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Abstract. As superscalar pipelines become wider and deeper, the percentage of
dynamic instructions fetched into the machine from the mispredicted path
significantly increases. This paper discusses how a new cycle-accurate
performance simulator is used to accurately measure mispredicted path effects
on the cache hierarchy. Previously published results based on less accurate tools
indicated that mispredicted path instructions have the serendipitous positive
effect of doing memory prefetching. Our results show that while such
prefetching does occur for some benchmarks, it does not occur consistently for
all benchmarks. Furthermore the IPC impact varies widely among the
benchmarks. SPECint95 benchmarks show IPC changes ranging from -8% to
+12%.

1 Introduction

The aim in building a wider and deeper pipelined microarchitecture is to enable the
processor to execute more instructions in parallel, and at the same time achieve higher
clock frequencies. One major design challenge is to keep issue rates high despite the
fact that basic blocks are small and memory latencies are high. A design that
contributes to a more uninterrupted instruction fetching and reduces the memory
latency will help increase issue and completion rates with an overall gain in IPC
(average instructions per cycle).

To achieve high instruction fetch bandwidth, modern microprocessors employ
branch predictors to speculatively fetch instructions beyond conditional branches.  If
these speculative instructions are determined to be on a mispredicted path, they must
be invalidated and removed from the machine.

Mispredicted instructions can affect many parts of the machine, particularly the
functional units, branch predictors [5], and caches. This research focuses on the
effects mispredicted path instructions have on the cache hierarchy, due to the
increased number of instruction and data references. Previous research in this area
showed that mispredicted path references have a prefetching effect, but the methods
that measured these effects had serious limitations. Using our improved fMW [1,2]
performance simulation tool we found that the magnitude of the effect varies with
each benchmark and is not always positive.

Before we can accurately differentiate previous methodologies from our own, it is
important to have a background on simulators. Functional simulators model the
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instruction set architecture (ISA). The primary concern of functional simulators is
functional correctness. Performance simulators model the microarchitecture. They
model the machine organization and are concerned with machine performance.
Sometimes these simulators are also referred to as cycle-accurate simulators to reflect
their concern with timing issues. Traditionally, performance simulators are
implemented as trace-driven tools; i.e. their inputs are traces of dynamic instructions,
without full-function simulation capability.

Some of the new microarchitecture features, such as aggressive branch prediction,
value prediction, and multi-path execution, cannot be accurately simulated in a trace-
driven tool. To address these shortcomings, we use a new performance simulator with
full-function capability called fMW (functional microarchitecture workbench) [1].
The new fMW builds on MW by incorporating a customized version of the PSIM [3]
functional simulator and by extending the capabilities of the original MW [2].

2 Previous Work

A handful of studies [6,8,9] have examined the effects of mispredicted paths; however
each of these efforts is hampered by inadequate modeling techniques. The simulator
used in [8,9] is trace driven leading to several inaccuracies. Since trace-driven
simulators can not execute mispredicted path instructions, Pierce and Mudge injected
a fixed number of instructions to emulate the mispredicted path [8]. However, the
number of cycles a given machine spends on each mispredicted path depends on the
aggressiveness of the branch predictor and the branch resolution latency. Fixing the
branch resolution latency at a constant number of instructions introduces significant
error. Nevertheless, using this method, Pierce and Mudge found the mispredicted path
instructions tend to prefetch the data cache.

A continuation work [9], using the same tool, focused on the instruction cache and
found the prefetching effects of mispredicted path instructions far outweigh the
pollution effects caused by them. Lee et al. studied instruction cache fetch policies
using a cache simulator and found mispredicted path instructions did not cause any
degradation in performance over fetching the correct path only [6].

Previous studies generally show mispredicted path execution to be a beneficial
prefetching mechanism for the I-cache [6,8,9]. Similar benefit for the D-cache was
also suggested [6]. However, the methods that measured these effects had serious
limitations and are inherently inaccurate. Using fMW such inaccuracies are removed
by directly simulating the mispredicted path instructions in the machine model. The
following section summarizes our experimental results.

