
Code Cloning Tracing: A “Pay per Trace”

Approach

Thierry Lafage, André Seznec, Erven Rohou, and François Bodin

IRISA, campus de Beaulieu, 35042 Rennes cedex, France
{Thierry.Lafage, Andre.Seznec, Erven.Rohou, Francois.Bodin}@irisa.fr

Abstract. Code Cloning Tracing is a new software annotation method
that makes it possible to collect traces from time consuming applications.
To this end, Code Cloning Tracing provides instrumented programs with
two execution modes: a low overhead “no-trace collection” mode which
serves to position the application in an interesting state with regard
to tracing, and a “trace collection” mode. This paper details the Code
Cloning Tracing method and presents calvin, our first implementation.
On the SPEC95 suite, calvin exhibits low execution slowdown factors
in “no-trace collection” mode varying from 1.02 to 2.09.

1 Introduction and Motivations

Execution traces are needed for architecture simulations and validations in pro-
cessor design, or for validations of new microarchitecture ideas. The process of
collecting traces is time consuming (execution slowdowns in the 10-100 range [6]),
and even more time consuming is microarchitecture simulation (slowdowns in the
1,000–10,000 range [1]). As a result, in practice, most microarchitecture studies
are performed using the first instructions (maybe a few billion) of an application
and skipping the first billion(s) to avoid the initialization phase (see [2]). This
solution may still be very time consuming since the tested application is instru-
mented/simulated entirely: skipping the first instructions still induces a non-
negligible execution overhead. Consequently, large workloads (running hours of
CPU) are never used in microarchitecture studies.

In this paper, we introduce Code Cloning Tracing, a new software annotation
method for collecting traces. Code Cloning Tracing is aimed at collecting large
trace samples on large applications for microarchitecture studies and focuses on
the execution slowdown of the traced applications when the trace is not used
(collected). The Code Cloning Tracing’s key feature is to provide intrumented
programs with two execution modes: a low overhead “no-trace collection” mode
and a “trace collection” mode through a static code duplication (cloning). The
code duplication produces two clones which are part of the same executable
program. During the execution, some events activate dynamic execution switches
between both clones, enabling or disabling the trace collection.

In this paper, we only focus on the “no-trace collection” mode performance,
knowing that current techniques (e.g. see [3]) may be applied to the “trace
collection” mode.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1265–1268, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



1266 Thierry Lafage et al.

In the next section, we detail the Code Cloning Tracing method. Section 3
presents the first implementation called calvin. An evaluation of the execution
overhead in “no-trace collection” mode is presented in Section 4. Section 5 sum-
marizes this study and presents our directions for future development.

2 Principle of Code Cloning Tracing

The principle of Code Cloning Tracing is illustrated in Figure 1. The original
code is duplicated. Both code copies (clones) are annotated in order to enable
the execution to dynamically switch between each other.

One of the clones, called P inst , is heavily instrumented by the trace user 1

and allows the trace to be generated.
The second clone, called P exec, is kept nearly identical to the original code.

P exec provides the “no-trace collection” mode. This clone is expected to induce
a very low execution overhead.

of the program

jumps between both versions

execution

between P_exec and P_inst
instrumentation code to jump 

instrumentation code to
collect trace

original code

P_inst

Event

P_exec

Event_bis

Event_bis

Event

Event

Fig. 1. Execution of cloned code to collect trace.

On a large application, P exec will execute most of the original instructions
(“no-trace collection” mode) to position the application in a state in which
trace collection and simulation are interesting, at a very low execution overhead
(compared to P inst). This technique can be related to SimOS [5] with even less
execution overhead when trace is not generated.

3 Code Cloning Tracing with Calvin

Code Cloning Tracing is a general technique and may be implemented at various
levels: executable or assembly code. Our first prototype, calvin 2 uses Salto, a
1 For convenience, we call a trace user someone who collects program traces. He/she

uses the framework we provide, but also needs to instrument the tested applications
to get the traces he/she wants.

2 cloning assembler and looking into veritable instrumentation needs.



Code Cloning Tracing: A “Pay per Trace” Approach 1267

retargetable framework for developing tools that manipulate programs expressed
in assembly language [4].

3.1 Checkpoint Code

The annotation code added by calvin is composed of several checkpoints. Check-
points are a few instructions (about 10) which check that the current clone run-
ning is the right one. When this is not the case (an activating event has occured),
control is given to the other clone.

