
Multi-stage Cascaded Prediction

Karel Driesen and Urs Hölzle
Department of Computer Science

University of California
Santa Barbara, CA 93106
{karel,urs}@cs.ucsb.edu

http://www.cs.ucsb.edu/oocsb

Abstract. Two-level predictors deliver highly accurate conditional branch
prediction, indirect branch target prediction and value prediction. Accurate
prediction enables speculative execution of instructions, a technique that
increases instruction level parallelism. Unfortunately, the accuracy of a two-
level predictor is limited by the cost of the predictor table that stores
associations between history patterns and target predictions. Two-stage
cascaded prediction, a recently proposed hybrid prediction architecture, uses
pattern filtering to reduce the cost of this table while preserving prediction
accuracy. In this study we generalize two-stage prediction to multi-stage
prediction. We first determine the limit of accuracy on an indirect branch
trace using a multi-stage predictor with an unlimited hardware budget. We
then investigate practical cascaded predictors with limited tables and a small
number of stages. Compared to two-level prediction, multi-stage cascaded
prediction delivers superior prediction accuracy for any given total table
entry budget we considered. In particular, a 512-entry three-stage cascaded
predictor reaches 92% accuracy, reducing table size by a factor of four
compared to a two-level predictor. At 1.5K entries, a three-stage predictor
reaches 94% accuracy, the hit rate of a hypothetical two-level predictor with
an unlimited, fully associative predictor table. These results indicate that
highly accurate indirect branch target prediction is now well within the
capability of current hardware technology.

1 Introduction

Prediction of branch targets and load values side-steps control and data-flow
dependencies, enabling speculative execution of instructions and increasing instruction
level parallelism [HP95]. The importance of accurate prediction increases as the
processor-memory gap grows, processor pipelines become deeper, and superscalar
issue increases. Processor technology has followed these trends in the past and probably
will do so in the foreseeable future [P+97].
Currently, highly accurate conditional branch prediction is achieved by variations of the
two-level predictor architecture proposed by Yeh and Patt [YP91]. Two-level prediction
increases prediction accuracy by correlating a history of taken/non-taken bits of
recently executed branches with the direction of the current branch. Lipasti et. al.
successfully applied two-level prediction to load value prediction [CHP97].
Two-level predictors also prove highly effective for the prediction of indirect branch
targets [CHP97]. Indirect branches, which transfer control to an address recently loaded
into a register, are hard to predict accurately. Unlike conditional branches, they can have
more than two targets, so that prediction requires a full 32-bit or 64-bit address rather
than just a “taken” or “not taken” bit. Furthermore, their behavior is often directly
determined by data loaded from memory, such as in virtual function calls in C++ and
Java. Since the popularity of these languages continues to grow, we expect that
processors will execute indirect branches more frequently in the future. Even today,

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1312-1321, 1999.
 Springer-Verlag Berlin Heidelberg 1999



indirect branch misses can cause significant overhead. Without two-level prediction
(using a simple branch target buffer or BTB), the overhead of virtual function calls in
C++ programs is as high as 29% [DH96]. Similarly, Chang, Hao, and Patt show that for
the SPECint95 programs perl and gcc the indirect branch overhead is approximately
15% and 8% [CHP97].
In this study we evaluate predictor architectures for indirect branches. We believe that
our conclusions will also apply to conditional branch prediction and value prediction,
for reasons discussed in section 6. The accuracy of two-level predictors depends on the
size of the predictor table that stores associations between history patterns and predicted
targets. Longer histories lead to higher prediction accuracy but also increase the number
of different history patterns. This effect causes capacity misses, which deteriorate
prediction accuracy even for large tables. In a recent study [DH98b], we reduced the
required size of the two-level predictor by placing a small BTB in front of it. Many
branches are perfectly predicted by this cheap first stage, so that their associated history
patterns can be filtered out; only history patterns of branches that are hard to predict
enter the second stage.
Here we investigate the accuracy of a natural generalization of this two-stage cascaded
predictor by allowing any type of predictor in the first stage and any number of stages.
First, we use the maximum number of stages, and unlimited, fully associative tables for
each stage, to determine the limit of prediction accuracy reachable by this architecture.
Secondly, we test two and three stage predictors for a wide range of table sizes, in order
to study cost reduction for practical predictors.
This paper makes the following contributions:
• It demonstrates, for the first time, that idealized indirect branch predictors can

