
Object Oriented Design for Reusable Parallel

Linear Algebra Software

Eric Noulard1,2 and Nahid Emad2

1 Société ADULIS – 3, rue René Cassin – F-91742 Massy Cedex – France
E.Noulard@adulis.fr

2 Laboratoire PRiSM – UVSQ – Bât. Descartes – F-78035 Versailles Cedex – France
Nahid.Emad@prism.uvsq.fr

Abstract. Maintaining and reusing parallel numerical applications is
not an easy task. We propose an OO design which enables very good
code reuse for both sequential and parallel linear algebra applications. A
linear algebra class library called LAKe is implemented using our design
method. We show how the same code is used to implement both the
sequential and the parallel version of the iterative methods implemented
in LAKe. We show that polymorphism is insufficient to achieve our goal
and that both genericity and polymorphism are needed. We propose a
new design pattern as a part of the solution. Some numerical experiments
validate our approach and show that efficiency is not sacrified.
Keywords: OO design, parallel code reuse, Krylov methods.

Introduction

In the area of numerical computing many people would like to use parallel ma-
chines in order to solve large problems. Parallel machines like modest sized SMPs
or workstations clusters are becoming more and more affordable, but no easy
way to program these architectures is known today. Our main goal is to evaluate
the object oriented design as a mean to reuse most of the sequential and parallel
software components. We focus on the domain of linear algebra and particularly
one the Krylov subspace methods. They solve either eigenproblems [5] or linear
systems [6] and are good candidates to code reuse and parallelization.

In section 1, we present the block Arnoldi method and recall the usual way to
parallelize such a method. We list the elementary neeeded operations for either
a sequential or a parallel implementation. In section 2, we first develop our goals
in terms of code reuse and then present different design solutions We show the
limit of polymorphism and dynamic binding as a reuse scheme when compared
to genericity. Finally section 3 presents some numerical experiments.

1 The Block Arnoldi Method

The Block Arnoldi method is a projection method that computes some eigenele-
ments (u, λ) satisfying Au = λu, of a large non-symmetric sparse matrix A of

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1385–1392, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



1386 Eric Noulard and Nahid Emad

size n×n where n is large. The very first step consists in reducing the projected
matrix into an upper block Hessenberg matrix Hm of size ms×ms through the
Block Arnoldi Process. For further details see [5].

1.1 Parallelizing Arnoldi Method

Our target parallel machines are distributed memory architectures. In this con-
text, the classical way to parallelize Krylov subspace iterative methods is to
distribute the large vectors and/or matrices and replicate the small ones on the
processors. We first decompose and distribute all the matrices of size n, the
matrix A, the Krylov subspace basis Vm = [V1, · · ·Vm] of size n × m · s and
possibly the temporary variable of size m · s we call W . The matrix Hm and all
the m-sized matrices are replicated.

1.2 Necessary Elementary Operations

We list below the basic operations used by all the Krylov subspace methods
including the block Arnoldi one. We have for m, n, p ∈ IN :

1. SAXPY: Y = αX + βY with Y, A, X ∈ IRm×n and α, β ∈ IR. The matrices
may be distributed.

2. Product: Y = αA · X + βY with Y ∈ IRm×p, A ∈ IRm×n, X ∈ IRn×p and
α, β ∈ IR. The matrices may be distributed.

3. Sparse product: Y = αA ·X with X, Y ∈ IRn×p and A ∈ IRn×n, A is sparse.
These matrices may be distributed and A may be available only as a function
to do matrix product.

4. subranging: Y = A(i1 : i2, j1 : j2), with A ∈ IRm×n and
Y ∈ IR(i2−i1+1)×(j2−j1+1). The matrices may be distributed.

5. point addressing: A(i, j) = α with A ∈ IRm×n and α ∈ IR. This operation is
authorized only on full matrix.

6. allocate, deallocate and (re-)distribute A ∈ IRm×n.

2 Designing a Reusable Software

The Krylov subspace methods and Block Arnoldi one led us to design a class
library called LAKe (Linear Algebra Kernels). The main goal of this library is
the use of the same code for the sequential and parallel version of the iterative
methods. In that way we only maintain a single code which is not cluttered with
unreadable parallel code. We first present the sequential design of LAKe, then
we explain why polymorphism and dynamic binding are not sufficient to make
this feature possible. We finally demonstrate how genericity is the key of the
solution. We point out that our design is the first one to reach such a reuse goal.