3 Experimental Methodology

All data reported in this paper are generated using the new fMW [1] tool which
integrates a functional simulator and a cycle-accurate timing simulator that is built
based on a validated PowerPC 604 model [2]. The machine model is based on
published reports [4,7,10] and accurately models all aspects of the microarchitecture.
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The machine model and the simulation framework used in this paper are discussed in
the next two subsections.

Table 1. SPECint95 benchmarks

Name Input Set Instruction Count
compress 10000 e 2231 39,719,131
gcc -f<all optimizations> -O regclass.I –s regclass.s 257,670,349
go 5 9 79,544,303
ijpeg tinyrose.ppm 92,054,217
li queen6.lsp 56,572,774
m88ksim dhry.big.100iter, cache off 106,900,787
perl trainscrabbl.in 50,039,056
vortex tiny.in 153,084,257

3.1 The Machine Model

The SPECint95 benchmark suite is used for all experiments. The input sets and run
lengths of each benchmark are summarized in Table 1. To focus the current study on
the effects of speculative execution and to emphasize the effect of mispredicted path
instructions in the pipeline, the PowerPC 604 microarchitecture is extended to remove
resource constraints, and widened to allow a greater number of in-flight instructions.
The instruction window is limited to 512 instructions with an unlimited number of
functional units and rename registers. Instruction fetch and dispatch widths are
increased to 16 instructions per cycle. There is no limit to the number of instructions
that may complete in each cycle1. A 64-entry fully associative branch target address
cache (BTAC) and a 512-entry branch history table (BHT) handle branch prediction.

The memory hierarchy includes a perfect main memory, a 32KB 4-way set
associative Level-1 instruction cache (IL1), a 32KB 8-way set associative Level-1
data cache (DL1), and a 512KB 8-way set associative unified Level-2 cache (UL2).
All caches use a write-back, write-allocate scheme. Access latencies are 1, 3, and 100
cycles for the L1, L2, and main memory respectively.  An unlimited load-miss queue
and an unlimited store queue handle all load and store execution. The store queue
performs data forwarding, and load/store instructions execute out-of-order if no
address aliasing is detected.

In terms of mispredicted branches and cache accesses made by mispredicted path
instructions, there are three key stages that determine the effects of wrong path
instructions. These stages are where different types of branch outcomes resolve in a
PowerPC machine. Unconditional branches resolve in decode, branches to count or
link registers resolve in dispatch, and conditional branches resolve in the branch
execution unit within execution. The later the stage that a branch resolves, the greater
number of mispredicted path instructions that are allowed into the machine. As soon
as a mispredicted branch is resolved, however, the mispredicted path instructions are
flushed from the machine. Since most branches are resolved before reaching the

                                                          
1 The authors are not proposing this as a realistic machine design, but a model that

increases the effects of mispredicted path execution while enforcing register and
memory data dependencies.
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execution core, nearly all mispredicted path load accesses are flushed from the
machine without ever affecting the caches. For those branches that do not resolve
until reaching the execution unit, there is a limited window of opportunity for
mispredicted path load accesses to execute and thus affect the DL1 and UL2.

The cache fetch policies process all cache misses. Given the limit study nature of
this work, when mispredicted path loads are allowed to access the caches any
complications due to memory mapped I/O are ignored. Also, the IL1 cache must
become nonblocking. This is because correct path instruction fetching is allowed to
continue immediately even if an I-cache miss is outstanding due to instruction fetches
down the wrong path. This is referred to as the "Resume" policy as discussed in [6].
The Resume policy was determined to have the lowest miss ratio during speculative
execution; thus one can infer this policy to have the most beneficial impact on IPC
gain. In [6], however, only a single outstanding miss was allowed. The policy in this
study is to allow unlimited outstanding misses.

