Execution-Based Scheduling for VLIW
Architectures

Kemal Ebcioglu, Erik R. Altman, Sumedh Sathaye, and Michael Gschwind

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598
{kemal ,erik,sathaye ,mikeg}@watson. ibm.com

Abstract. We describe a new dynamic software scheduling technique for
VLIW architectures, which compiles into VLIW code the program paths
that are actually executed. Unlike trace processors, or DIF, the technique
executes operations speculatively on multiple paths through the code, is
resilient to branch mispredictions, and can achieve very large dynamic
window sizes necessary for high ILP. Aggressive optimizations are applied
to frequently executed portions of the code. Encouraging performance
results were obtained on SPECint95 and TPC-C. The technique can
be used for binary translation for achieving architectural compatibility
with an existing processor, or as a VLIW scheduling technique in its own
right.

Keywords: INSTRUCTION-LEVEL PARALLELISM, DYNAMIC COMPILATION,
BINARY TRANSLATION, SUPERSCALAR

1 Background and Motivation

VLIW architectures are desirable because they offer a simple hardware design
path toward achieving wide issue at high frequency. However, architectural in-
compatibility with existing architectures, and hence the requirement to make
software changes when migrating to a new VLIW architecture, has been a
problem. In prior papers on the DAISY (Dynamically Architected Instruction
Set from Yorktown) project [I} 2], the authors have established techniques for
achieving 100% architectural compatibility with an existing processor through
software techniques applied to a wide issue VLIW. A number of difficulties were
addressed, such as self modifying code, multi-processor consistency, memory
mapped I/O, preserving precise exceptions while aggressively re-ordering VLIW
code, and so on.

In the previous version of DAISY, the unit of translation was a page. Thus
if execution reached a previously unseen page P, at address X, then all code on
page P reachable from X — via paths entirely within page P — was translated
to VLIW code. Any paths within page P that went offpage or that contained
a register branch were terminated. At the termination point was placed a spe-
cial type of branch that would (1) determine if a translation existed for the
offpage/register location specified by the branch, and (2) branch to that trans-
lation if it existed, and otherwise branch to the translator. Once this translation

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1269-I280] 1999.
[k Springer-Verlag Berlin Heidelberg 1999

1270 Kemal Ebcioglu et al.

was completed for address X, the newly translated code corresponding to the
original code starting at X was executed.

In the previous DAISY, as well as in current version reported here, this
translation/execution process begins at the bootstrap location for the emulated
processor, for example, 0xFFF00100 for PowerPC. In this way, and as described
in detail in [T], 2], the original base architecture can be properly emulated, with
no need for any operating system or other changes.

We now define a few terms from our earlier work and make a few other
observations in hopes of better illuminating what is new in our current work
and what motivated it:

— As noted, the previous DAISY algorithm started at an entry point of a
page, and scheduled along all paths reachable from that point. Because of the
real-time constraints on the amount of time which may be spent scheduling
operations, the scheduler did not build control-flow graphs and hence did not
recognize join points — instead the code beyond join points was duplicated
along however many paths pass through it. Because of this scheduling policy,
the regions scheduled were trees which were in turn composed of tree VLIW
instructions [3].

— We term these tree regions, groups. Likewise each leaf or exit of the tree, we
term a tip. Since groups are trees, knowing by which tip the group exited,
fully identifies the control path executed from the group entrance (or tree
root).

— As befits DAISY s real-time requirements, use of tree groups simplifies many
areas of scheduling. For example, there is at most one reaching definition for
each value. Trees also have drawbacks, in particular the duplicated code
beyond join points can result in VLIW code that is many times larger than
the code for the base architecture.

— The original DAISY had another big source of code explosion: since all paths
from a given entry point were translated, groups could contain operations
from paths which were rarely, if ever executed.

Thus, the previous DAISY technique was adequate for VLIW processors
of modest width and large ICaches. However, for very wide machines, page
crossings and indirect branches limited ILP. In this paper, we describe new
techniques we have added to DAISY which overcome these ILP limitations and
attack the code explosion problem. The present DAISY:

— Maintains the tree structure of groups, as well as tree instructions.