exceed 95% prediction accuracy.
• It describes and evaluates a practical (4K) indirect branch predictor that achieves

nearly 95% accuracy on average for our set of large C and C++ applications.
• It explains why cascaded predictors work so well, and quantifies the dramatic

reduction in predictor table working set size achieved by cascading. This analysis
suggests that conditional branch predictors or load value predictors could benefit
from cascaded prediction as well.

The rest of this paper is organized as follows: in Section 2 we discuss the benchmark
suite used, and Section 3 briefly reviews two-level and cascaded predictor architectures.
Section 4 compares the accuracy of two-level and ideal cascaded predictors for various
numbers of stages/path lengths, and Section 5 presents results for realistic predictors.
Section 6 discusses related work, and we conclude in Section 7.

2 Benchmarks

We minimize misprediction rate using a reduced instruction trace consisting of indirect
branch addresses and targets, and simulate only the indirect branch predictor. This
allows us to explore two to three orders of magnitude more predictor configurations
than a full cycle-level simulation would allow. Reductions in misprediction rate should
lead to corresponding reductions in branch misprediction overhead (as demonstrated in
[CHP97]).
Our main benchmark suite consists of large object-oriented C++ applications ranging
from 8,000 to over 75,000 non-blank lines of C++ code each, and beta, a compiler for
the Beta programming language [MMN93], written in Beta. We also measured the

1313Multi-stage Cascaded Prediction



SPECint95 benchmark suite with the exception of compress which executes only 590
branches during a complete run. Together, the benchmarks represent over 500,000 non-
comment source lines1.
For each benchmark, Table 1 lists the number of indirect branches executed, the number
of instructions executed per indirect branch, and the source of the indirect branches
(switch statements, virtual function calls, or indirect function calls). It also shows the
percentage of indirect branches that during the entire run jump to one, two, and more
targets, as well as the number of branch sites responsible for 99% and 100% of the
branch executions. For example, only 5 different branch sites are responsible for 99%
of the dynamic indirect branches in go. Four of the SPEC benchmarks execute more
than 1,000 instructions per indirect branch. Since the impact of branch prediction will

a SunSoft version 1.3
b Java High-level Class Modifier
c hardware description language compiler
d SUIF 1.0
e Fresco X11R6 library

1 See technical report for compilation details [DH99].

Table 1. Benchmarks and commonly shown averages (arithmetic means)

Name Description

St
yl

e

K
 li

ne
s 

of
 c

od
e

K
 #

 o
f 

in
di

re
ct

br
an

ch
es

in
st

r. 
/ i

nd
ir

ec
t

vi
rt

ua
l%

sw
itc

h%

in
di

re
ct

%

1 
ta

rg
et

%

2 
ta

rg
et

s%

>
 2

 ta
rg

et
s%

active
branches

99
%

10
0%

idl IDL compilera OO 14 1,884 47 93.2 3.2 3.6 97.1 0.1 2.8 70 543
jhm JHMb 6-12M OO 15 6,000 47 93.6 1.2 5.2 58.7 1.4 39.9 34 155
self Self-93 VM: 5-6M OO 77 1,000 56 76.0 4.4 19.6 40.1 31.6 28.3 848 1855

xlisp SPEC95 C 5 6,000 69 0.0 0.1 99.9 38.9 9.0 52.1 4 13
troff GNU groff 1.09 OO 19 1,111 90 73.7 12.5 13.8 41.9 13.6 44.5 61 161
lcom HDLc compiler OO 14 1,738 97 63.2 36.8 0.0 33.5 54.0 12.5 87 328

