
Performance Evaluation and Modeling of the

Fujitsu AP3000 Message-Passing Libraries?

Juan Touriño and Ramón Doallo

Dep. of Electronics and Systems, University of A Coruña, Spain
{juan,doallo}@udc.es

Abstract. This paper evaluates, models and compares the performance
of the message-passing libraries provided by the Fujitsu AP3000 multi-
computer: MPI/AP, PVM/AP and Fujitsu APlib (versions 1.0). Our aim
is to characterize the basic communication routines using general models.
Several representative parameters and performance metrics help to com-
pare the different primitives and to detect inefficient implementations.

1 Introduction

The performance of the communication primitives of a parallel computer does
not only depend on the underlying hardware, but also on their implementation.
Users do not know the quality of the message-passing implementations and they
can find that the performance of their parallel applications makes worse in other
machine or using other message-passing library.

We have focussed on low-level tests to study basic communication primitives
on the Fujitsu AP3000 [2]. The AP3000 has UltraSparc-II processors connected
via a high-speed communication network (AP-Net) in a two-dimensional torus
topology. We have considered point-to-point communications, one-to-all (broad-
cast) and all-to-one (specifically, a reduction operation). Though more primitives
could be analyzed, these ones are the basis for the design of more complex com-
munication patterns in a parallel application.

2 Point-to-Point Communications

The Hockney’s model [1] characterizes message latency T :

T (n) =
n 1

2
+ n

Bwas
(1)

where n is the message length, Bwas is the asymptotic bandwidth, and n 1
2

is the
half-peak length (n required to obtain Bwas/2). Besides, Bwas = 1/tb and n 1

2
=

ts/tb, being ts the startup time and tb the transfer time per data unit (T (n) =
ts +tbn). The specific performance πs = 1/ts characterizes short-message perfor-
mance, while Bwas shows long-message performance. Only blocking primitives
are considered: MPI Send/Recv, pvm psend/precv and l asend/arecv (APlib).
? This work was supported by the CICYT (Contract TIC96-1125-C03) and by the EU

(1FD97-0118-C02). CESGA (Santiago de Compostela, Spain) provided the AP3000

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 183–187, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

184 Juan Touriño and Ramón Doallo

Table 1. Point-to-point communication parameters and metrics

MPI/AP PVM/AP APlib

ts (µs) 69 53 46

tb (µs) 0.0162 0.0162 0.0162

πs (Kbytes/s) 14.15 18.43 21.23

Bwas (Mbytes/s) 58.87 58.87 58.87

n 1
2

(bytes) 4260 3272 2840

4b 64b 1Kb 16Kb 256Kb
Message length n

10

100

1000

10000

100000

L
at

en
cy

 T
(n

)
(m

ic
ro

se
co

nd
s)

Point−to−Point Communication

MPI measurement
MPI estimate
PVM measurement
PVM estimate
APlib measurement
APlib estimate

4b 64b 1Kb 16Kb 256Kb
Message length n

0

20

40

60

80

B
an

dw
id

th
 B

w
(n

)
(M

by
te

s/
s)

Point−to−Point Communication

MPI
PVM
APlib

(MPI, PVM and APlib)as Bw

(APlib)
1/2n n

(MPI)
1/2

n
(PVM)

1/2

Fig. 1. Latency and bandwidth for point-to-point communications

Table 1 shows the estimated parameters for the three AP libraries. As can be
observed, Bwas is the same for the three libraries; therefore, their latencies tend
to be similar as the message length increases. Regarding short messages, there
are appreciable differences in the startup times. APlib has the lowest ts and MPI
the highest. Consequently, the best n 1

2
is achieved by APlib. The pvm send/recv

routines were also tested: we have estimated ts ≈ 50µs, but the transfer time
increases excessively, tb = 0.0263µs, which results in Bwas = 36.26 Mbytes/s.
It is due to message packing and unpacking operations. Figure 1 depicts in the
left-hand graph a comparison between the estimated and measured latencies
for the three libraries and different message sizes. The corresponding estimated
bandwidth is presented in the right-hand graph.

3 One-to-All Communications: Broadcast

We have applied the model proposed by Xu and Hwang in [3] to characterize
one-to-all communications and, more specifically, the broadcast communication:

T (n, p) = ts(p) +
n

Bwas(p)
(2)

where p is the number of processors; Bwas(p) can be also expressed as 1/tb(p)
and we can similarly define n 1

2
(p) = ts(p)/tb(p) and πs(p) = 1/ts(p).