— Compiles only the executed portion of the code, by interpreting operations
first. Thus ICache resources are spent more effectively.

— Crosses page boundaries and indirect branches, by making use of run time
information to convert each indirect branch to a set of conditional branches.
There is no limit on the number of pages a translated code fragment may
cross. Only interrupts and code modification events are serializers.

Execution-Based Scheduling for VLIW Architectures 1271

— Conserves ICache and compile time resources by applying modest opti-
mizations initially, and then scheduling aggressively with a large window
size, only on the frequently executed portions of the code.

This DAISY approach can either be used as a binary translation system or
as a VLIW scheduling technique in its own right. The rest of the paper is or-
ganized as follows. Section [describes the dynamic compilation algorithm. This
algorithm includes not only the scheduling of operations, but rules for ending a
scheduling region (Section EXTI), as well as a hardware/software mechanism for
optimizing very frequently executed fragments of code (Section 22)). Section Bl
describes our performance evaluation experiments, Section Bl compares our ap-
proach to previous work, and Section [§ concludes.

2 The Dynamic Compilation Algorithm

In this section, we describe the execution based dynamic compilation algorithm.
In what follows, the “base architecture” [4, [5] refers to the architecture with
which we are trying to achieve compatibility, e.g., PowerPC or S/390. In this
paper, our examples will be from PowerPC. To avoid confusion, we will refer to
PowerP('instructions as operations, and reserve the term instructions for VLIW
instructions (each potentially containing many PowerPC' operations).

From the actually executed portions of the base architecture binary program,
the dynamic compilation algorithm creates a VLIW program consisting of tree
regions, which have a single entry (root of the tree) and one or more exits (ter-
minal nodes of the tree).

The dynamic translation algorithm interprets code when a fragment of base
architecture code is executed for the first time. As base architecture instructions
are interpreted, the instructions are also converted to execution primitives (these
are very simple RISC-style operations and conditional branches). These execu-
tion primitives are then scheduled and packed into VLIW tree regions which are
saved in a memory area which is not visible to the base architecture. Any un-
taken branches, i.e., branches off the currently interpreted and translated trace,
are translated into calls to the binary translator. Interpretation and translation
stops when a stopping condition has been detected. (Stopping conditions are
elaborated in section 27I1) The last VLIW of an instruction group is ended by a
branch to the next tree region.

Then, the next code fragment is interpreted and compiled into VLIWs, until
a stopping condition is detected, and then next code fragment, and so on. If
and when program decides to go back to the entry point of a code fragment
for which VLIW code already exists, it branches to the already compiled VLIW
code. Recompilation is not required in this case.

Looking at Figure [Ml(a), if the program originally took, path A through a
given code fragment (where crl.gt and cr0.eq are both false), and if the same
path A through the code fragment (tree region) is followed during the second
execution, the program executes at optimal speed within the code fragment —
assuming a big enough VLIW and cache hits.

1272 Kemal Ebcioglu et al.

TRO: TRO:

TRO Exit#l TRO Exit#l

Call Translator Call Translator
goto TR1 TRO Exit#2 goto TR1 TRO Exit#2
(Path A) Call Translator Call Translator
(Path B)

(a) (b)

Thick line is compiled trace.

o i TRO:
Note: This is a tree region

and may have several
VLIW Instructions crl.gt

- Specul ops from A and B

Ops from Path B only

cr0.eq :] Ops from Path A only
TRO Exit#1l
Call Translator

goto TR1 goto TR2
(Path A) (Path B)

(©
Fig. 1. Tree regions and where operations are scheduled from different paths.

If at a later time, when the same tree region labeled TRO is executed again, the
program takes a different path where crl.gt is false, but cr0.eq is true (labeled
path B), it branches to the translator, as seen in Figure [[[(b). The translator
may then start a new translation group at that point, or instead extend the
existing tree region by interpreting base architecture operations along the second
path B starting with the target of the conditional branch if cr0.eq. The base
architecture operations are translated into primitives and scheduled into either
the existing VLIWSs of the region, or into newly created VLIWs appended to the
region, as illustrated in Figure[dl(c).