AVG-100: instr/ind < 100 24 2,955 68 66.6 9.7 23.7 51.7 18.3 30.0 184 509
perl SPEC95 C 21 300 113 0.0 31.7 68.3 41.2 0.0 58.8 7 24

porky scalar optimizerd OO 23 5,393 138 70.6 23.8 5.6 15.6 8.1 76.3 89 285
ixx IDL parsere OO 11 212 139 46.5 52.2 1.3 37.1 6.4 56.5 91 203
edg C++ front end C 114 549 149 0.0 62.4 37.6 7.9 29.6 62.5 186 350
eqn equation typesetter OO 8 296 159 33.8 66.2 0.0 4.2 37.8 58.0 58 114
gcc SPEC95 C 131 865 176 0.0 31.5 68.5 0.8 1.7 97.5 95 166

beta BETA compiler OO 73 1,006 188 0.0 2.3 97.7 18.7 28.1 53.2 135 376
AVG-200: 100 < instr/ind < 200 55 1,232 152 21.6 38.6 39.9 17.9 16.0 66.1 94 217

AVG: instr/indirect < 200 40 2,027 113 42.4 25.3 32.4 33.5 17.0 49.5 136 352

AVG-OO: OO, instr/ind < 200 28 2,071 107 61.2 22.5 16.3 38.5 20.1 41.3 164 447

AVG-C: C, instr/ind < 200 68 1,928 127 0.0 31.4 68.6 22.2 10.1 67.7 73 138
m88ks im SPEC95 C 12 300 1.8K 0.0 46.2 53.8 2.9 10.3 86.8 5 17
vortex SPEC95 C 45 3,000 3.5K 0.0 30.7 69.3 23.1 16.9 60.0 10 37

ijpeg SPEC95 C 17 33 5.8K 0.0 97.8 2.2 96.7 3.2 0.1 7 60
go SPEC95 C 29 550 56K 0.0 99.0 1.0 0.2 0.0 99.8 5 14

AVG-infreq: instr/indirect > 200 26 971 17K 0.0 68.4 31.6 30.7 7.6 61.7 7 32

1314 Karel Driesen and Urs Hoelzle



be very low for the latter four benchmarks, we exclude them when optimizing predictor
accuracy (by minimizing the AVG misprediction rate).

3 Predictor architectures

Figure 1 shows representative examples of the predictor architectures tested in this
study. The simplest architecture is a branch target buffer (BTB). A selection of bits from
the branch address serves as a key pattern into a predictor table, which stores the last
target observed for this branch. We use tagged tables to distinguish table misses (pattern

Branch Address

Figure 1. Representative examples of a branch target buffer, two-level predictor and
cascaded predictor. A staged predictor looks the same as a cascaded predictor, but has a
different update rule (every stage is updated, where a cascaded predictor prevents insertion
of new patterns in later stages if an earlier stage predicts a branch correctly).