An additional metric is the aggregated (ag.) asymptotic bandwidth Bwag
as ,

the ratio of the total number of bytes transferred in the collective operation

Performance Evaluation and Modeling 185

Table 2. Broadcast parameters and metrics (k1=106/210, k2=106/220)

MPI/AP PVM/AP APlib

ts(p) (µs) 69log2p 22p 46+25(p-2)

tb(p) (µs) 0.0162log2p 0.0110p 0.0162+0.0110(p-2)

πs(p) (Kbytes/s) k1/(69 log2p) k1/(22p) k1/(25p-4)

πag
s (p) (Kbytes/s) k1(p-1)/(69 log2p) k1(p-1)/(22p) k1(p-1)/(25p-4)

πpag
s (Kbytes/s) 43.43 40.69 36.29

Bwas(p) (Mbytes/s) k261.73/log2p k290.91/p k2/(0.0110p-0.0058)

Bwag
as(p) (Mbytes/s) k261.73(p-1)/log2p k290.91(p-1)/p k2(p-1)/(0.0110p-0.0058)

Bwpag
as (Mbytes/s) 180.63 79.47 83.13

n 1
2
(p) = nag

1
2

(p)(bytes) 4260 2000 (25p-4)/(0.0110p-0.0058)

nmag
1
2

(bytes) 4260 2000 2346

and the time required to perform the operation, as n → ∞. For a broadcast,
Bwag

as(p) = (p − 1)Bwas(p). Similarly, the ag. specific performance πag
s (p) =

(p − 1)πs(p) shows the performance of a broadcast for short messages. The ag.
half-peak performance nag

1
2

(p) can be also defined as n that achieves Bwag
as (p)/2

(nag
1
2

(p) = n 1
2
(p)). All these measures depend on p. It would be interesting to

define peak performance measures to have a global estimate of the behaviour
of collective communications. Therefore, we propose the following metrics: the
peak ag. bandwidth Bwpag

as = max2≤p≤pmax Bwag
as(p), the peak ag. specific per-

formance πpag
s = max2≤p≤pmax πag

s (p) and the minimum (ag.) half-peak length
nmag

1
2

= min2≤p≤pmax nag
1
2

(p), being pmax the maximum p available for users
(pmax = 12 in our machine).

The routines considered in the comparison are: MPI Bcast, pvm mcast and
cbroad (APlib). The fitting of the components of Eq. 2 and the additional per-
formance metrics are shown in Table 2. Note that, for p=2, in MPI and APlib
the numerical values of the model’s parameters are the same as the ones of the
point-to-point model. Latency is O(log2p) in MPI, which reveals that the broad-
cast in MPI is implemented using a binomial tree-structured approach. In PVM,
latency is O(p); it seems that pvm mcast is implemented as a sequence of sends
all originating from the root processor. The APlib broadcast is also O(p). There-
fore, MPI performance is the best, and it is better as p increases. The results
for PVM and APlib are very similar, although tb(p) is slightly better for the
APlib broadcast and the startup time is a bit lower in PVM. Regarding n 1

2
(p),

in MPI and PVM is a constant and in APlib is almost constant, because the
complexities of ts(p) and tb(p) are the same within each message-passing library.

Figure 2 shows some experimental results for the broadcast routines, by fixing
p=8 and n=64 Kb, respectively. The second graph shows that the model is very
accurate for PVM and APlib. This graph also reveals that in MPI, for n=64
Kb, the startup time of the model should be a bit higher, although the fitting
is acceptable. Figure 3 depicts πag

s (p) and Bwag
as(p) . It can be observed that

πag
s (p) for MPI is lower than for PVM and APlib because the startup in MPI is

186 Juan Touriño and Ramón Doallo

4b 64b 1Kb 16Kb 256Kb
Message length n

10

100

1000

10000

100000

L
at

en
cy

 T
(n

,p
)

(m
ic

ro
se

co
nd

s)

Broadcast (p=8)

MPI measurement
MPI estimate
PVM measurement
PVM estimate
APlib measurement
APlib estimate

2 4 6 8 10 12
Processors p

0

2000

4000

6000

8000

10000

L
at

en
cy

 T
(n

,p
)

(m
ic

ro
se

co
nd

s)

Broadcast (n=64Kb)

