
Understanding and Improving Register

Assignment?

Cindy Norris and James B. Fenwick, Jr.

Department of Computer Science
Appalachian State University

Boone, North Carolina, USA 28608
(828) 262-2359

{can,jbf}@cs.appstate.edu

Abstract. Register allocation can decrease instruction-level parallelism
by prohibiting the scheduler from reordering instructions. The impact
of register assignment strategies on a subsequent scheduling phase is
explored. A new register assignment strategy and experimental results
are presented.

1 Introduction

Register assignment is the phase of the register allocator that decides what values
to put in each register. First-Fit register assignment [5] chooses the first avail-
able register in a sequential ordering of the registers. Round-Robin assignment
[5] begins searching for an available register at the point where the last success-
ful search ended. Scheduling increases run-time performance by rearranging the
code to overlap the execution of independent instructions. A register assignment
strategy cooperates better with a subsequent scheduling phase than another
strategy if it (1) introduces less false dependences, or (2) introduces false de-
pendences that don’t prevent the scheduler from uncovering sufficient fine-grain
parallelism.

This paper examines the impact of register assignment strategies within a
global register allocator on a subsequent local instruction scheduling phase. The
findings presented in section 3 indicate that register assignment of a global al-
locator does impact scheduling, particularly for functional units with higher
latencies. Our Improved First-Fit strategy was found to cooperate better than
First-Fit and better than the Round-Robin strategy when register pressure is
high. The experimental study incorporates a postpass scheduler. However, in
the absence of this scheduling phase, the Improved First-Fit strategy should
still prove to be effective by reducing the number of hardware stalls caused by
the false dependences added by register assignment.

As an illustration of this impact, figure 1(a) contains an unallocated section
of code. References to r2, r3, r4, r5, r6, r7 are references to live ranges. It is
the job of the register allocator to rewrite this code changing the references to
? This work was partially supported by NSF under grant CCR-9625219.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1255–1259, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1256 Cindy Norris and James B. Fenwick, Jr.

r0 r1

r0 r1

r1 r2

r2 r3

r4 r7

r5 r6

round-robin allocation

r0 r1

r2

r3 r4

r5

load r2, 5
load r3, 6
add r4, r2, r3
load r5, 7
load r6, 8
add r7, r5, r6
print r4
print r7

(a)

unallocated code

(b)

interference graph

(d)

first-fit allocation

(c)

Fig. 1. Register Assignment Strategies

live ranges to references to physical registers. Graph coloring register allocators
[4, 3] represent the register allocation problem as a graph coloring problem in
which nodes in a graph represent live ranges and edges are added between two
nodes (which are then called neighbors) if the corresponding live ranges overlap
and must occupy different registers. The allocation is determined by coloring
the nodes of the graph, called an interference graph, with K colors where K is
the number of physical registers. Two nodes can not be colored the same color
if they are connected by an edge in the interference graph. Figure 1(b) contains
the interference graph corresponding to the code in figure 1(a).

Unlike local register allocation [7] in which the live ranges are assigned phys-
ical registers in order of proximity, nodes in an interference graph are assigned
physical registers in a priority order based partially upon the number of uses and
definitions in the code. In this example, each live range contains one definition
and one use making the priority of all nodes the same, and thus they can be ar-
bitrarily assigned physical registers in the order r2, r3, etc. Figures 1(c) and (d)
demonstrate the register assignment decided by the First-Fit and Round-Robin
strategies, respectively. First-Fit register assignment chooses the first available
register in a sequential ordering of the registers. Round-Robin assignment be-
gins searching for an available register at the point where the last successful
search ended. This explains why r4 in the interference graph is mapped to r0 by
First-Fit and r2 by Round-Robin as shown in figure 1. Register assignment, in
particular First-Fit register assignment, adds dependences known as false depen-
dences. They are not present because of references to a single value, but because
of accesses to a single register. False dependences can prevent a scheduler from
reordering instructions in order for them to be executed in parallel.