Object Oriented Design for Reusable Parallel Linear Algebra Software 1387

2.1 LAKe Architecture

The LAKe architecture is presented in figure 1. Each box represents a class,
whose features have been omitted for the sake of clarity. Plain arrows stand
for inheritance or the is-a relation [4, p. 811]. Dashed arrows represent the
client relation. A class A is a client of another class B if it uses at least an
object of type B. The client relation is dynamic if the relation is established at
runtime and it is static if it may be established at compile time. Polymorphism

Lake_Service {} Lake_Object {}

Implicit_Restart

QRF EV

MatrixCSC

Itmethod {}

Restart {}

Matmul_Operator

Arnoldi

Arnoldi_EV

Explicit_Restart ABR_Arnoldi

Dynamic Client Static ClientInheritance (Is-a)

Fig. 1. The LAKe architecture

[4, p. 28] is the handling of different objects which share some parts of their
interface. Polymorphism associated with dynamic binding [4, p. 29] enables the
polymorphically handled object to act differently at runtime.

2.2 A Weakness of Polymorphism: Contravariance

Polymorphism seems an obvious way to parallelize iterative methods without
touching the code. We only need to build a DMatrix class that is derived from
Matrix which redefines the needed features in order to have a parallel implemen-
tation. Our iterative methods will then use the distributed matrix class DMatrix
polymorphically. We will now show why polymorphism is not sufficient to reach
our aim. The problem in object-oriented language is the implicit assumption
that inheritance defines a subtype relation. Contravariance comes out when try-
ing to subtype functions and the correct rule for function subtyping is given in
definition 2.2.

Definition 2.1 (Subtype). A type T ′ is a subtype of type T , also noted T ′ ≤ T
iff every function that expects an argument of type T may take an argument of
type T ′.



1388 Eric Noulard and Nahid Emad

Definition 2.2 (Contravariance). Let TA → TR be the type of a function
taking an argument of type TA and returning an argument of type TR. The
subtype rule for functions is: TA′ → TR′ ≤ TA → TR iff TR′ ≤ TR and
TA ≤ TA′. We say that the outputs type of a function is covariant since it
varies in the same way the type of the function does, but the type of the input
arguments is contravariant since the subtype relation is inverted.

The contravariance problem arises in the Block Arnoldi method when per-
forming the algebraic operation Hij = V H

i W on the distributed matrices Vi and
W . Let TA be Matrix and TB be DMatrix. The operation is performed by a call to
the method TA::tmatmul(TA*,TA*)which has been redefined in the distributed
matrix class as TB::tmatmul(TB*,TB*). At this point the wrong method is called
because the subtype relation on functions implies that TB::tmatmul(TB*,TB*)
is not a subtype of TA::tmatmul(TA*,TA*) since the inputs arguments must
be contravariant. The proper method redefinition is TB::tmatmul(TA*, TA*).
Thus the type of the arguments must be checked dynamically in order to ver-
ify what they really are. This process is called dispatch of the arguments: single,
double and multiple dispatch when doing it for one, two or more arguments. The
multiple dispatch problem is an old OO problem and has been solved in the past.
It is generally not integrated in OO langages since it is costly. It was noticed
and solved, in the same linear algebra context by F. Guidec in [3, pp. 96–99] for
the Paladin linear algebra library. We propose an improved solution as a design
pattern called Service Pattern. It has two advantages over the Paladin solution:
the dispatch of an argument is only done when it changes and the dispatch may
be done for several operations using the same arguments.

2.3 Service Pattern Solution

The Service Pattern reifies the method which must dispatch its argument: the
Matrix::matmul method becomes a Matmul Operator service class. The Ser-
vice Pattern (inspired from the Visitor Pattern [2, p. 331]) represents a set of
operations which register (or connect) their arguments one by one, a status de-
termine which operation can be called. As an example the figure 2 shows the
DMatmul Operator service which performs the task Y = A · X on distributed
matrix. The advantages of the Service Pattern are that the related operations

// register A as "Y", B as "A" and C as "X"

Matmul.connect(A,"Y"); Matmul.connect(B,"A"); Matmul.connect(C,"X");

Matmul.matmul(); // compute A = B * C

Matmul.disconnect();

Fig. 2. Examples of a LAKe Service

are grouped together in an object offering a complete service, and that the ar-
guments are dispatched only when needed. The participants of the pattern are:



Object Oriented Design for Reusable Parallel Linear Algebra Software 1389

a Service class, a base Object class and as many descendants of Object as
needed. The Object class has no requirement other than having type infor-
mation provided for it. In the following parm name stands for the name of the
argument of the service, typically ‘‘A’’, ‘‘X’’, ‘‘Y’’ in fig. 2 which represent
the role the arguments play for the service Matmul Operator. The Service class
must provide:

– one redefinable method connect(Object* O, char* parm name) which
finds the dynamic type of O and calls the specialized method correspond-
ing to the specified parm name.

