An Architecture Framework for Introducing
Predicated Execution into Embedded
Microprocessors

Daniel A. Connors', Jean-Michel Puiatti?, David 1. August!,
Kevin M. Crozier!, and Wen-mei W. Hwu!

! Department of Electrical and Computer Engineering
The Coordinated Science Laboratory
University of Illinois, Urbana, Illinois (USA) 61801
{dconnors, august, crozier, hwu}@crhc.uiuc .edu
2 Logic Systems Laboratory (DI-LSL)
Swiss Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland
puiatti@lslsun.epfl.ch

Abstract. Growing demand for high performance in embedded systems
is creating new opportunities for Instruction-Level Parallelism (ILP)
techniques that are traditionally used in high performance systems. Pred-
icated execution, an important ILP technique, can be used to improve
branch handling, reduce frequently mispredicted branches, and expose
multiple execution paths to hardware resources. However, there is a ma-
jor tradeoff in the design of the instruction set, the addition of a predicate
operand for all instructions. We propose a new architecture framework
for introducing predicated execution to embedded designs. Experimental
results show a 10% performance improvement and a code reduction of
25% over a traditionally predicated architecture.

1 Introduction

Growing demand for high performance in embedded computing systems is cre-
ating new opportunities for Instruction-Level Parallelism (ILP) techniques that
are traditionally used in high performance systems. In several ways, the needs
of embedded computing differ from those of more traditional general purpose
systems. Embedded systems have more stringent constraints on cost [6] that
lead to the design of limited-sized instruction caches and physical memories.
The limited nature of these instruction memory resources is more pronounced
by current technological developments in embedded systems. In order to meet
numerous requirements for embedded system features and functionality, com-
pilers and high-level languages have been employed in ways to manage the size
and complexity of system design. Unfortunately, this can increase program code
size over previously used traditional methods of hand-coding programs. Thus,
compiler technology not only has a large effect in enhancing the performance
of these processors, but also in affecting the instruction memory utilization and

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1301-{I311] 1999.
© Springer-Verlag Berlin Heidelberg 1999

1302 Daniel A. Connors et al.

code size. Although classic code optimizations decrease the number of executed
instructions, superscalar optimization, inline expansion, loop unrolling, and su-
perblock formation [5] often increase the execution performance at the cost of
increasing the overall code size.

Current embedded processor research and development illustrate different
strategies for dealing with memory size issues. The traditional strategy for re-
ducing code size focuses on reducing the instruction encoding size in the design of
the Instruction Set Architecture (ISA). For example, embedded processor such as
M-Core, Thumb, Tiny RISC, and future ARM-10 designs [8] use this technique.
A comparison of the cache performance in [I] shows that denser instruction sets
have significantly lower miss rates for small caches, but that advantage disap-
pears for larger caches.

Predicated execution is an emerging ILP technique that requires several
changes to existing ISAs, which can affect program code size. Predicated execu-
tion is the conditional execution of an instruction based on the value of a Boolean
source operand, referred to as the predicate of the instruction. Predicated exe-
cution, can be used to improve branch handling, reduce frequently mispredicted
branches, and expose multiple execution paths to hardware resources. Although
the performance benefits of full predicated execution are high, there is a major
tradeoff in the design of the instruction set, namely the addition of a predicate
source operand for all instructions.

We propose a new framework for introducing predication into embedded pro-
cessors. The first contribution of this paper is to present the effect of predicated
execution on program code size. This study concludes that the growth in binary
size when adding predicate source operands to every instruction is wasteful since
only 28% of instructions are predicated after applying aggressive predicate for-
mation [2] and optimization techniques. The second, and the more important
contribution of this paper is to propose a new instruction issue mechanism that
supports predicated and non-predicated versions of instructions. Experimental
results of the new predicated architecture model achieves an average 10% per-
formance improvement over a traditionally predicated architecture and reduces
the memory requirements of highly optimized code by 25%

2 Background and Motivation

2.1 Predication Background

Predicated execution allows conditional execution of instructions based upon
a computed condition and may be supported by several different architectural
models [3]. Each model must support a method of expressing the condition
and a method for the condition to affect instruction execution. Full predication
supports this using new instruction set and microarchitecture extensions.