3.2 Simulation Framework

To determine the exact effects mispredicted path instructions have on the cache
hierarchy, there needs to be a record of what the accesses would have been if
mispredicted path instructions were not simulated. To accomplish this, we duplicated
the cache hierarchy in the simulation model. One set of caches is accessed by all
instructions, including mispredicted path instructions, and is used for the timing
simulation. The other set is accessed only by correct-path instructions. The delays of
the correct-path-only copies are for accounting purposes only and do not affect the
flow of instructions through the machine. When the delay of a cache access differs
from the correct-path-only cache delay, that difference is caused by mispredicted path
instructions. By recording the delay difference (in cycles) and the direction of the
difference, we can accurately measure the exact prefetching and/or polluting count as
well as the average number of cycles gained or lost due to the difference. Separate
tallies are kept for the prefetch and pollution accesses for both the instruction cache
hierarchy (fetch) and the data cache hierarchy (load). Given that individual accesses
can have very different delay differences (i.e. one access can prefetch from the L2
while another prefetches from main memory), the average cycles gained or lost is a
crucial metric.

The simulator can be instructed regarding whether or not the machine model
should fetch down the mispredicted path. This allows the IPC difference caused by
mispredicted path to be determined. Also, the simulator has the ability to stop
mispredicted path loads from accessing the caches. This enables the effects on the
data cache to be separated from those on the instruction cache. If the overall net effect
of mispredicted path cache accesses is to prefetch data, then this should result in a
lower average memory latency and a higher IPC.

Finally, to simulate the effects of the deeper pipelined machines, variable delay
stages (VDS) are placed between pipe stages prior to the execute stage in the timing
simulation model of the machine (Figure 1). This allows increases in the average
branch latency and, proportionally, the number of mispredicted path instructions
fetched into the machine. To view these effects, we allow the variable delay stages to
be set to 0, 1, 2, or 3. Note that because there are three pipe stages prior to the execute
stage, a setting of D=1 adds 3 additional cycles to the front end, a setting of D=2 adds



1326           Jonathan Combs, Candice Bechem Combs, and John Paul Shen

6 cycles, and so on. These modifications allow us to determine the general trend in
IPC as the number of front-end stages increases. [8] did similar studies by noting the
effects of injecting more mispredicted path instructions into the instruction trace.
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Figure 1. Variable delay stages for simulating deeper front end.

4 Experimental Results

Table 2 shows the cache access discrepancies on the instruction cache hierarchy for
running the benchmarks to completion. For this part of the experiment we ignore the
data cache accesses by load instructions in the mispredicted path. The amounts of
prefetch and pollution accesses are presented along with the average number of cycles
gained or lost. The "Net Change" column records the overall cycle change in cache
delay cycles caused by the mispredicted path accesses. A positive number indicates a
decrease in cycle count (good), whereas a negative number indicates an increase in
the cycle count (bad).

Table 2. Cache access discrepancies caused by mispredicted path instructions.

Benchmark
Pollution
Accesses

Avg. cycle
Loss/access

Prefetch
accesses

Avg. cycle
gain/access

Net
Change
(cycles)

Projected
% IPC
Change

compress 207 1.00 110 24.44 2481 0.02%
gcc 2356036 14.92 543954 34.35 -16479381 -6.67%
go 349958 3.95 188388 50.51 8133593 16.23%
ijpeg 108252 2.88 42341 38.56 1320485 4.12%
li 659 7.96 203 34.36 1730 0.01%
m88ksim 857 6.28 361 34.25 6983 0.02%
perl 96656 29.60 18885 45.63 -1999238 -9.26%
vortex 278049 10.16 99737 34.84 650993 1.16%
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Since the machine model used is designed to put pressure on the front-end, a delay
caused by a missed fetch access should correspond directly to an increase in the total
execution time of the benchmark. If, however, during benchmark execution the
machine is not bottlenecked due to the latency of instruction fetching, the cycles
gained or lost during this period will not impact the IPC. Assuming that the latter is
not the usual case, a projected % IPC change is calculated and included in the table.
Taking the execution time of the benchmarks with the mispredicted path disabled and
changing it by the “Net Change” value allows us to compute a projected IPC change
when the mispredicted paths are enabled.  This column is based on the assumption
that for each delay cycle difference, this cycle directly changes the total execution
cycles of the benchmark. This projection is included to give some rough indication of
the potential impact on IPC due to the net changes in total cycle count. Actual IPC
changes based on cycle-accurate simulation are presented later.