– one method connect PARM NAME(DType* O) for each parm namewhich makes
sense for the service and for each dynamic type DType accepted for this
parameter. The call to such a method will register the object into the service.

– one redefinable method disconnect(char* par name) which unregisters
the specified parameter(s).

– one method do task() for each computational task offered by the service.

The preceding technique works for all the operations listed in §1.2 but the mem-
ory allocation. We explain the reason and the solution in the next section.

2.4 The Need of Genericity

Some classes or functions of LAKe must be able to allocate matrices whose size
depends on input parameters of these classes or functions. As an example the
Arnoldi class must be able to allocate the matrices H, V and W . In a sequential
context this is not a problem since the Matrix used by Arnoldi must have a
method to create any rectangular matrix. In a parallel context, those matrices
may be distributed and the Arnoldi class has no way to do this since it must
not know if the matrices it uses are distributed or not. There is a simple solution
to this problem: make all distributed object parameters of the Arnoldi class.
Finally to create an Arnoldi object, all the matrices must be passed as parame-
ters. We have made a big step backwards since our class has the same structure
as a Fortran subroutine: it requires input/output parameters and workspace!

Remark 2.1 (Classes or Functions). It may seem a better choice to make the
Arnoldi class a function as it is done in IML++ [1] or ITL [7]. We are con-
vinced this is not when our goal is reusing the code implementing the Arnoldi
algorithm. In fact, if Arnoldi were a function, every Arnoldi client would allo-
cate the H, V and W matrices before using the function. In the end every related
iterative method would become functions each of them requiring several preal-
located matrices arguments including workspace like W . This approach breaks
encapsulation since clients of Arnoldi should provide Arnoldi’s private data and
workspace. This is against reuse too since no client can polymorphically use a
specialized Arnoldi function.

Another solution is to use the Service Pattern to design a Matrix Allocator
service and pass it as parameters of Arnoldi, but it would make the code of
Arnoldi uglier which is just what we want to avoid. The concept that solves all
the issues is genericity.



1390 Eric Noulard and Nahid Emad

Definition 2.3 (Genericity). Genericity is the ability to parameterize a class
with a type. We note the generic class A<TB> where the class A is parameterized
by the formal generic type parameter TB.

A classical example of the use of genericity is the Container<TElem> which
defines a Container whose elements are of type TElem. While writing the code
of the methods of the generic class we implicitly assume that the formal generic
parameter has some properties like having the +, and ∗ operators. If an actual
type or class AT fullfills the constraints of the formal generic parameter T we say
that AT conforms to T.

The solution to the distributed allocation problem is to parameterize the ma-
trix class with an opaque type TShape. The formal generic parameter TShape en-
capsulates the information needed to create a matrix. The generic
Matrix<TShape> classwill have twomethods: Matrix<TShape>::create(TShape
S), whose purpose is to create a matrix knowing its shape and
TShape Matrix<TShape>::shape() which returns its actual shape. To have a
complete solution to our problem we finally need to define a set of operations on
shape: ∗, +, subrange, expansion. . . corresponding to the needed operations on
matrices. Now, at compile time when we instantiate a shaped matrix we know the
exact type of its shape. This last point is important since we need to know the ex-
act shape of the matrix in order to implement Matrix<TShape>::create(TShape
S). Now if we want to create W whose shape is the product of matmul operator
shape and x0 shape, we write: W.create((SMatmul.shape())*(x0.shape())).
If we want to create V whose shape is the shape of x0 expanded along the columns
m+1 times we write: V.create((x0.shape()).expand(1,max it()+1)) Oper-
ations on shapes fix the rules for distributing the result of distributed operations
on matrices. For example the result of the product of a column-wise distributed
matrix by a row-wise distributed matrix should be a duplicated matrix. Shapes
unify guard conditions for matrix operations. When doing Y = A ·X we should
have Y.shape() == A.shape()*X.shape().

For solving the contravariance problem genericity helps too. If we suppose
DMatrix conforms to TMatrix, the instantiated class:
Arnoldi EV<Matmul Operator<DMatrix>,DMatrix> is a parallel iterative meth-
od which does not suffer from the contravariance problem. In fact the compiler is
able to decide at compile time the right method it must call. The classes Matrix
and DMatrix may even be unrelated (no inheritance relation) and this would
work in the same way, since the conformance relation is weaker.

Remark 2.2 (Other generic libraries). IML++[1] and ITL[7] both define generic
iterative methods. LAKe handles issues which are unresolved in those libraries:

1. they have not been used with distributed matrix classes.
2. the iterative methods are implemented as generic functions and not classes.