The full predication model consists of four components: a predicate register
file for holding 1-bit predicate values, an additional source operand for each in-
struction to specify a predicate for instruction execution, a conditional-execution

An Architecture Framework for Introducing Predicated Execution 1303

stage to nullify instructions, and a set of predicate defining instructions for gen-
erating conditions. The values in the predicate register file are associated with
each instruction through the use of an additional source operand, or predicate
operand. This operand specifies which predicate register will determine whether
the instruction should execute. A predicate register value of 1, or true, indicates
the instruction is executed; a value of 0, or false, indicates the instruction is
suppressed. An unconditional instruction is designated by a predicate register
that is always true. The architectural support for predicated execution can be
found in the HPL PlayDoh Architecture Specification [4].

X=X+1 p2=(A!=B) p2=(A!=B)

D=A+X X=X+1 <pl> X=X+1 <pl>

Z=7Z-1; X=X+1 A=A+1 D=A+X <pl> A=A+1 <p2>
}else { D=A+X D=A+X Z=27-1 <pl> D=A+X

A=A+1; 72=7-1 C=C-1 A=A+1 <p2> 7Z=7-1 <pl>

g:g+lx D=A+X <p2> c=C-1 <p2>
> ’ BBl e
B=B+1; -]

(a) (b) () (d)

Fig. 1. A simple if-then-else C code construct (a), unpredicated code (b), pred-
icated code (c), and optimized predicated code (d).

Predication support allows the compiler to use an if-conversion algorithm to
convert conditional branches into predicate defining instructions, and instruc-
tions along alternative paths of each branch into predicated instructions [9].
Figure [I] demonstrates the limitation of the traditional control flow graph when
applied to predicated code. A simple if-then-else construct is shown in Fig-
ure [T(a). The code generated for this segment without predication is shown
in Figure M{b). Here the control flow graph clearly shows that one and only one
side of the if-statement may execute. The predicated code control flow graph is
shown in Figure [[{c). In this case all the code falls into one basic block because
there is no possibility of branching until the end of the set of instructions.

The most notable modification of predication to the instruction set encod-
ing format is the addition of the predicate operand source for every instruction.
The predicate operand increases the instruction size and has significant effects
on overall program code size. One model [10]] proposes a new set of predicate
guarding instructions that would reduce the drawback of existing methods of
specifying predicated execution through the use of predicate mask-setting in-
structions. Although the mechanism is useful in reducing the predicate operand
overhead, the general mechanism constrains several aspects of predicated execu-
tion and dramatically alters the instruction issue logic of microprocessors.

1304 Daniel A. Connors et al.

2.2 Motivation

Predication Performance. There are two major benefits associated with ap-
plying if-conversion. First, a compiler can eliminate problematic branches from
the program. In doing so, all the associated overhead with these branches is
removed, including misprediction penalties, penalties for redirecting sequential
instruction fetch, and branch resource contention. Second, predication facilitates
increased ILP and speedup by allowing separate control flow paths to be simulta-
neously executed. Figure P{a) shows the performance when predication support
is provided by the architecture and a capable compiler is employed to take ad-
vantage of it. The 6-issue processor simulated utilizes profile-based static branch
prediction, a 4-cycle misprediction penalty, and a perfect memory system. Across
all benchmarks predication yields an average performance gain of 34%.
Predicate Utilization. Although the performance of predicated execution is
significant, it is at the cost of adding a predicate source operand on every instruc-
tion. In full predication model, all instructions have a predicate source operand,
even those which are not conditionally executed. Figure2(b) illustrates the per-
centage of static instructions with conditional predicates relative to the over-
all number of instructions. The percentage of conditional instructions averages
around 40% of the total instructions, meaning that a large portion of instruc-
tions do not require a predicate operand. Since the percentage of unconditional
instructions is significant, the unnecessary increase in instruction format size can
dramatically impact embedded system designs.