Assuming a VLIW with a sufficient number of functional units and cache
hits, if the program takes path A or B, it will now execute at optimal speed
within this tree region TRO, regardless of the path. This approach makes the
executed code more resilient to performance degradation due to unpredictable
branches.

The compilation of the tree region is necessarily never complete. It may have
“loose ends” that may call the translator at any time. For instance, as seen in
Figure [[{c), the first conditional branch if crl.gt in tree region TRO is such
a branch whose off-trace target is not compiled. Thus, dynamic compilation is
potentially a never-ending task.

In our previous work, indirect branches always ended a tree region. This
serialization is a significant impediment to high ILP, as such branches can occur

Execution-Based Scheduling for VLIW Architectures 1273

every 25 branches or even more frequently in some programs. To avoid this
problem, we note the address being branched to when an indirect branch is
scheduled. For example the PowerPC Link Reg may contain 0x1234 on a blr
instruction. Then, as in the example below, the blr can be converted from an
indirect branch to a direct branch.

cmplr cr8=r33,0x1234 # r33 holds PowerPC link register
if (cr8.eq) goto L1234 # If 1lr==0x1234, goto translated code
for PowerPC addr 0x1234
else call_interpreter # Start interpreting ops at addr
in 1r/r33

In this way, the operations found at 0x1234 can be scheduled into the current
tree region. If other values of the Link Reg are encountered later in execution,
explicit tests may be made for them as well.

2.1 Stopping Points for Paths in Tree Regions

Finding appropriate stopping points for a tree region is crucial for achieving high
ILP, as well as for limiting the size of the generated VLIW code and translation
time required for translation. Currently we consider ending a tree region at two
types of operations:

— The target of a backward branch, typically a loop starting point, or
— A subroutine entry or exit, as detected heuristically through PowerPC
branch and link or register-indirect branch operations.

Stopping (and hence starting) tree regions only at well-defined potential stop-
ping points is useful, since if there was no constraint on where to stop, code
fragments starting and ending at arbitrary base architecture operations could
result, leading to unnecessary code duplication and increasing code expansion.
Establishing well-defined starting points increases the probability of finding a
group of compiled VLIW code when the translator completes translation of a
tree region.

We emphasize that encountering one of the stopping points above does not
automatically end a tree region. To actually end a tree region at a stopping point,
at least one of the following stopping conditions must previously have been met:

— The desired ILP has been reached in scheduling operations, or
— The number of PowerPC' operations on this path since the beginning of the
tree region entry has exceeded a maximum window size.

The purpose of the ILP goal is to attain the maximum possible performance.
The purpose of the window size limit is to limit code explosion — a high ILP
goal may be attainable only by scheduling an excessive number of operations
into a tree region.

1274 Kemal Ebcioglu et al.

2.2 Adaptive Scheduling Principles

In order to obtain the best performance, we do not make the ILP goal or max-
imum window size constants. Instead, a tree region is initially scheduled with
modest ILP and window size parameters. If this region eventually executes only
a few times, this represents a good choice for conserving code size and compile
time.

If we later find that the time spent in a tree region tip is greater than a
threshold fraction thresh of the total cycles spent in the program, then we
optimize this area much more aggressively, e.g., using a much higher ILP goal
and larger window size. Thus, if there are parts of the code which are executed
more frequently than others (implying high re-use on these parts), they will be
optimized very aggressively. If, on the other hand, the program profile is flat
and many code fragments are executed with almost equal frequency, then no
such optimizations occur, which could be good strategy for preserving ICache
resources and translation time. Prior work on adaptive profiling-based optimiza-
tions includes the SUN HotSpot technology [0], for profile-guided optimization
of frequently executed JAVA code fragments.