This means that polymorphically reusing an Arnoldi process was not a goal
of those libraries.

3. the functions implementing iterative methods cannot handle the allocation
of a distributed variable.



Object Oriented Design for Reusable Parallel Linear Algebra Software 1391

The generic LAKe library fullfills its requirements. The code of the iterative
methods hierarchy is strictly the same when used with parallel or sequential ma-
trices. Iterative methods are really building blocks which may hold and allocate
their own data distributed or not. We reuse most of the code of the sequential
matrix to implement the distributed one. We must note that the Service/Object
hierarchy and the Service Pattern are still usefull for implementing the dynamic
client relation. Moreover we can point out a methodology to choose between
Service Pattern and generic approach: identify the dynamic and static client
relation.

3 Numerical Experiments

We have implemented the LAKe library in C++ and used MPI through OOMPI
[8] for the parallel classes. We used block Arnoldi method in order to find the 10
eigenvalues of largest modulus. Iterations were stopped whenever the residual
associated with the ritz pair was less than 1e − 6. The first matrix (CRY2500)
is taken from the matrix market (CRYSTAL set of the NEP collection) and has
2500 rows and 12349 entries. The second matrix (RAEFSKY3) has 21200 rows
and 1488768 entries. Numerical experiments were done on the CRAY T3E of
IDRIS1.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8Speed-Up 

NPE 

CRY2500 

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8Speed-Up 

NPE 

RAEFSKY3 

Fig. 3. Speed-up

Speed-up are shown in figure 3. The solid line curve corresponds to theoretical
speed-up and the dashed curve to measured speed-up. The speed-up correspond-
1 Institut du Developpement et des Ressources en Informatique Scientifique, CNRS,

Orsay, France



1392 Eric Noulard and Nahid Emad

ing to RAEFSKY3 begins with 2 processors since the code is unable to be run on
one processor. For CRY2500 a number of processors NPE = 0 corresponds to
the sequential code and NPE ≥ 1 corresponds to the parallel one. The speed-up
are good as soon as the number of processors is not too large in comparison with
the size of the matrix. We note that the sequential and parallel code used for
CRY2500 are derived from the same generic code. This means that for a data
set that fits on a workstation we do not need to run the parallel version on one
processor but we instantiate the sequential version. A raw comparison with a
Fortran 77 code implementing the method in a non-generic way showed that the
fortran code was 2 times faster than the generic C++ one. We must note that
the comparison is not fair since the the F77 code is far from implementing every
feature implemented in the C++ version.

Conclusion

We have presented how a coupled object-oriented and generic design enables the
development of the same code for the sequential or parallel version of our linear
algebra application. This is a key to parallel software maintenance and reuse.
The basic idea is to parameterize the class which will become parallel by its
abstract data type. We think the shaped matrix mecanism may be illustrative
enough to give insight for other parallel applications. Experiments have shown
that the same code is working for both sequential and parallel version, with
promising scalability. We pointed out that both genericity and polymorphism
are useful. A good perspective is a design methodology which explains how to
choose between generic and polymorphic components in order to build reusable
and extendable software for both sequential and parallel applications.

References

[1] Jack Dongarra, Andrew Lumsdaine, Roldan Pozo, and Karin. A. Remington. Iter-
ative Methods Library, April 1996. Reference Guide.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, 1995.

[3] Frédéric Guidec. Un Cadre Conceptuel pour la Programmation par Objets des
Architectures Parallèles Distribuées: Application à l’Algèbre Linéaire. PhD thesis,
Université de Rennes 1, Rennes, France, Juin 1995. PhD thesis edited by IRISA.

[4] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
[5] Yousef Saad. Numerical Methods For Large Eigenvalue Problems. Manchester

University Press, 1991.
[6] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-

pany, New York, 1996.
[7] Jeremy G. Siek, Andrew Lumsdaine, and Lie Quan Lee. Generic programming for

high performance numerical linear algebra. In SIAM Workshop on Interoperable
OO Sci. Computing, 1998.

[8] Jeffrey M. Squyres, Brian C. McCandless, and Andrew Lumsdaine. Ob-
ject Oriented MPI (OOMPI): A C++ Class Library for MPI, 1998.
http://www.cse.nd.edu/˜lsc/research/oompi.


	The Block Arnoldi Method
	Parallelizing Arnoldi Method
	Necessary Elementary Operations

	Designing a Reusable Software
	LAKe Architecture
	A Weakness of Polymorphism: Contravariance
	Service Pattern Solution
	The Need of Genericity

	Numerical Experiments