Predicated Instruction Cost. Figure [3] shows the code size expansion at-
tributed to the predicate operand for three distinct models on the same pred-
icated benchmarks. First, Zero Size shows the code size for predication when
the predicate representation has zero cost. Next, Predicate Only shows the ef-
fect when the instruction size growth of the predicate operand is attributed to
only the conditional instructions. Finally, Full Size shows the size of the operand
added to every static instruction as designed in an architecture supporting full
predication. All of the predicated code sizes are compared to a base architec-

49
1.8 70%

50% +— =l

40% — —

30% —— —

Performance
=
[
Predicated Instructions

3
=
=

s
1
pt
m
9
a
9
it
P
a
o
c
P
D
x
ort
oo
s

mmmmm

mmmmmmmmmmmmmm

expic
g721
pt
m
9
a
9
pegwit
9p
sta
dio
we
cmp
ep
lex

o

o

e

rawal
compre
AVERAGE
ex
7.
o
g
ip
me:
mps
g
2
a
u
a
g
q
¥
AVERAGE

compre

Fig. 2. Predicated execution performance (a) and utilization(b).

An Architecture Framework for Introducing Predicated Execution 1305

ture without predication support. Note that compilation for predication alone
has some effect on code size. The size of the predicate operand was evaluated
assuming a 24-bit base instruction format and a 5-bit predicate operand field.

@ Zero Size

125 B Predicate Only

12 = — O Full Size T

Relative Code Size
s
\
\
\
|
T

expic
qg721
ghostscript
gsm
ipeg
mesa
mpeg
pegwit
pgp
rasta
rawaudio
W
m
grep
lex
gsort
yace
compress
AVERAGE

Fig. 3. Code expansion considering predication source operand.

Figure [J] indicates that predicated execution increases program code size by
an average of 23%, and often as high as 30%. The results of the Zero Size model
of code size evaluation indicate that for a large number of programs, predication
effectively has fewer instructions and reduced code size. An interesting pattern
is observed in Figure [3] for Predicate Only instructions. As a general rule, the
code size for this model is significantly smaller than the Full Size code size,
and averages near the base non-predicated code size. The difference between
predicated and non-predicated results occur because predication has a funda-
mental ability to remove numerous control instructions and because compiler
support of predicated execution can perform optimizations that allow the code
to share instructions that are on different execution conditions. For example, in
Figure M(d) the instruction D = A 4+ X does not require a predicate operand
since the compiler guarantees that it unconditionally executes in the block.

3 Prefix-Based Predication

There are several methods of adding predicated and non-predicated versions of
instructions to an ISA design. This section details the addition of predication
to a 24-bit instruction word for embedded processors. The proposed method is
extendible to other instruction format constraints.

3.1 Architecture Model

Prefix-based predication uses opcode prefixing to add sufficient instruction bits
to indicate a predicate operand exists for instructions which the compiler has

1306 Daniel A. Connors et al.

designated to conditionally execute. As illustrated in the previous section, a sig-
nificant amount of code size can be saved when only the predicated instructions
incur the predicate operand overhead. Figure [illustrates the base 24-bit in-
struction format that includes an operation code, a destination register index,
and two source operands (potentially register indexes or immediate data).