Determining whether a tree region tip is consuming a fraction greater than
thresh of the total cycles can be done in a variety of ways. One possibility
is to compile the profiling code into holes in the VLIW code. Another is to
examine the current and previous program counter on timer interrupts enabled
on transitions between tree regions.

In our results in Section Bl we employ a third way, namely an 8K entry 8-
way set associative (hardware) array of cached counters indexed by the tip (exit
point) of a tree region. These counters are automatically incremented upon exit
from a tree region and can be inspected to see which tips are consuming the
most time. They offer the additional advantages of not disrupting the DCache
and being reasonably accurate.

3 Performance Evaluation

VLIW projects usually involve compilers and simulators to run the compiled
code, they do not use traces as inputs. In this round of experiments, we have
used a trace based evaluation methodology, which gives us access to kernel as
well as application traces. Here, we report results for SPECint95 and TPC-
C. Our SPECint95 traces are from RS/6000 PowerPC machines. Each trace
consists of 50, 2 million operation samples, uniformly sampled over a run of the
benchmark. The TPC-C trace is slightly longer, but similarly obtained.

The performance evaluation tools implement the dynamic compilation strat-
egy using a number of tools:

— A tree-region former reads a PowerP(C operation trace and forms tree-regions
according to the strategy described in this paper. However, to avoid translat-
ing short-lived groups (tree regions), groups are interpreted 30 times before
translation. Also, a group is allowed to grow a new tree branch from an exit,

Execution-Based Scheduling for VLIW Architectures 1275

only if that exit is executed frequently. The initial region formation parame-
ters were: ILP goal=3, window size limit=24 operations. When 5% of the
time is spent on a given tree region tip, the tip is aggressively extended with
ILP goal=10, window size limit=180. An 8K entry, 8-way associative ar-
ray of counters were simulated, to detect the frequently executed tree region
tips, as described in Section 2.2

— A VLIW scheduler schedules the PowerPC operations in each tree region
and generates VLIW code according to the clustering, functional unit and
register constraints, and determines the cycles taken by each tree region tip.

— A VLIW instruction memory layout tool lays out VLIWs in memory accord-
ing to architecture requirements.

— A multi-level ICache simulator determines the ICache CPI penalty using
a history-based prefetch mechanism.

— A multi-level DCache and DTLB simulator. The data references in the
original trace are run through these simulators for hit/miss simulation. To
account for the effects of speculation and joint cache effects on the off chip
L3, we multiplied the DTLB and DCache CPI penalties by a factor of 1.7
when calculating the final CPI. We chose 1.7 based on speculation penal-
ties we have previously observed in an execution-based model. To account
for disruptions due to execution of translator code, we flush on-chip caches
periodically based on a statistical model of translation events.

From the number of VLIWs on the path from the root of a tree region to
a tip, and the number of times the tip is executed, we can calculate the total
number of VLIW cycles. Empty VLIWSs are inserted for long latency operations,
so each VLIW takes one cycle. The total number of VLIWs executed, divided
by the original number of PowerPC operations in the trace, yields the infinite
cache, but finite resource CPI.

Stall cycles due to caches and TLBs, are tabulated using a simple stall-on-
mass model for each cache or TLB miss. In the stall-on-miss model everything
in the processor stops when a cache miss occurs, or data from a prior prefetch
is not yet available.

To model translation overhead, we first define re-use rate:

Number of Dynamic Ins in Trace

Re- Rate =
e-use hate Number of Unique Ins Addresses in Trace

Reuse rates are shown in the last column of Table [l and are in millions.
SPECint95 rates were measured through an interpreter based on the reference
inputs although operations in library routines were not counted [I. The TPC-C
value was obtained from the number of code page faults in a benchmark run.
Re-use rates may be used to estimate translation overhead (in terms of
CPI) as follows:

— #P = # of Times an Operation undergoes Primary Translation
— #S5 = # of Times an Operation undergoes Secondary Translation

! We are indebted to Jay Leblanc for providing us this data.

