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Abstract. We have studied a preconditioning technique for Krylov sub-
space methods on a fluid dynamics problem in 2-D. By discretizing the
time-dependent Euler equations with a finite volume method in space
and using the trapezoidal rule in time, we get a nonlinear system which
is solved using a Newton–Krylov method. We precondition the linear
iterates using a parallel semi-Toeplitz preconditioner to reduce the num-
ber of iterations. The experiments show a substantial reduction in the
number of iterations required for convergence.

1 Introduction

We have studied a semi-Toeplitz preconditioner that has been extended by
Domain Decomposition for use in parallel computations [3]. The use of semi-
Toeplitz preconditioners for Krylov subspace methods has been thoroughly in-
vestigated by Hemmingsson [1, 2, 4] and have been found very efficient. Therefore
it is of interest to parallelize them in an efficient way in order to use them in
large scale computations.

This paper is focused on the convergence behavior of a Newton–Krylov
method for a 2-D flowproblem. We first show how the global preconditioner
system is solved, then continue by sketching the application and the discretiza-
tion, and finally we present results.

2 The Preconditioner

By using Domain Decomposition we obtain a partitioned preconditioner system
where we distinguish between interior unknowns xI , boundary unknowns xB,k̄

and xB,̄, and corner unknowns xC , see Fig. 1. With these definitions the global
preconditioner system Mx = y reads

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1124–1127, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Convergence Acceleration for the Euler Equations 1125

b b b b b b

b b b b

b b b b

1 2 3 4 5 6

7 8 9 10

11 12 13 14

Fig. 1. The partitioning of the computational domain is shown in the picture to the
left, and the right picture shows one of these blocks. Corner cells are grey, boundary
cells are white and interior cells are black.
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2.1 Solution of the Preconditioner System

We use the following solution strategy: (Step 1) solve for xC , (Step 2) insert xC

in (2.1) and solve for xB,k̄ and xB,̄ and (Step 3) insert xB,k̄ and xB,̄ in (2.1)
and solve for xI .

Interior unknowns If xB,k̄ and xB,̄ are known, the solution for the inte-
rior unknowns decouples into the solution of as many independent systems of
equations as there are subdomains in our computational domain. For a block `
we obtain the following system of equations

M I
` xI

` = yI
` − M IB,k̄

` xB,k̄
` − M IB,̄

` xB,̄
` (2.2)

Since M I
` is defined such that it has a semi-Toeplitz structure, (2.2) is solved by

means of modified sine transforms [2].
Block boundary unknowns For the boundary unknowns we start by elimi-

nating the corner unknowns in (2.1). The resulting system of equations decouples
into two independent systems of equations by, first assuming that M IB,̄ is small
and next assuming that M IB,k̄ is small, yielding the corresponding system for
xB,k̄ and xB,̄. By block Gaussian elimination we get

CB,•xB,• = yB,• − MBC,•xC − MBI,• (
M I

)−1
yI , (2.3)

where CB,• ≡ MB,• − MBI,• (
M I

)−1
M IB,•.

The systems defined by (2.3), the so-called block boundary Schur complement
systems, decouple into as many independent systems of equations as there are
rows and columns of subdomains respectively. These are solved using modified
sine transforms and the solution of narrow-banded systems.
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Corner unknowns Finally, we study the solution for the corner unknowns.
The system for these unknowns is difficult to solve, and we have to make several
approximations to obtain a system of equations that is easy to solve.

We start by making the approximation MBI,• ≈ 0, which gives a system of
equations that is decoupled from the interior unknowns. Using block Gaussian
elimination we obtain

CCxC = yC − MCB,k̄
(
MB,k̄

)−1

yB,k̄ − MCB,̄
(
MB,̄

)−1
yB,̄,

where CC ≡ MC − MCB,k̄
(
MB,k̄

)−1

MBC,k̄ − MCB,̄
(
MB,̄

)−1
MBC,̄. We

solve this system using a direct method.

3 Model Problem

We have studied the Euler equations on a backwards-facing step, where we use
Crank–Nicholson for the time discretization. Spatial discretization is done by
means of a finite volume method on a uniform grid. We let (k, j) denote the
center of a cell. In each cell (k, j) with area Sk,j our method is defined by

Sk,j
qn+1 − qn

∆t
+

4∑
`=1

[
θ (fnx + gny)n+1 + (1 − θ) (fnx + gny)n

]
∆S` = 0, (3.1)

where the ∆S`’s are the walls of the cell. The fluxes are computed using third
order upwind approximations.

3.1 Newton–Krylov Method

The discretization in (3.1) above gives us a nonlinear system, F (qn+1) = 0, to
solve in each time-step. We utilize Newton’s method to solve this system, thus
solving

∇F (qn+1,µ)∆qn+1,µ = −F (qn+1,µ), (3.2)

and then adding

qn+1,µ+1 = qn+1,µ + ∆qn+1,µ. (3.3)

We choose qn+1,0 = 2qn − qn−1 as initial guess, and let qn+1 = qn+1,µ+1 at
convergence.

The linear system in 3.2 is solved using GMRES(6) where we use left pre-
conditioning,

M−1∇F∆q = −M−1F, (3.4)

to achieve faster convergence [5]. Here M is the semi-Toeplitz preconditioner
described above.
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4 Results

To study the performance of the preconditioner a series of experiments was run
on a SMP cluster with three Digital Alpha servers, each hosting four Alpha EV5
processors. By taking 20 time-steps for different grid sizes, we found that the
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Fig. 2. Number of iterations/time-step with preconditioned (solid) and unpre-
conditioned (dashed) GMRES(6).

number of iterations per time-step was substantially reduced for the precon-
ditioned method compared to the unpreconditioned method. Furthermore we
found that the number of iterations was constant as the grid was refined, as
shown in Fig. 2.
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