WILL BE USED IN THE FOLLOWING FETCH PREFIX
\
[BYTE 1] BYTE 10] BYTEO[BYTES| BYTE7[BYTE6 | BYTES BYTE3| BYTE2] BYTE|
1 !
1

1
LENGTH DECODER
AND STEERING STAGE NORMAL INSTRUCTIOI\ PREDICATED INSTRUCTION PREDICATE DEFINING

INSTRUCTION

[op-copE \DLsT\ SRCI [SRCO | [op-copE_[pEsT[sRCt [sRCo [PRED | [op-copE_[P_DEST [sRCt [sReo [PRED |

preoprsTRAGE

Fig. 4. Prefix-based predication decoding of normal and predicated instructions.

Figure [illustrates how a prefix opcode of the 24-bit instruction can desig-
nate that an additional 1-byte contains supplementary instruction information
follows. The complete 32-bit instruction can then be decoded into a 26-bit in-
struction with a 6-bit operation code, a 5-bit predicate register index, a destina-
tion register index, and 2 source operands. The prefix opcode is then discarded.
In this example architecture, the 5-bit predicate index can be used to access a 32-
entry predicate register file. New predicate defining instructions for expressing
predicate conditions are also added using the prefixng mechanism.

3.2 Microarchitecture Support

The primary microarchitecture component affecting prefix-based predication is
the instruction decode methodology. Most prefix architecture designs integrate
an additional instruction decode stage in the original pipeline design. In this
model, the first stage is used to determine instruction lengths (prefix detection)
and steer the instructions to the second stage where the actual instruction de-
coding is performed. Figure [illustrates this process. The multiple pipelined
decode method is successful for several reasons. First, the design places the fo-
cus on resources other than instruction memory. A second reason for using an
additional decode stage is that the number of branch instructions executed in a
predicated architecture is significantly reduced, resulting in the number of mis-
predictions also being reduced. This limits the negative effect of adding more
pipeline stages before branch resolution has on the misprediction penalty. The
branch prediction accuracy for predicated architectures is about 7% higher than
branch prediction for traditional architectures.

An Architecture Framework for Introducing Predicated Execution 1307

4 Techniques for Reducing Predicated Code Size

The compilation techniques utilized in this paper to exploit predicated execution
are based on an abstract structure called a hyperblock [2]. Several additions were
made to the existing hyperblock framework of our experimental compiler. First,
infrequently executed blocks with instruction merging opportunities that might
normally be excluded from hyperblocks are included. This includes new methods
of forming hyperblocks using basic blocks with zero or low execution frequency.
New predicate optimization routines were also developed.

The new optimization routines extend the techniques of predicate promotion
and predicate merging. Predicate promotion refers to speculation performed by
changing an instruction’s predicate to a predicate whose expression subsumes
that of the original predicate [2]. Promotion may result in the instruction being
unconditionally executed, reducing the number of predicated instructions. Pred-
icate merging allows identical instructions on intersecting predicate conditions
to be combined. Merging thereby removes one instruction copy, and promotes
the remaining instruction. These optimizations will be detailed in a future work,
and are not presented here due to space limitations.

4.1 Predication Code Size and Execution Characteristics

The compiler’s ability to affect program code size and the percentage of predi-
cated instructions for several benchmarks is now examined. The selected bench-
marks are the MediaBench suite [7] and UNIX utilities. Figure [indicates that
predication reduces the total number of instructions for traditionally optimized
code by 6.3%. A significant portion of the instructions eliminated were con-
trol instructions, which were reduced by 13%, where control instructions include
predicate defining instructions and any traditional branch instructions. Other
characteristics include a 7% reduction in the number of dynamically executed

EOverall
B Control Operations

Code Size Reduction

expic
g721
ghostscript
gsm
ipeg
mesa
mpeg
pegwit
pgp
rasta
rawaudio
we
cmp
grep
lex
gsort
yace
compress
AVERAGE

Fig. 5. Code reductions due to predicated execution.