1276 Kemal Ebcioglu et al.

— CP = Cycles per Primary Translation of an Operation
— (S = Cycles per Secondary Translation of an Operation

Then #P x CP+ #Sx CS

Re-use Rate

The translation (or primary translation) of a PowerPC operation occurs when
it is being added to a tree region for the first time. A secondary translation of
an operation occurs when it is already in a tree region while new operations
are being added to the tree region. In this study we have used an estimate of
4000 cycles for a primary translation and 800 cycles for a secondary translation.
Our DAISY experience yielded about 4000 PowerPC operations to translate
one PowerPC operation [2]. Secondary translation merely requires disassembling
VLIW code and reassembling it, something we estimate to take about 800 cycles.

Overhead =

CPI Adders
Program| Inf |Resrc| Inf ||ICache Xlate |Finall| Avg|Code |Reuse
Resrc| CPI |Cache DCache Overhd| CPI ||Win-|Explo| Rate
CPI |Adder| CPI TLB| (CPI) dow
li 0.37 | 0.00 | 0.37 0.00 0.01 {0.00{ 0.00 |0.38 0.8| 21.7] 16.5

m88k |0.19| 0.08 | 0.28 || 0.00 | 0.00 [0.00| 0.00 |0.29| 0.7 36.7| 14.8
ijpeg 0.18] 0.18 | 031 || 0.00 | 0.01 |0.00| 0.00 |0.33 1.2| 50.2| 10.8
vortex | 0.22 | 0.06 | 0.28 || 0.00 | 0.13 |0.02| 0.00 |0.44 1.0{ 41.1] 8.4
perl 0.30 | 0.08] 0.38 || 0.00 | 0.00 |0.00| 0.00 |0.38 1.1 36.4| 6.8
compr |0.39|-0.01| 038 || 0.00 | 0.14 |0.01] 0.00 |0.52| 0.7 26.8| 69.2

go 0.60 [-0.04] 0.56 || 0.04 | 0.06 [0.00] 0.00 [0.67] 7.2[16.0] 6.2
gcc 0.38] 0.02] 041] 0.05 [0.01 [0.00] 0.01 [0.46] 2.7[20.2] 0.7
[GMean]| | | 036] | |] |0.42] 1.8] 30.8] 8.1

ITPC-C[0.29] 0.09]0.39]| 0.03 [020 [0.03] 0.00 [0.65] 0.8] 27.7] 3.8

Table 1. Performance on SPECint95 and TPC-C.

Infinite cache CPI with the approach described here is roughly 30%-40%
better than the old page-based DAISY. Table [details the performance of
our current approach on a 16 issue machine configuration where the 16 total
operations can include up to 8 Load/Stores. The machine is divided into 4
clusters of 4 functional units each, for high frequency operation. Within a cluster
back to back dependent operations are allowed, but when a cluster is crossed an
extra cycle is incurred. L1 DCaches are duplicated in each cluster, but stores
are broadcast to all copies. Cache and TLB parameters are given in Table
The configurations used are quite aggressive, to tolerate speculation and the
large code explosion that results from the present approach.

The Infinite Resource CPI column of Table [l describes the CPI of a machine
with infinite registers and resources, constrained only by serializations between

Execution-Based Scheduling for VLIW Architectures 1277

||Cache | Size |Linesize|Assoc|Latency||
L1-I 64K 1K 8 1
L2-1 1M 2K 8 3
L1-D 32K 256 4 2
L2-D 512K 256 8 4
L3 32M 256 8 42
Memory - - - 150
DTLB1 128 Entries - 2 2
DTLB2 1K Entries - 8 4
DTLB3 8K FEntries - 8 10
Page Table — — — 90

Table 2. Cache and TLB Parameters.

tree regions, and realistic operation latencies (including a load latency of 3 cycles
for unsigned loads and 4 for algebraic loads). The Finite Resource CPI Adder
describes the extra CPI due to finite registers and function units, as well as
clustering effects, and possibly compiler immaturities. (This value can sometimes
be negative, since the load latency for the finite resource ILP measurement is 2
cycles). Infinite Cache CPI is the sum of the first two columns. The ICache,
DCache and DTLB CPI describe the additional CPI incurred due to ICache,
DCache, and TLB misses, assuming the stall-on-miss machine model described
above. Translation Overhead is determined using the formulas and values above.
Final CPI is then the sum of the Infinite Cache CPI, ICache, DCache, TLB,
and QOverhead columns. The initial interpretation overhead is insignificant. Also,
there are no branch stalls, due to our zero-cycle branching technique [3] [7].