24 bit key pattern

Branch Target Buffer

Branch Address

Prediction Table

XOR

Global History Buffer
key pattern

prediction

Two-level predictor with path length 3

Branch Address

Prediction Tables

XOR

Global History Buffers
key patterns

t1 prediction1

3-stage Cascaded predictor with path lengths 1, 3, and 8

XORt1t2t3 prediction2

XOR1 prediction32345678

Longest
path
present
wins

t1t2t3

Prediction Table

prediction

Tags

1315Multi-stage Cascaded Prediction



is absent) from prediction misses (pattern is there, but the stored target is wrong). For
the unlimited, fully associative tables in Section 4, the tag consists of the complete key
pattern. For the 4-way associative, limited tables employed in Section 5, part of the 24-
bit pattern is used as a table index, and the rest is stored as a tag, indicating which of the
4 entries in the associativity set has a prediction for the pattern, if any. A predictor table
closely resembles a 4-way associative cache [HP95]. Note that only the second and later
stages of the cascaded predictor need tags in order to function correctly. However, for
easy comparison we use identical, tagged tables in all schemes.
A two-level predictor extends the BTB scheme by taking bits from the last p branch
targets preceding the execution of the current branch and xor-ing these bits with the
branch address. The parameter p is the path length of the two-level predictor. For longer
path lengths, fewer bits are extracted from each target in order to fit into the 24-bit key
pattern1.
A cascaded predictor consists of several stages, each containing a two-level predictor
with its own history buffer and predictor table. Successive stages use increasing path
lengths (in [Dri99], we demonstrate the inferior accuracy of decreasing path lengths).
The use of separate tables allows all stages to predict in parallel. In a final step, the
predictor chooses the prediction from the last stage that did not encounter a table miss.
This ensures that its target prediction is based on the longest available path history.
A cascaded predictor saves table space by using a leaky filter update rule: a new history
pattern enters a long path length stage only if none of the shorter stages predicted the
branch correctly. This rule prevents easily predicted branches from occupying table
space in an expensive, long path length stage. For example, branches with only a single
target are perfectly predicted by a BTB, after the initial compulsory miss, so they do not
need a long history pattern (this is a substantial portion of all indirect branches, as
shown in Table 1). As a result, the longer path length stage encounters fewer capacity
misses, improving overall prediction accuracy.
We also measure the accuracy of a cascaded predictor without filtering. We call this a
staged predictor. Staged predictor improve prediction accuracy compared to a two-level
predictor because they reduce cold start misses. Longer path length two-level predictors
are more accurate than short path length predictors, but they need a longer time to reach
that potential since they store more patterns per branch. In a staged predictor, the early
stages predict many branches accurately while the later stages are warming up.
In the next section we investigate predictor accuracy under ideal circumstances, in the
absence of table interference (conflict misses) and capacity misses.

4 Ideal predictors

We use the term ideal for a predictor scheme with an unlimited, fully associative
predictor table. The misprediction rate measured for such a predictor is thus free from
the noise of conflict and capacity misses2. Ideal cascaded predictors have a full
complement of stages. For example, an ideal cascaded predictor of path length 6 has 7
1 We use a two-bit counter update rule, reverse interleaving of target bits and 4-way associative tables

with an LRU eviction policy, as in the two-level indirect branch predictor implementations in [DH98a].
2 In one respect, the predictors studied in this section are not ideal: they have limited 24-bit history

buffers. A small buffer represents each target with few bits, and this can cause pattern interference,
reducing prediction accuracy. However, a 24-bit history buffer suffices for near-ideal accuracy (see
[DH98a]), as we found during a preliminary experiment with a 30-bit buffer and path lengths up to 15
(also see the technical report for more details [DH99]).

1316 Karel Driesen and Urs Hoelzle



stages, consisting of ideal two-level predictors with path lengths 0 (a BTB) up to 6.
Similarly, and ideal staged predictor also has the maximum number of stages, but does
not employ pattern filtering.Table 2 shows the ideal configurations, and the path length

that minimizes the misprediction rate over the benchmark set (AVG). Two-level
prediction reaches a minimum misprediction rate of 6.0% at path length 6. Longer path
lengths show increasing misprediction rates, because cold start misses start to negate the
advantage of capturing longer-term correlations. As a result, an ideal cascaded predictor
is better than ideal two-level prediction at all path lengths. Staged prediction reaches
lower misprediction rates than cascaded prediction at all path lengths. This is to be
expected, since a cascaded predictor uses filtering and therefore stores strictly less
information than a staged predictor. Cascaded prediction economizes on the number of
table entries required, which does not increase accuracy for unlimited tables.

However, the reduction of table entry cost is dramatic, as shown in Figure 2. The graph
shows the total number of table entries occupied in a two-level, cascaded and staged
predictor. As the path length grows, a staged predictor’s size grows exponentially, while
a cascaded and two-level predictor show nearly linear growth. In the next section we
measure these benefits in the context of practical predictors.

Table 2. Ideal predictors

Terminology Description Best P Miss%

Ideal two-level
Two-level predictor with 24-bit history buffer, storing the
xor of (24 div P) bits of the P most recent targets, with an
unlimited, fully associative predictor table

6 6.0%

Ideal BTB Ideal two-level predictor of path length 0 N/A 24.9%

Ideal staged A non-filtering staged predictor, with P+1 stages, consisting
of ideal two-level predictors of pathlength 0,1,..,P 8 4.5%

Ideal cascaded An ideal staged predictor of pathlength P, with filtering of
new patterns 8 5.2%

Figure 2. Total number of patterns stored by an ideal two-
level, cascaded and staged predictor, for path lengths 0 to 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

N
um

be
r 

of
 ta

bl
e 

en
tr

ie
s 

to
uc

he
d

History Path Length

TwoLevIdeal

nCascIdeal

nStageIdeal

1317Multi-stage Cascaded Prediction



5 Practical predictors

In this section we study practical cascaded predictor architectures with limited, 4-way
associative tables and a small number of stages. Our aim is to reduce the number of table
entries required to attain a given prediction accuracy. We also want to find out how close
we can get to the prediction accuracy of the hypothetical ideal predictors of the previous
section.