When the register allocator is unable to assign a physical register to a live
range, the allocator spills the live range to memory. Intuitively, it is expected
that the two assignment strategies result in different amounts of spill code. Since
First-Fit chooses the first free register available, it uses registers more sparingly.
Assigning two live ranges the same physical register may save a physical register
to be assigned later and prevent a spill.

Understanding and Improving Register Assignment 1257

2 Improved First-Fit Register Assignment

The Round-Robin strategy adds fewer false data dependences during register
assignment than the First-Fit strategy. However, the false dependences that are
not added are avoided only accidentally, if at all. In addition, Round-Robin may
cause more spilling. This section discusses a register assignment strategy that
deliberately attempts to avoid adding the false data dependences of First-Fit,
avoid spill code, and remain as simple as the other register assignment strategies.
More complicated strategies exist [8, 9, 1], however our goal is to improve register
allocation without impacting the time required to do the allocation.

Our Improved First-Fit (IFF) register assignment uses an awareness of the
sequential nature of register usage to make register assignment decisions. If two
definitions are near each other in the sequential ordering of the statements, the
IFF assignment strategy tries to avoid assigning those definitions to the same
physical register. The IFF register assignment strategy takes as input the size
of the nearness window which identifies how many definitions near a particular
defining statement are to be examined. When assigning a physical register to a
definition d, the definitions near to d are examined and if a physical register has
been assigned to one of those near definitions, then that physical register is not
assigned to d. For example in the code below, given a nearness window of size 3,
the IFF strategy attempts to avoid assigning to r13 the same physical registers
assigned to r14, r15, and r16.

ldi r13 4

mul r14 r13 r9

add r15 r5 r14

ldi r16 4

mul r17 r16 r9

Why choose to examine nearby statements when making an assignment de-
cision? First, techniques such as loop unrolling and global instruction scheduling
precede register allocation and increase the number of statements within a basic
block in order to increase the instruction-level parallelism. After increasing the
available parallelism within a basic block, the IFF strategy avoids adding the
false data dependences that prevent the simultaneous execution of sequential
statements. Second, examining nearby statements when making the assignment
decision makes the IFF strategy easy to implement and very efficient.

3 Experimental Study

An experimental study was performed to evaluate the performance of the three
register assignment strategies. A C program is processed by the SUIF compiler
system [6] to convert the program into an intermediate code format. This in-
termediate code is then translated into Iloc, which is a low-level intermediate
code designed at Rice University for the development of optimizing compilers
[2]. Our implementation of the optimistic allocator [3] performs register allo-
cation on the Iloc code using any of the three register assignment strategies

1258 Cindy Norris and James B. Fenwick, Jr.

discussed previously. Allocated code is then fed to a local instruction scheduler,
and the scheduled code is converted back to C, inserting instructions to simulate
a fine-grain parallel machine.

Two different fine-grain parallel architectures were simulated: a pipelined
machine with low latencies and a pipelined machine with high latencies. Twenty-
five programs taken from the Livermore loops, SPEC, and Stanford benchmark
suites were used as input to the experimental study of the three different register
assignment strategies on each of the two architecture classes. Simulations were
performed using three different register set sizes (8, 16, and 32). The register
set sizes are not typical of current architectures, but were chosen to impact
the register pressure of the benchmark programs. In other words, the register
set of size 8 causes a great deal of register pressure for the selected benchmark
programs while 32 registers generated little register pressure.

The performance of the assignment strategy was measured
by calculating totalcycles(FirstF it)/totalcycles(RoundRobin) and
totalcycles(FirstF it)/totalcycles(ImprovedF irstF it) where totalcycles
is the number of cycles required to execute the Iloc code as deter-
mined by the simulator. Due to page length restrictions, a table show-
ing the performance speedups was omitted, but it may be viewed at
http://www.cs.appstate.edu/~can/research/papers.html.