1308 Daniel A. Connors et al.

Benchmark Code Merging Hyperblock |Pred-Optimization
Merging %| Reduction % |Promotion %|Static Pred %| Static Pred %
expic 6.03 1.45 37.59 22.68 14.92
g721 1.60 0.85 43.31 52.64 29.77
ghostscript 0.26 1.01 32.68 41.31 24.79
gsm 3.21 1.80 51.44 44.78 23.28
ipog 29.97 1.96 39.38 53.88 34.78
mesa 8.62 3.55 37.49 37.96 22.07
mpeg 5.05 2.40 34.52 16.03 26.13
pegwit 3.72 0.75 15.08 18.60 14.95
pgp 2.48 1.52 14.12 60.12 49.32
rasta 3.38 1.75 17.48 50.60 39.94
rawaudio 2.17 0.61 26.09 27.71 21.21
wc 16.92 7.91 10.77 43.33 40.29
cmp 22.12 11.57 16.81 46.89 37.04
grep 10.52 6.89 14.43 60.85 50.74
lex 11.87 5.44 14.97 43.15 32.75
gsort 8.00 1.61 48.00 20.49 11.90
yacc 7.30 2.48 26.26 32.83 21.11
compress 5.85 1.82 30.70 30.37 14.60
[average | 828 | 3.08 | 2840 | 4079 | 28.31 |

Table 1. Instruction merging and predicate promotion characteristics.

instructions in general code, and a 31% reduction in the number of dynamically
executed instructions in code with superscalar optimization.

Table [l summarizes the amount of predicate optimization that the compiler
is able to perform on the hyperblocks. For the instruction merging category, the
percentage of static predicated instructions averages 8% that can be merged. The
additional code reduction attributed to merging is shown in the next column.
The percentage of predicated instructions that are promoted to uncondition-
ally executed instructions is shown in the next column. These numbers indicate
that an average 28% of the originally predicated instructions may be promoted.
The final two columns include the percentage of static predicated instructions
relative to total program instructions for the original and predicate-optimized
hyperblocks. The most important result of Table Dl is that only 28% of the static
instructions remain predicated after predicate optimization.

5 Experimental Evaluation

5.1 Methodology

The IMPACT compiler and emulation-driven simulator were enhanced to sup-
port the proposed architecture framework. The base architecture modeled uses a
5 stage pipeline that can issue in-order 6 operations per cycle (up to the limit of
the available functional units: four integer ALU’s, two memory ports, two float-
ing point ALU’s, and one branch unit). The instruction latencies used match the
HP PA-7100 microprocessor (integer operations have 1-cycle latency, and load
operations have 2-cycle latency). The processor contains 32 integer and 32 float-
ing point registers. To support prefix-based predication, 32 predicate registers
and an additional decoding stage were modeled. The memory system simulated

An Architecture Framework for Introducing Predicated Execution 1309

was either perfect or used a 2K, 4K, or 8K sized direct-mapped instruction caches
and a 8K direct mapped, blocking data cache; both with 64-byte blocks and a
miss penalty of 12 cycles. A static branch prediction strategy was employed.

5.2 Results and Analysis

Figure @ shows the results of varying the instruction cache size for the non-
predicated and prefix-based predicated architectures. Substantial performance
improvement is established at small cache sizes; however, for larger increases in
instruction cache size, the relative performance improvements of the base archi-
tecture are larger, and the relative performance saturates. This indicates that
the base model is more dependent on instruction cache resources than the prefix-
based predicated architecture. The results of cache simulations show that prefix-
based predication has an average 7% higher hit rate for 2K instruction caches
and 2.5% for 8K caches compared to the non-predicated model. Experiments
also indicate that prefix-based predication has an average 10% higher speedup
over traditional predicated architectures for small instruction cache models.