The results in Table 2 show that most benchmarks have a positive net change due
to mispredicted path cache accesses, however the extent varies greatly. Only perl and
gcc show negative net changes. Examining the average cycles gained/lost for the two
types of accesses, it can be seen that most gains on prefetch accesses are from main
memory prefetches because the average cycles gained per prefetch access is in the
range of 25-50 cycles. On the other hand most of the polluting accesses are hitting in
the L2. This means the polluting wrong path accesses contaminate mainly the first
level of the cache. Perl and gcc are the exceptions; both exhibit significant number of
penalty cycles per pollution access, indicating significant number of misses to the
main memory. For these benchmarks, polluting accesses have a tendency to not only
remove data from the L1 cache, but from the L2 cache as well.

4.1 Mispredicted Path Impact on IPC

Figure 2 shows the actual percent change in IPC caused by mispredicted path
instructions. The data in this figure are obtained by actually simulating the
mispredicted path instructions using the fMW cycle-accurate simulator. The values
range from the greatest increase in go of 12.0%, to the perl decrease of -7.93%. The
average across all benchmarks is around 1.0%. These values correlate strongly with
the projected IPC changes of Table 2 suggesting that, indeed, the machine is
bottlenecked mainly in the front-end of the pipeline. It is important to notice the
negligible change in IPC for compress, li, and m88ksim. This is because the data and
instruction working sets for these benchmarks are small enough to be contained
entirely within the caches.

Although the net cycles gained is positive for most benchmarks except for perl and
gcc, the IPC changes vary significantly from benchmark to benchmark. Therefore, the
findings of [9] seem to have been on the right track in terms of instruction
prefetching, but the conclusion that the mispredicted path instructions always perform
instruction prefetching is not substantiated by our results. [8,9] did not actually
simulate any benchmark whose accesses caused more pollution than prefetching and
thus concluded by saying that the cache effects of mispredicted path instructions
would always be beneficial. It is also important to note that whether prefetching or
polluting becomes the dominant factor in changing the total cycle count, depends not
only on the number of accesses of each type but also on the cycle count impact by
each access of each type.
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Figure 2. Percent IPC change due to mispredicted path instructions

Mispredicted path load accesses and their impact on the data cache hierarchy
(studied in [8]) are also studied here by running the same benchmarks to completion,
but allowing the mispredicted path load instructions to access the cache hierarchy if
given the opportunity. The results show these loads to have no impact on the IPC of
the machine. Of course, for a machine bottlenecked in the front-end, such results are
expected. Studying data similar to Table 2 but for the load accesses only, it seems that
if the mispredicted path loads could influence the machine performance, the overall
trend tends to be polluting rather than prefetching as [8] suggested. Only go and perl
have positive net cycle changes caused by the mispredicted path, and these numbers
are negligible. However, it must be noted that such cache delay results are not as
pronounced when dealing with the load accesses due to the nature of the out-of-order
execution core coupled with an aggressive nonblocking cache hierarchy. Unlike the
fetch unit, which must stall when the next predicted instruction misses in the cache,
the execution core can be processing other instructions in parallel with outstanding
load misses. Only accurate simulation of data dependency relationships for each load
can determine the actual impact on IPC.