5.1 Practical predictor tables
The main cost of predictor architectures lies in the amount of on-chip memory required
to store predictions. In the previous section we saw that the total number of patterns
generated by an ideal predictor grows as its path length increases. For example, a two-
level predictor reaches a minimal misprediction rate of 6.0% at path length 6, by storing
12324 pattern/target associations (averaged over the AVG benchmarks). Given a table
entry size of about 60 bits (24-bit tag, 1-bit update counter, and 32-bit target address),
the resulting data structure takes up about 800 K bits of memory, straining the capability
of current processor technology. We want to reduce this memory cost while keeping
misprediction rates as low as possible.
Reducing the size of a predictor table generates capacity misses. A capacity miss
occurse when a pattern/target association, stored previously, was evicted from the table
by a pattern/target of a more recently executed branch. For smaller tables, the path
length must be shortened to prevent extensive capacity misses. However, shorter path
length predictors are less accurate. For every given table size, there is some path length
which forms the optimal compromise between these opposing effects. We use
simulation to determine this optimal path length, and the resulting misprediction rate,
for table sizes from 32 to 32K entries.
One further limitation is necessary for practical predictors: a limited associativity (see
section 3). We use tables with associativity four, a common choice for memory caches.

5.2 Practical multi-stage predictors
A staged predictor must split up a given total table entry budget and allocate some part
of it to each stage. Although it is conceivable to use one global predictor table for all
stages, this would require an expensive multi-access table. Therefore each stage uses a
separate single-access table. Given a limited number of stages, we cannot use each path
length between 0 and 12. Instead, we need to choose the two or three path lengths that
minimize misprediction rate for 2- and 3-stage predictors. We detemined the best path
length combinations for all configurations shown in Table 3. We focus on predictors
with a small number of large stages, since they outperform predictors with a large
number of small stages for any given total number of entries (see the technical report
[DH99] for path lengths and alternative configurations).

5.3 Results
Figure 3 shows misprediction rates that result from using the best path length
combinations for each predictor configuration1. For comparison we also show the
misprediction rate of a BTB and the best ideal two-level, cascaded and staged predictors

1 [DH99] contains the list of optimal path length combinations per table size, the precise data for all
graphs shown in this paper, and per-benchmark misprediction rates for selected predictor schemes.

1318 Karel Driesen and Urs Hoelzle



of the previous section (shown as dotted lines parallel to the x-axis since table size is
not a factor).
Cascaded predictors perform better than two-level predictors at all table sizes in the
explored range. In other words, any given misprediction rate is bought at a much lower
cost. For instance, a 3-stage predictor of size 512 outperforms a two-level predictor of
size 2K. At a fairly modest budget of 1.5K entries, a 3-staged cascaded predictor attains
the same misprediction rate as an ideal two-level predictor with an unlimited table.
3-stage cascaded predictors consistently outperform 2-stage predictors, and 2-stage
cascaded predictors outperform 2-stage (non-filtering) predictors. For limited budgets,
cascaded prediction wins over staged prediction because pattern filtering reduces
capacity misses, allowing a cascaded predictor to use longer path lengths for any given
table size.
2-and 3-staged predictors seem to get asymptotically close to the accuracy of an ideal
staged predictor for large, but still practical table budgets. A small number of stages
clearly suffices to get almost arbitrarily close to ideal accuracy. A 3-stage cascaded
predictor, at 12K table entries and higher, even improves upon the accuracy of an ideal
cascaded predictor with a full complement of stages. Filtering seems to be responsible
for the reduced accuracy, since a non-filtering ideal staged predictor still outperforms
all other predictors.