1.6 M O2K m4K 08K

Performance

-

Ll

Fig. 6. Performance of varying instruction cache size for prefix-based predicated
architecture relative to non-predicated architecture.

a721

ghostscript
gom |

ipeg EI
mesa
—

mpeg

pegwit

rasta

pgp

rawaudio

compress

AVERAGE

The relative performance of superscalar (superblock formation, loop un-
rolling) optimization for prefix-based predicated and non-predicated architec-
tures is an average 63% better than general levels of optimization for the sim-
ulation of a perfect memory system. For superscalar optimization, the average
speedup of the predicated architecture is only 12% more than the non-predicated
architecture. The performance of the superscalar optimization indicates that
the performance gains of predicated execution do not greatly exceed the non-
predicated version. However, the corresponding code size of the predicated code
for high performance code is significantly reduced. Figure [l shows the code ex-
pansion of the superscalar optimization for the non-predicated, full-predicated,

1310 Daniel A. Connors et al.

@ Non-predicated -
BFull Predication

OPrefix Predication

Relative Code Size
1

expic

g721
ghostscript
gsm

ipeg

mesa
mpeg
pegwit

pop

rasta
rawaudio
we

cmp

grep

le>

gsort
yace
compress
AVERAGE

Fig. 7. Code expansion of superscalar relative to traditional optimization.

and prefix-based predicated architectures. Clearly the 12% performance improve-
ment is substantial since the improvement requires a significantly smaller code
size. The full predicated architecture has an average 11% smaller code size and
the prefix-based predicated architecture has an average 25% smaller size.

6 Conclusions

The prefix-based predicated execution architecture framework proposed has the
potential to significantly enhance the effectiveness of introducing predicated ex-
ecution into embedded microprocessors. For regions of non-predicated code, the
prefix-based method offers better code density characteristics than traditional
models of predication support. For predicated regions, the prefix-based method
offers performance improvement over an architecture without predication sup-
port. We illustrate that an optimizing compiler can enhance the prefix-based
predication model by performing aggressive instruction merging and predicate
promotion to reduce the number of predicated instructions by 30%. Overall,
prefix-based predication achieves 12% performance improvement for code cre-
ated with superscalar optimization and reduces code size by 25%.

References

[1] J. Davidson and R. Vaughan. The effect of instruction set complexity on program
size and memory performance. In Proceedings of the 2nd International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 60-64, October 1987.

[2] S. A. Mahlke et al. Effective compiler support for predicated execution using the
hyperblock. In Proceedings of the 25th International Symposium on Microarchi-
tecture, pages 45—54, December 1992.

[3] S. A. Mahlke et al. A comparison of full and partial predicated execution sup-
port for ILP processors. In Proceedings of the 22th International Symposium on
Computer Architecture, pages 138-150, June 1995.

[4]

An Architecture Framework for Introducing Predicated Execution 1311

V. Kathail et al. HPL PlayDoh architecture specification: Version 1.0. Technical
Report HPL-93-80, Hewlett-Packard Laboratories, Palo Alto, CA, February 1994.
W. W. Hwu et al. The Superblock: An effective technique for VLIW and super-
scalar compilation. The Journal of Supercomputing, 7(1):229-248, January 1993.
R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micropro-
cessors. IEEE Journal of Solid-State Circuits, 31:1277-1284, 1996.

C. Lee and W. Mangione-Smith. Mediabench. In Proceedings of the 30th Annual
International Symposium on Microarchitecture, pages 330-335, December 1997.
MicroDesign Resources. Embedded Processor Forum, San Jose, CA, October 1998.
J. C. Park and M. S. Schlansker. On predicated execution. Technical Report
HPL-91-58, Hewlett Packard Laboratories, Palo Alto, CA, May 1991.

D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and branch prediction
in dynamic ILP processors. In Proceedings of the 21st International Symposium
on Computer Architecture, pages 120-129, April 1994.

	Introduction
	Background and Motivation
	Predication Background
	Motivation

	Prefix-Based Predication
	Architecture Model
	Microarchitecture Support

	Techniques for Reducing Predicated Code Size
	Predication Code Size and Execution Characteristics

	Experimental Evaluation
	Methodology
	Results and Analysis

	Conclusions

