors of same spe-
cialization but with different computing power. We set the 7} processor to the highest
computing power (one intersection in 4 clock cycles) and we decrease the computa-
tional power of T5. We observe that when the two processors have similar computa-
tional power, they behave the same. When the difference is too important, the slowest
processor becomes the bottleneck. This behavior comes from bad evaluations of the
computing time of tasks which leads to wrong choices. If the wrong decision of the mi-
gration step leads to a migration, the choice can be corrected by the target node. But, if

Time (ms)




LUX: An Heterogeneous Function Composition Parallel Computer for Graphics 949

it leads to local execution of the task, once it’s in the pipeline of the slowest processor,
it stays in it and becomes the bottleneck.

Simulations show us that we don’t significantly increase the network performances by
modifying simulation parameters. So, we have to improve the network mechanisms. A
solution would be to have a better model of the computing time which would take into
account the complexity of the arguments of the functions. We could insert a “refining”
step in the pipeline, after the migration step and before the load of operands, which
would give a better approximation of the computing time of the task. We are currently
investigating another solution which performs regular correction of the load balance. In
case of known unbalance, we remove tasks from the pipeline and send them back to the
migration unit which would make better choices for a better balance. This late approach
seems to be very promising.

8 Conclusion

We have presented a knew kind of parallel computer dedicated to a class of applica-
tion. Rather than to parallelize Ray-Tracing in screen or object space, we choosed to
parallelize on nodes and leaves of the scene tree. This allows us to have specialized
processors dedicated on nodes or leaves and to preserve flexibility. The load balancing
strategies are automatically managed by the system and the user can have a fine control
on them by tuning the data flows and program design. The user may also add its own
strategies with specific system tasks. However, our strategy allows us to reduce the time
to ray trace pictures by a very attractive factor, like shown by simulations. We note that
although initially designed for Ray-Tracing, our architecture could be used for a wide
variety of algorithms.
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