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Abstract. We present a new parallelizable preconditioner that is used
as the local component of a two-level preconditioner similar to BPS. On
2D model problems that exhibit either high anisotropy or discontinuity,
we demonstrate its attractive numerical behaviour and compare it with
the regular BPS. To alleviate the construction cost of this new precon-
ditioner, that requires the computation of the local Schur complements,
we propose a cheap alternative based on Incomplete Cholesky factoriza-
tion, that reduces the computational cost but retains the good numerical
features of the preconditioner.

1 Introduction

The solution of elliptic problems is challenging on parallel distributed memory
computers as their Green’s functions are global. This problem is often tackled
via domain decomposition techniques, using two-level preconditioners. In the
framework of non-overlapping domain decomposition techniques, we refer for
instance to BPS (Bramble, Pasciak and Schatz) [2], Vertex Space [7, 13], and
to some extent Balancing Neumann-Neumann [10, 11], as well as FETI [8], for
the presentation of major two-level preconditioners. We refer to [5] and [14] for
a more exhaustive overview of domain decomposition techniques.

In this work, we consider non-overlapping domain decomposition techniques,
and two-level preconditioners for the conjugate gradient method. These precon-
ditioners can be written similarly to BPS [2], that is, as the sum of local and
global components. We focus on a new local preconditioner that solves the as-
sembled local Schur complement on the whole interface of each subdomain.

In Section 2, we briefly describe non-overlapping domain decomposition tech-
niques and the class of two-level preconditioners we considered here. The main
goal of that section is to formulate algebraically the sub-domain based pre-
conditioner. In the next section, we introduce the 2D model problems used to
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benchmark the preconditioners, those model problems exhibit high anisotropy
and high discontinuity. Numerical experiments are reported in Section 3 and,
finally, some concluding remarks are reported.

2 Preconditioner Description

This section is two-fold. First, we formulate a two-dimensional elliptic model
problem. Then, we introduce the preconditioners we studied.

We consider the following 2nd order self-adjoint elliptic problem on an open
polygonal domain Ω included in IR2:{

− ∂
∂x

(a(x, y)∂v
∂x

) − ∂
∂y

(b(x, y)∂v
∂y

) = F (x, y) in Ω,

v = 0 on ∂Ω
(1)

where a(x, y), b(x, y) ∈ IR2 are positive functions on Ω. We assume that the
domain Ω is partitioned into N non-overlapping subdomains Ω1, . . . , ΩN with
boundaries ∂Ω1, . . . , ∂ΩN ; this defines a coarse mesh, τH , with mesh size H .
We discretize (1) either by finite differences or finite elements resulting in a
symmetric and positive definite linear system Au = f .

Let B be the set of all the indices of the discretized points which belong to
the interfaces between the subdomains. Grouping the points corresponding to B
in the vector uB and the ones corresponding to the interior I of the subdomains
in uI , we get the reordered problem:(

AII AIB

AT
IB ABB

) (
uI

uB

)
=

(
fI

fB

)
. (2)

Eliminating uI from the second block row of (2) leads to the following reduced
equation for uB:

SuB = fB − AT
IBA−1

II fI , where S = ABB − AT
IBA−1

II AIB (3)

is the Schur complement of the matrix AII in A, and is usually referred to as
the Schur complement matrix. For a stiffness matrix A arising from finite ele-
ments discretization the Schur complement matrix (3) can also be written as:

S =
N∑

i=1

S(i) , where S(i) = A
(i)
BB − (A(i)

IB)T (A(i)
II )−1A

(i)
IB only involves matrices

computed locally on the finite elements in Ωi. In Figure 1, we depicted a sub-
domain Ωi with its edge interfaces Em, Ej , Ek, E`; the local Schur complement
matrix is dense and has the following block structure (for the sake of clarity, we
do not consider the corner points):

S(i) =




S
(i)
mm Smg Smk Sm`

Sgm S
(i)
gg Sgk Sg`

Skm Skg S
(i)
kk Sk`

S`m S`g S`k S
(i)
``


 (4)
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The diagonal blocks represent the coupling between nodes on an edge interface.
The off-diagonal blocks represent the coupling between each edge interface of Ωi.
Notice that the off-diagonals of S(i) are blocks actually existing in S, while the
diagonal blocks are contributions to the diagonal blocks of the complete Schur
complement matrix S. For instance, the diagonal block of the complete matrix
S associated with the edge interface Ek is Skk = S

(i)
kk +S

(n)
kk . We then obtain the

local Schur complement assembled on the interface edges by:

Ŝ(i) =




Smm Smg Smk Sm`

Sgm Sgg Sgk Sg`

Skm Skg Skk Sk`

S`m S`g S`k S``


 . (5)

.