The study indicates that assigning registers with a Round-Robin strategy
generally produces code that executes faster than code assigned registers using
First-Fit. Two items in particular are noted. First, Round-Robin results in sig-
nificantly better code for high-latency pipelined architectures with a register set
large enough to keep spilling at a minimum. Second, for low-latency machines
when register pressure is high, First-Fit is a better strategy. The reason First-Fit
performs better under high register pressure is due to the increased amount of
spill code inserted by Round-Robin. The simulations show that for 8 registers,
Round-Robin resulted in 5% more spills than First-Fit.

In general, the Improved First-Fit strategy performs as well as or better
than the Round-Robin strategy. Of particular note is that Improved First-Fit is
significantly better than Round-Robin for high-latency machines under a high
register pressure. In the case of low register pressure, the Round-Robin strategy
has the potential to add fewer false dependences since it reuses a register only
after all other registers have been used once. For the Improved First-Fit strategy,
reuse of registers occurs more quickly when the nearness window is small. Even
a window size of 7 can cause more false dependences than Round-Robin.

The Improved First-Fit strategy performs better as the size of the nearness
window increases. For example on the high-latency machine with 32 registers,
the average speedup is 1.20 when the nearness window size is 3 and 1.24 when
the nearness window size is increased to 7. However, increases in the nearness
window size have less impact on smaller register sets. With less registers overall,
the algorithm is less successful in finding a register not used in the nearness
window; thus, reverting to First-Fit.

Understanding and Improving Register Assignment 1259

It was expected that the Round-Robin strategy would result in the most spill
code being inserted of the three assignment strategies, with First-Fit causing the
least amount and Improved First-Fit falling in between. The experimental study
supports this hypothesis. Using 8 registers 670, 684, and 703 spills occurred
among the 25 benchmark programs for the First-Fit, Improved First-Fit with
nearness window of 3, and Round-Robin assignment strategies, respectively. (The
larger sized register sets cause dramatically fewer spills as more free registers
were available.) As the nearness window size increased, the amount of spill code
inserted by Improved First-Fit decreased on average although the results for
individual benchmarks varied. This decrease occurs because the IFF strategy
reverts more often to First-Fit when it has a larger set of instructions to examine
when looking for an unused register.

4 Summary

The goal of this research was to understand better the effect of register assign-
ment strategies within a global register allocator on instruction-level parallelism.
A new register assignment strategy, Improved First-Fit, was presented that de-
liberately avoids the false dependences created by First-Fit, and inserts less spill
code than Round-Robin. This new strategy is a simple, effective technique re-
quiring only minor modifications to existing global register allocation algorithms.

References

[1] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Resource spackling: A frame-
work for integrating register allocation in local and global schedulers. In PACT ‘94:
International Conference on Parallel Architectures and Compilation Techniques,
Montreal, Canada, August 1994.

[2] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rn Programming Environ-
ment Newsletter #44. Dept. of Computer Science, Rice University, Sept. 1987.

[3] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In Pro-
ceedings of the SIGPLAN ’92 Conference on Programming Language Design and
Implementation, 1992.

[4] G. J. Chaitin. Register allocation and spilling via graph coloring. In SIGPLAN
Symposium on Compiler Construction, Boston, June 1982.

[5] James R. Goodman and Wei-Chung Hsu. Code scheduling and register allocation
in large basic blocks. In Supercomputing ’88 Proceedings, pages 442–452, Nov. 1988.

[6] Stanford SUIF Compiler Group. The SUIF Parallelizing Compiler Guide. Stanford
University, 1994. Version 1.0.

[7] Wei Chung Hsu, Charles N. Fischer, and James R. Goodman. On the minimiza-
tion of loads/stores in local register allocation. IEEE Transactions on Software
Engineering, 15(10):1252–1260, 1989.

[8] Cindy Norris and Lori L. Pollock. A scheduler-sensitive global register allocator.
In Supercomputing ’93 Proceedings, Portland, OR, November 1993.

[9] S. S. Pinter. Register allocation with instruction scheduling: a new approach. In
Proceedings of the SIGPLAN ’93 Conference on Programming Language Design
and Implementation, June 1993.

	Introduction
	Improved First-Fit Register Assignment
	Experimental Study
	Summary