Table 3. Practical predictor configurations (with tuned path length combinations)

Terminology Description

Two-level Two-level predictor with a 4-way associative predictor table of size T

2-staged A non-filtering staged predictor, using 2 two-level predictors of size T/2

2-staged cascaded A 2-staged predictor of size T, with pattern filtering. If T is not a power of
2, the stages have size T/3 and 2T/3

3-staged cascaded A 3-staged predictor with pattern filtering, using 3 two-level predictors of
size T/3. If T is a power of 2, the stages have size T/4,T/4, and T/2

Figure 3. Misprediction rates for 2-stage, 2-stage cascaded, and 3-stage cascaded predictors

32 48 64 96 12
8

19
2

25
6

38
4

51
2

76
8

10
24

15
36

20
48

30
72

40
96

61
44

81
92

12
28

8
16

38
4

24
57

6
32

76
8

0%

5%

10%

15%

20%

25%

30%

M
is

pr
ed

ic
tio

n 
ra

te
 fo

r 
be

st
 p

at
hl

en
gt

h

Table entry size

BTB

TwoLevel

2Stage

2Cascaded

3Cascaded

TwoLevIdeal

nCascadIdeal

nStageIdeal

51
2

76
8

10
24

15
36

20
48

30
72

40
96

61
44

81
92

12
28

8

16
38

4

24
57

6

32
76

8

4%

5%

6%

7%

8%

9%

Table entry size

1319Multi-stage Cascaded Prediction



6 Related work

Indirect branch prediction has been studied by Lee and Smith [LS84] (several forms of
BTBs), Jacobson et al. [J+96] (path-based history schemes), Emer and Gloy [EG97]
(single-level indirect branch predictors), and Chang et al. [CHP97] (two-level indirect
branch prediction). In [CHP97], the resulting speedup of selected SPECint95 programs
is measured by simulation for a superscalar processor. The misprediction rate of a BTB
is reduced by half to 30.9% for gcc with a Pattern History Tagless Target Cache with
configuration gshare(9), resulting in 14% speedup.
Kalamatianos and Kaeli [KK98] apply partial prefix matching (PPM) prediction to
indirect branches, demonstrating excellent accuracy. A PPM predictor shortens a
history pattern bit by bit, and looks it up in successively smaller stages. Each stage is
half the size of its predecessor. The bits correspond to branch targets, so this scheme
tests ever shorter path lengths. This resembles the prediction rule of a cascaded
predictor. Cascaded prediction differs from PPM prediction because a cascaded
predictor employs pattern filtering and uses a separate history buffer for each stage.The
number of stages is also independent from pattern length, and each stage can use any
table size. Although they demonstrate slightly better prediction performance on some
of the benchmarks in this study, at least part of the improvement is due to dynamic
classification of indirect branches into two classes: a class that correlates best with a
history buffer which stores both conditional and indirect branch targets, and one that
correlates best with only indirect branch targets. In this study we use a purely indirect
branch target trace.
[EM98] proposed the YAGS architecture for conditional branch prediction. A YAGS
predictor uses two kinds of predictor tables. A direct-mapped table (the choice table)
stores the dominant direction of a branch using a 2-bit counter. Two tagged tables
(direction tables) store a prediction for a pattern that represents history as taken/non
taken bits. One of these is used for branches that are mostly taken, the other for branches
that mostly not taken. Prediction in a direction table takes precedence over the
prediction in the choice table, and patterns enter a direction table only if the choice table
mispredicts. This scheme resembles a 2-stage cascaded predictor with a direct-mapped
BTB as first stage. The main difference is that the second stage of a YAGS predictor
consists of two separate tables. However, the authors agreed that this is not a
requirement. A YAGS predictor shows better prediction accuracy than other conditional
branch predictor schemes. We believe this is evidence that cascaded prediction is also
likely to perform well on conditional branches.