Em

E`

Ek Ωj

Eg

Ωi

vl

Fig. 1. Example of a regular 2D decomposition

We now describe the preconditioners, starting with BPS, followed by our new
preconditioner. In this respect, we define a series of projection and interpolation
operators. Specifically, for each Ei we define REi as the standard pointwise
restriction of nodal values on Ei. Its transpose extends grid functions in Ei by
zero in the rest of the interface. Thus, Sik ≡ REiSRT

Ek
. Additionally, we define

grid transfer operators between the interfaces and the coarse grid points in τH .
RT

0 is an interpolation operator which corresponds to using interpolation between
each set of edge endpoints (i.e. adjacent points in τH) to define values on the
edge between the endpoints (i.e. edge interface Ei). R0 is a projection operator
and is the transpose of the interpolation operator. Finally, A0 is a coarse grid
approximation of the Schur complement operator on τH computed with to the
Galerkin formula A0 = R0SRT

0 . We refer to [3] and to the references therein
for a more detailed description for the coarse grid component for this type of
preconditioner.

With the above notation a close variant of the BPS preconditioner is given
by MBPS−E = ME + RT

0 A−1
0 R0 where ME =

∑
Ei

RT
Ei

S−1
ii REi (in the original

BPS A0 is built from A and not from S as in our case). It can be interpreted
as a generalized block Jacobi preconditioner for (3) augmented with a residual
correction used on a coarse grid. The coarse grid correction term RT

0 A−1
0 R0

allows global coupling to be incorporated between the interfaces. This global
coupling is essential for scalability. In particular, it has been shown in [2] that,
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when applying the original BPS technique to a uniformly elliptic operator, the
preconditioned system has a condition number

κ(MBPSS) = O(1 + log2(H/h)), (6)

where h is the mesh size. This implies that the condition number depends only
weakly on the mesh spacing and on the number of processors. Therefore, such a
preconditioner is appropriate for large systems of equations on computers with
a large number of processors.

The new preconditioner can be described in a similar way by defining another
series of projection and interpolation operators. Specifically, for each subdomain
Ωi we define RΩi as the standard pointwise restriction of nodal values on the in-
terface of Ωi. Its transpose extends grid functions on ∂Ωi (the interface of Ωi) by
zero on the rest of the interface. Thus, Ŝ(i) ≡ RΩiSRT

Ωi
. With the above notation,

we define the new preconditioner by MBPS−S = MS + RT
0 A−1

0 R0 where MS =∑
Ωi

RT
Ωi

(Ŝ(i))−1RΩi .
In a distributed memory environment, the proposed preconditioner can be

constructed almost at the same cost as regular BPS. More precisely, it requires
the same amount of communication and a slight increase in the number of op-
erations due to factorization of the dense assembled local Schur complement
matrices rather than only their diagonal blocks. We address to [4] for details
on the parallel implementation and time comparisons between regular BPS and
our alternative.

Notice that the sub-domain based preconditioner MS can be viewed as a
Neumann-Neumann preconditioner [6] except that in our case the block diagonal
coefficients of the local Schur complement matrices are assembled on each sub-
domain. Another difference with Neumann-Neumann is that the contribution of
each subdomain is simply summed-up on each interface; for Neumann-Neumann
a weighted sum is computed.
In fact, with the above notations, the Neumann-Neumann preconditioner, MNN ,
can be written as: MNN =

∑
Ωi

Di(RT
Ωi

(S(i))−1RΩi)Di, where the matrices Di

are weight matrices defining a partition of unity (i.e.
∑
Ωi

Di = I). For internal

domains, S(i) is singular and pseudo-inverses (S(i))+ should be used instead.
Assembling the diagonal blocks of the local Schur complement matrices S(i)

removes this singularity.
Finally, this new local preconditioner can also be viewed as an Algebraic

Additive Schwarz preconditioner for the Schur complement, since it corresponds
to a block diagonal preconditioner with an overlap between the blocks.

3 Numerical Experiments

With a first part dedicated to the description of the problems we are dealing
with, this section presents the numerical behaviour of the local preconditioners
introduced in Section 1. The central issue is to compare the number of iterations
of a preconditioned conjugate gradient method when solving (3).



1036 Luiz M. Carvalho and Luc Giraud

3.1 Model Problems

We mainly address the solution of Equation (1) discretized by linear finite ele-
ments. Convergence of the preconditioned conjugate gradient method is attained
when the 2-norm of the residual of the current iteration, normalized by the 2-
norm of the right hand side, is less than 10−5. The grid is uniform.

The background of our study is the numerical solution of drift-diffusion equa-
tions for the numerical simulation of semi-conductor devices. In this respect, we
intend to evaluate the sensitivity of the preconditioners to anisotropy and to dis-
continuity. With this in mind, we consider the following 2D model problems. In

l

nm

j

k

Fig. 2. A region where anisotropy and discontinuity are combined.

Figure 2, we represent the unit square divided into five regions where piecewise
constant functions are defined. Let a and b be the functions of the elliptic prob-
lem as described in Equation (1). With these notations, we can define different
problems with different degrees of difficulty:

– Poisson problem: a = 1 and b = 1,
– anisotropic and discontinuous problems: a = 1 and b = j, k, l, m, n.

• Scot-flag1 (SF1): j=l= 10−2, k=m= 102 and n=1.
• Scot-flag2 (SF2): j=l= 10−3, k=m= 103 and n=1.