Even though unlike previous infinite cache VLIW studies our model takes
into account all the major CPI components, we have not modeled the VLIW
machine at a very detailed (e.g., RTL) level. Hence performance could fall short
of the numbers presented here. However, our model also omits some potential
performance enhancers, such as software value prediction, software pipelining,
tree-height reduction, and DCache latency tolerance techniques.

Note that the VLIW ICache consists of 8 independent mini-ICaches corre-
sponding to %th of a VLIW supplying a pair of ALUs. Thus the L2 mini-ICache
size is logically 128K instead of 1M, and the mini-ICache linesize is 256 bytes
instead of 2K bytes. But because each such mini-ICache has to have a redun-
dant copy of the branch fields to reduce the wire delays, the physical size is
larger than the logical size. The VLSI technology and packaging needed for this
design will probably be realizable on a single chip within a few years.

The Average Window Size in Table [[lindicates the average dynamic number
of PowerP(C' operations between tree region crossings. The Code Ezplosion in-
dicates the ratio of translated VLIW code pages to PowerPC code pages. Our
mean code explosion of 1.8 is more than 2x better than the old page-based
DAISY. This improvement has come about largely because of our use of adap-
tive scheduling techniques and the fact that only executed code is translated.

1278 Kemal Ebcioglu et al.

Preliminary experiments on large multi-user systems indicate that a trans-
lation space of 2K-4K PowerPC pages is sufficient to cover the working set for
code. With a code explosion factor of 1.8, such large multi-user systems would
likely require 15 — 30 Mbytes for VLIW code:

(2K/4K) pages x 4K bytes per page x 1.8 Code Explosion ~ 15M/30M

15 — 30 Mbytes for translated code will probably be affordable on moderate
size systems over the next few years.

4 Related Work

Previous work in inter-system binary translation has largely focused on eas-
ing migration between platforms. To this end, problem state executables were
translated from a legacy instruction set architecture to a new architecture. By
restricting the problem domain to a single process, a number of simplifying as-
sumptions can be made about execution behavior and the memory map of a
process. Dynamic binary translation of programs as a translation strategy is ex-
emplified by caching emulators such as FX!32 [R]. FX!32 emulates only the user
program space and depends on support from the OS (Microsoft Windows NT)
to provide a native interface identical to that of the original migrant system.

The presented approach is more comparable to full system emulation, which
has been used for performance analysis (e.g., SimOS [9]) and for migration from
other legacy platforms as exemplified by Virtual PC, SoftPC/Soft Windows
and to a lesser extent WABI, which intercepts Windows calls and executes
them natively. Full system simulators execute as user processes on top of another
operating system, using special device drivers for virtualized software devices.
This is fundamentally different from our approach which uses dynamic binary
translation to implement a processor architecture. Any operating system running
on the emulated architecture can be booted using our approach.

The present approach is different from the DIF approach of Nair and Hop-
kins [T0]. It schedules operations on multiple paths to avoid serializing due to
mispredicted branches. Also, in the present approach, there is virtually no limit
to the length of a path within a tree region or the ILP achieved. In DIF, the
length of a (single-path) region is limited by machine design constraints (e.g.,
4-8 VLIWSs). Our approach follows an all software approach as opposed to DIF
which uses a hardware translator. This all-software technique allows aggressive
software optimizations hard to do by hardware alone. Also, the DIF approach
involves almost three machines: the sequential engine, the translator, and the
VLIW engine. In our approach there is only a relatively simple VLIW machine.