7 Conclusions

We have studied the accuracy of a new hybrid predictor architecture, the multi-stage
cascaded predictor, on a trace of purely indirect branches. Cascaded prediction delivers
superior accuracy in the absence of resource constraints, by exceeding the accuracy
reached by any other predictor scheme previously tested on these traces. In the context
of limited transistor budgets, cascaded prediction also provides superior accuracy, this
time by reducing the cost of two-level prediction by a factor of four or more.
More specifically:
• Ideal cascaded prediction with unlimited, fully associative tables reaches a hit rate

of 94.8%. Ideal staged prediction, without pattern filtering, reaches 95.5%. We

1320 Karel Driesen and Urs Hoelzle



believe this accuracy is close to the limit of predictability, using a pure indirect
branch history, of the indirect branches in our benchmark suite.

• Cascaded predictors with a small number of stages closely approach this limit when
using large but practical table entry budgets. In particular, a 4K entry, 3-stage
cascaded predictor attains 94.8% accuracy.

• At every table entry budget from 32 to 32K entries, multi-staged cascaded prediction
delivers accuracy superior to two-level prediction. In particular, a 512-entry three-
stage cascaded predictor reaches 92% accuracy, reducing table size by a factor of
four compared to a two-level predictor. With only 1.5K entries, a 3-stage predictor
reaches 94% accuracy, the maximum hit rate achievable by a hypothetical two-level
predictor with an unlimited, fully associative predictor table.

We believe that cascaded prediction can also improve conditional branch prediction and
load value prediction, because these applications suffer equally from cold start and
capacity misses, and because recent related work [EM98] shows that a similar
architecture delivers superior accuracy on conditional branches.It seems to be an idea
whose time has come.

8 References

[CHP97] Po-Yung Chang, Eric Hao, Yale N. Patt. Target Prediction for Indirect Jumps. ISCA’97
Proceedings, July 1997.

[DH96] Karel Driesen and Urs Hölzle. The Direct Cost of Virtual Function Calls in C++. In
OOPSLA ‘96 Conference proceedings, October 1996.

[DH98a] Karel Driesen and Urs Hölzle. Accurate Indirect Branch Prediction. ISCA ‘98
Conference Proceedings, pp. 167-178, Barcelona, July 1998.

[DH98b] Karel Driesen and Urs Hölzle. The Cascaded Predictor: Economical and Adaptive
Branch Target Prediction. Micro’98 Conference Proceedings, Dallas, Texas,
December 1998.

[DH99] Karel Driesen and Urs Hölzle. Multi-stage Cascaded Prediction. Technical Report
TRCS99-05, Department of Computer Science, University of California, Santa-
Barbara, February 12, 1999.

[Dri99] Karel Driesen. Software and Hardware Techniques for Efficient Polymorphic Calls.
PhD dissertation, University of California, Santa Barbara (in preparation).

[EM98] A.N.Eden and T.Mudge. The YAGS Branch Prediction Scheme. Micro’98
Conference Proceedings, Dallas, Texas, December 1998.

[EG97] Joel Emer and Nikolas Gloy. A language for describing predictors and its application
to automatic synthesis. ISCA’97 Proceedings, July 1997.

[HP95] Hennessy and Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 1995.

[J+96] Quinn Jacobson, Steve Bennet, Nikhil Sharma, and James E. Smith. Control flow
speculation in multiscalar processors. HPCA-3 proceedings, February 1996.

[KK98] John Kalamatianos and David Kaeli. Predicting Indirect Branches via Data
Compression. Micro’98 Conference Proceedings, Dallas, Texas, December 1998.

[LS84] J. Lee and A. Smith. Branch prediction strategies and branch target buffer design.
IEEE Computer 17(1), January 1984.

[MMN93] Ole Lehrmann Madsen, Birger Moller-Pedersen, Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley 1993.

[CHP97] Mikko H.Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value Locality and
Load Value Prediction. Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
VII), October 1996, pp. 138-147.

[P+97] Yale N.Patt, Sanjay J. Patel, Marius Evers, Daniel H. Friendly, Jared Stark. One
Billion Transistors, One Uniprocessor, One Chip. IEEE Computer, September 1997

[YP91] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive branch prediction. MICRO 24,
November 1991.

1321Multi-stage Cascaded Prediction


	Multi-stage Cascaded Prediction
	Introduction
	Benchmarks
	Predictor architectures
	Ideal predictors
	Practical predictors
	Practical predictor tables
	Practical multi-stage predictors
	Results

	Related work
	Conclusions
	References