From our results, it can be seen that the amount and type of cache effects caused by
mispredicted path instructions are strongly benchmark dependent. The actual IPC
impact is not only a function of the relative frequency of prefetching vs. polluting
accesses, but also the number of machine cycles gained or lost by each of such
accesses. Applications should be analyzed individually to determine the cache effects
of executing mispredicted path instructions. It is interesting to note that go, one of the
most troublesome benchmarks for branch predictors, shows the best IPC gain due to
such serendipitous prefetching. We surmise that this is due to the control flow
structure of go such as the presence of many short “hammocks” in the code, the
traversal of which is difficult to predict. With such control flow structure, a long
mispredicted path is likely to converge with the correct path and/or the instructions
fetched by the mispredicted path are soon after fetched as part of a correct path. It also
appears that for go, significant number of such prefetches are prefetching from the
main memory, while most of the polluting misses are between L1 and L2.
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4.2 Effects Throughout Benchmark Execution

To get a better understanding of how the mispredicted path accesses affect
performance, it is necessary to see how the cycle impact changes over the lifetime of
the benchmark's execution. To do this, the benchmarks are run for incrementally
increasing instruction counts beginning at 1 million and until the end of benchmark
execution. We then study the percent IPC changes for runs with and without
mispredicted path instruction effects. Temporal IPC changes can be seen in Figure 3.
From this figure one can observe that the effects of mispredicted path cache accesses
continue throughout the lifetime of the benchmark execution. Conventional wisdom
says that these extra cache accesses would be the most beneficial during early part of
execution because of compulsory misses. Such behavior is observed for most
benchmarks, but its impact is smaller than expected.

-10%

-5%

0%

5%

10%

15%

0 10 20 30 40 50 60 70 80 90 100
Instruction Count (millions)

IP
C

 C
h

an
g

e 
(%

)

compress gcc go ijpeg li m88ksim perl vortex

Figure 3.  IPC change over benchmark lifetime

4.3 Sensitivity to Memory Latency and Pipeline Depth

Experiments on varying main memory latencies are done on all benchmarks
running to an instruction count of 50 million. The results can be seen in Figure 4. As
expected, compress, li, and m88ksim display no variation in IPC due to memory
latency changes since these benchmarks basically only access main memory for
compulsory misses (these three overlap on the 0% axis). The rest of the benchmarks
show a linear progression of more dramatic changes in IPC as the latency to main
memory is increased, and the slope of each progression is dependent on the specific
benchmark. This slope variation is probably caused by the differing prefetch to
pollution ratios of the mispredicted path accesses. Similar experiments are also
conducted on variations of L2 latency. These results show negligible impact on the
percent IPC change for delays varying from 3 cycles to 10 cycles.

Our other sensitivity analysis is done by adding stages in the front-end. This causes
mispredicted branches to take longer to resolve, resulting in more fetch cycles being
spent fetching instructions down the mispredicted path and increasing the number of
mispredicted path instructions being brought into the machine. Figure 5 shows the
resulting changes in IPC as the VDS parameter D is varied from 0 to 3. The
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experiments on varying front-end pipeline depths are done on all benchmarks and run
to an instruction count of 30 million. In general, if the trend is for mispredicted path
instructions to cause more prefetching than pollution, then increasing the number of
mispredicted path instructions will simply cause more prefetching to occur. [8]
showed similar results. If the accesses are more polluting (as it is for perl and gcc),
then more instructions will cause more pollution. Yet this trend is not universal, as
can be seen most dramatically in vortex. For some benchmarks, it seems that going
down the mispredicted path to a certain extent causes prefetching effects. Going too
far down the mispredicted path, however, starts polluting the caches more than
prefetching.
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 Figure 4. Memory latency effects.
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5 Conclusion

Mispredicted path instruction fetches can serendipitously prefetch for subsequent
correct path instructions. However this potential is highly benchmark dependent; for
example perl and gcc show significant losses in IPC due to pollution. Furthermore,
the overall performance impact is a function of the relative numbers of prefetching vs.
polluting accesses as well as the actual cycle count impact by each of such accesses.
The mispredicted path data accesses seem to display a more uniform trend of
pollution over prefetching. Finally we note that the impact of mispredicted path
instructions is likely to increase in the future, as shown in our sensitivity experiments.
An interesting area of future research is to develop microarchitecture that can adapt
the aggressiveness of processing mispredicted path instructions depending on whether
the anticipated impact is prefetching or polluting.
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