In addition, we have considered another set of problems where we have only
introduced anisotropy not necessarily aligned with the x or y axis but that makes
an angle θ with the x-direction. For θ = 0, this corresponds to the classical model
anisotropic equation:

ε
∂2u

∂x2
+

∂2u

∂y2
= f with ε � 1.

We have tested θ ∈ {nπ/8; n = 0, 1, 2}; because of the symmetry, the previous
tests are actually for n ∈ {0, 1, 2, . . . , 15}.

3.2 Experimental Results

The proposed local preconditioners are computationally expensive to construct
as we need to form explicitly the exact local Schur complement S(i). To alleviate
the cost of this computation, cheap approximations can be obtained by replacing
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the exact solution of the local Dirichlet (A(i)
II )−1 problem by some approximation

based either on approximated inverse like AINV [1] (that preserves the symmetry
of the preconditioner while SPAI [9] usually does not) or by an Incomplete
Cholesky factorization ILLT [12]. In both cases, an approximation of S(i) can
be computed by sparse matrix-matrix computation at a lower cost than the one
to pay even if an efficient sparse factorization were used. In order to study the
effect of this approximation on the quality of the resulting preconditioner, we
display in the next tables both the number of iterations using the exact local
Schur and the approximation via an incomplete Cholesky factorization (denoted
by M̃BPS−E for the approximated standard BPS preconditioner and M̃BPS−S

for the approximated new preconditioner, respectively).
We first benchmark the preconditioner on the classical Poisson problem to es-

tablish that the new preconditioner satisfy the condition number estimate given
by Equation (6). In Table 1, we can see that the number of iterations does not
depends on the number of subdomains (that is 1

H ) when the size of the sub-
domain remains constant (that is H

h ) as predicted by (6). For that problem, a
simple ILLT without fill-in is used for constructing the approximation of the lo-
cal Schur complement matrices. Furthermore, we observe that the approximation
of the local Schur complements do not affect the quality of the preconditioner
and that the new preconditioner does not behave better than the regular block
Jacobi used for standard BPS.

Poisson
# subdomains 4× 4 8× 8 16× 16

MBPS−E 9 11 11
MBPS−S 10 10 11

M̃BPS−E 12 13 13

M̃BPS−S 12 13 13

Table 1. Number of iterations of the preconditioners for the Poisson problem.
Each subdomain is discretized using a 16 × 16 grid.

For non-uniform elliptic operators, the theoretical bound does not work any-
more. It can be seen in the next tables where we report the number of iterations
for the anisotropic and anisotropic/discontinuous problems. In Table 2 and 3, we
observe that the number of iterations increases when the number of sub-domains
increases from 16 up-to 256. For both anisotropic and discontinuous problems,
the new sub-domain based preconditioner ensures a convergence of the conjugate
gradient method in less iterations than MBPS−E . MBPS−S converges in 25% less
iterations on the anisotropic problem and reaches 40% less on the discontinuous
problem.

Although the new preconditioner is still better when using approximations of
the local Dirichlet problem, the figures show a deterioration in the convergence
of both M̃BPS−E and M̃BPS−S . We have used an ILLT factorization with the
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fill-in controlled through a threshold strategy to construct cheap approximations
of the local Schur complement matrices. This threshold induces some fill-in in
the approximated factors; the extra storage is only a factor two or three more
than the original matrices. However, this extra fill-in was necessary to avoid an
undesirable deterioration in the numerical behaviour of the resulting precondi-
tioner.

Scot-flag
# subdomains 4× 4 8× 8 16× 16

SF1 SF2 SF1 SF2 SF1 SF2

MBPS−E 25 42 34 69 42 105
MBPS−S 19 30 22 44 27 64

M̃BPS−E 26 47 38 76 48 110

M̃BPS−S 24 40 29 56 36 77

Table 2. # iterations for problems combining high anisotropy and high discon-
tinuity. Each subdomain is discretized using a 16 × 16 grid.

Anisotropy (ε = 10−3)
# subdomains 4× 4 8× 8 16× 16

MBPS−E 20 28 35
MBPS−S 17 21 26

M̃BPS−E 21 29 35

M̃BPS−S 17 21 25

Table 3. # iterations on the anisotropic problem with θ = π/4. Each subdomain
is a 16 × 16 grid.

4 Concluding Remarks

We have presented a new local parallelizable preconditioner that can be easily
combined with the BPS coarse component to produce an efficient two-level pre-
conditioner. We have shown for two difficult model problems that exhibit high
anisotropy and/or discontinuity the effectiveness of this new preconditioner. To
overcome its expensive construction, due to the exact explicit computation of the
local Schur complements, we have proposed an alternative based on incomplete
Cholesky factorization. This alternative enables a cheaper construction and only
slightly deteriorates the efficiency of the resulting two-level preconditioners. Fi-
nally, the parallel implementation of the new preconditioner does not increase
the complexity of the regular BPS, therefore it can be efficiently implemented
on parallel distributed memory computers, we refer to [3] and [4] where parallel
experiments are reported.
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