Trace processors [11] are similar to DIF except that the machine is out-
of-order as opposed to a VLIW. This has the advantage that different trace
fragments do not need to serialize between transitions between one trace cache
entry and another. However, when the program takes a path other than what was
recorded in the trace cache, a serialization can occur. The present approach solves
this problem by incorporating an arbitrary number of paths in a software trace

Execution-Based Scheduling for VLIW Architectures 1279

cache entry, and by very efficient zero overhead multiway branching hardware [7].
The dynamic window size (trace length) achieved by the present approach can
be significantly larger than that of trace processors, which should allow better
exploitation of ILP.

5 Conclusion

We have described the latest version of DAISY, which employs a dynamic soft-
ware translation approach whereby operations from the actual execution path
of a base architecture such as PowerP(C are scheduled into VLIW instructions.
The proposed technique allows operations from multiple code pages and can
schedule operations through indirect branches. This technique can also sched-
ule operations from multiple paths. The proposed technique is adaptive, and
schedules more aggressively on frequently executed paths. This technique ex-
poses significant ILP, with values reaching almost 2.5 instructions per cycle even
after accounting for cache effects.

References

[1] K. Ebcioglu and E. Altman. DAISY: Dynamic Compilation for 100% Archi-
tectural Compatibility. Research Report RC 20538, IBM T.J. Watson Research
Center, Yorktown Heights, NY, 1996.

[2] K. Ebcioglu and E. Altman. DAISY: Dynamic Compilation for 100% Archi-
tectural Compatibility. In Proc. of the 24th Annual International Symposium on
Computer Architecture, pages 26-37, Denver, CO, June 1997. ACM.

[3] K. Ebcioglu. Some Design Ideas for a VLIW Architecture for Sequential-Natured
Software. In M. Cosnard et al., editor, Parallel Processing, pages 3-21. North-
Holland, 1988. (Proceedings of IFIP WG 10.3 Working Conference on Parallel
Processing).

[4] G. M. Silberman and K. Ebcioglu. An Architectural Framework for Migration
from CISC to Higher Performance Platforms. In Proc of the 1992 International
Conference on Supercomputing, pages 198-215, Washington, DC, July 1992. ACM
Press.

[5] G. M. Silberman and K. Ebcioglu. An Architectural Framework for Supporting
Heterogeneous Instruction-Set Architectures. IEEE Computer, 26(6):39-56, June
1993.

[6] Sun Microsystems. The Java Hotspot Performance Engine Architecture.
http://java.sun.com/products/hotspot/whitepaper.html, April 1999.

[7] K. Ebcioglu, J. Fritts, S. Kosonocky, M. Gschwind, E. Altman, K. Kailas, and
T. Bright. An eight-issue tree-VLIW processor for dynamic binary translation.
In Proc. of the 1998 International Conference on Computer Design (ICCD ’98)
— VLSI in Computers and Processors, pages 488495, Austin, TX, October 1998.
IEEE Computer Society.

[8] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B. Yadavalli,
and J. Yates. FX!32-A Profile-Directed Binary Translator. IEEE Micro, 18(2):56—
64, March 1998.

1280

[9]

[10]

[11]

Kemal Ebcioglu et al.

M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete Computer Simu-
lation: The SimOS Approach. IEEE Parallel and Distributed Technology, 3(4):34—
43, Winter 1995.

R. Nair and M. Hopkins. Exploiting Instruction Level Parallelism in Processors by
Caching Scheduled Groups. In Proc of the 24th Annual International Symposium
on Computer Architecture, pages 13-25, Denver, CO, June 1997. ACM.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace Processors. In Proc.
of the 30th Annual International Symposium on Microarchitecture, pages 138-148,;
Research Triangle Park, NC, December 1997. IEEE Computer Society.

	Background and Motivation
	The Dynamic Compilation Algorithm
	Stopping Points for Paths in Tree Regions
	Adaptive Scheduling Principles

	Performance Evaluation
	Related Work
	Conclusion