We inserted checkpoints at each procedure call and inside each loop. With
a complete ad-hoc instrumentation of each SPEC95 benchmark program, we
computed the number of executed checkpoints among the executed instructions.
This computation shown a reasonable number of checkpoints among executed
instructions (5.02% on average for CINT95 programs, and 2.53% on average
for CFP95’s) which allowed us to expect low execution slowdowns in “no-trace
collection” mode, as seen in Section 4.

3.2 Activating Mode Switching

An event determines when to switch to the other clone of the tested application
as shown in Figure 1. In the first implementation of calvin, the event used is a
given number of executed checkpoints in each clone.

4 No-Trace Collection Mode Slowdown

In order to validate our approach, we cloned and instrumented the popular
SPEC95 benchmark suite. These programs were compiled with gcc or g77 with
‘-O3’ optimization option 3. Each run on this benchmark suite was tested with
the ref input data set. calvin can annotate SPARC assembly code, and all the
results were collected from a Sun Ultra 1 workstation with a 143 MHz processor
and 256 MB of memory, running Linux.

Here, we also acted as trace users to obtain completely instrumented appli-
cations, like computer architects would do. We heavily instrumented the P inst
clone to produce instruction and data addresses. Since this study is not directed
at the performance of the “trace collection” mode, we did not collect any traces,
rather the programs entirely ran in “no-trace collection” mode.

Table 1 presents the execution times (user + system, in seconds) of each
SPEC95 benchmark. The base time is the execution time of the original (i.e. non
instrumented) program. The number in parentheses represents the slowdown of
the concerned workload which is computed as follows: slowdown = tested time

base time .
As expected, the execution overheads are quite low: from 1.02 to 2.09. Note that
they are directly related to the number of checkpoints executed.

3 145.fpppp only compiled with ‘-O1’.



1268 Thierry Lafage et al.

CINT95 Base P exec only

099.go 276 438 (1.58)
124.m88ksim 554 1151 (2.09)
126.gcc 10 16 (1.57)
129.compress 413 784 (1.90)
130.li 575 1130 (1.96)
132.ijpeg 378 445 (1.18)
134.perl 267 351 (1.32)
147.vortex 728 998 (1.37)

CFP95 Base P exec only

101.tomcatv 625 696 (1.11)
102.swim 548 628 (1.15)
103.su2cor 619 709 (1.15)
104.hydro2d 772 1024 (1.33)
107.mgrid 1533 1630 (1.06)
110.applu 2592 3059 (1.18)
125.turb3d 3460 3899 (1.13)
141.apsi 1057 1213 (1.15)
145.fpppp 2048 2071 (1.02)
146.wave5 864 1164 (1.35)

Table 1. “No-trace collection” mode execution time (sec.) on the SPEC95
benchmarks.

5 Summary and Future Work

In this paper, we have presented the basic principles of Code Cloning Trac-
ing. calvin, the prototype we built, has been currently tested on single process
applications. It has shown to induce a very acceptable execution slowdown in
“no-trace collection” mode (from 1.02 to 2.09). Such a low slowdown would be
acceptable for computer architects to position large workloads (with their large
data sets) in interesting tracing states.

Future developments will first include trace collection on multiprocess work-
loads using external events to switch between both execution modes, and dy-
namically linked libraries (libc, libg2c, . . . ). Finally, we plan to use Code Cloning
Tracing to instrument all user applications and the operating system on a desk-
top computer.

References

[1] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical
Report CS-TR-97-1342, University of Wisconsin, Madison, June 1997.

[2] M. J. Charney and T. R. Puzak. Prefetching and memory system behavior of the
SPEC95 benchmark suite. IBM Journal of Research and Development, 41(3), 1997.

[3] Alvin R. Lebeck and David A. Wood. Active memory: A new abstraction for mem-
ory system simulation. ACM Transactions on Modeling and Computer Simulation,
7(1):42–77, January 1997.

[4] E. Rohou, F. Bodin, and A. Seznec. Salto: System for assembly-language trans-
formation and optimization. In Proceedings of the Sixth Workshop Compilers for
Parallel Computers, December 1996.

[5] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the SimOS machine
simulator to study complex computer systems. ACM Transactions on Modeling and
Computer Simulation, 7(1):78–103, January 1997.

[6] R. Uhlig and T. Mudge. Trace-driven memory simulation: a survey. ACM Com-
puting Surveys, 1997.


	Introduction and Motivations
	Principle of Code Cloning Tracing
	Code Cloning Tracing with Calvin
	Checkpoint Code
	Activating Mode Switching

	No-Trace Collection Mode Slowdown
	Summary and Future Work