MPI measurement
MPI estimate
PVM measurement
PVM estimate
APlib measurement
APlib estimate

Fig. 2. Latency for broadcast operations: a) p=8, b) n=64 Kb

2 4 6 8 10 12
Processors p

0

10

20

30

40

50

A
gg

re
ga

te
d

Sp
ec

if
ic

 P
er

f.
 (

K
by

te
s/

s)

Broadcast

MPI
PVM
APlib

2 4 6 8 10 12
Processors p

0

50

100

150

200
A

gg
re

ga
te

d
B

w
as

(p
)

(M
by

te
s/

s)

Broadcast

MPI
PVM
APlib

Fig. 3. Broadcast aggregated metrics: a) πag
s (p), b) Bwag

as (p)

high for a small number of processors. But, from p=10, the O(log2p) complexity
of ts leads to a better πag

s (p). This improvement would be more pronounced for
a greater number of processors. In the second graph, Bwag

as(p) of MPI is clearly
the best due to the log complexity of the broadcast. In PVM and APlib Bwag

as (p)
is poor and it tends to be constant as p increases. Consult the corresponding
peak values of these functions (πpag

s and Bwpag
as) in Table 2.

4 All-to-One Communications: Reduction

The model of Eq. 2 hides a parameter in collective primitives that involve com-
putations (e.g., a reduction): tc, the cost per byte of the performed computation.
We propose an extension of the model, valid for all collective communications:

T (n, p) = ts(p) +
n

Bwas(p)
+ tc(p)n (3)

Clearly, for a broadcast tc(p) = 0. The metrics defined in Section 3 can be also
applied here, and we propose a new metric: the ratio transfer time-computation

Performance Evaluation and Modeling 187

time rcc(p) = tb(p)/tc(p), which provides a view of the weight of the computation
factor as opposed to the communication factor in the total latency.

We modeled the sum reduction of doubles in MPI (MPI Reduce) and PVM
(pvm reduce). The APlib reduction was not modeled because it only works on
single numbers and stores the result in all the processors involved in the reduc-
tion; therefore, it is not comparable to MPI and PVM.

We have found that the PVM reduction (and, in general, the group manage-
ment routines) are poorly implemented. The reduction routine is not robust: it
does not work for p > 6. Besides, latencies are dominated by very high startup
times: for p=2, ts ≈ 5.55ms and it seems to be O(p); for p=3 and n=64Kb, ts
represents ≈ 80% of latency.

Regarding MPI reduction, we have obtained the following results: ts(p) =
90log2p − 15, Bwas(p) = 1/(0.0171log2p + 0.0037) and tc(p) = 0.0051log2p −
0.0037. As expected, MPI reduction is O(log2p). Additional performance metrics
are: πpag

s =34.92 Kbytes/s, Bwpag
as =161.38 Mbytes/s and rcc(p)=(0.0171log2p+

0.0037)/(0.0051log2p − 0.0037). Although rcc(p) varies from 14.86 (for p=2) to
4.46 (for p=12), it tends to be a constant since p=4 (tb(p) ≈ 5tc(p)).

5 Conclusions

The models and metrics used in the previous sections help us to identify design
faults in the communication routines and, furthermore, to estimate the perfor-
mance of parallel programs. Machine vendors should provide the parameters of
these models (or, at least, complexities in the case of collective communications)
for basic communication routines.

Regarding the AP3000 message-passing libraries, we can conclude that the
PVM/AP library (specially, the group routines) is a naive implementation which
should be greatly improved. The APlib routines are not robust for long messages
(the machine crashes for 1 Mbyte messages), the broadcast implementation is
inefficient and the reduction routines only work on single numbers. Besides,
APlib is a proprietary library with a small set of primitives compared to MPI.

Currently, MPI/AP is the best choice to program the AP3000. Nevertheless,
the performance of the AP3000 hardware is not fully exploited by the MPI/AP
library. Message latencies could be reduced by re-designing the low-level com-
munication mechanisms. Hardware improvements, such as the SBus design (the
I/O bus which connects the processor and the message controller), could also
help to reach this aim.

References

[1] Hockney, R.W.: The Communication Challenge for MPP: Intel Paragon and Meiko
CS-2, Parallel Computing 20(3) (1994) 389–398

[2] Ishihata, H., Takahashi, M., Sato, H.: Hardware of AP3000 Scalar Parallel Server,
Fujitsu Sci. Tech. J. 33(1) (1997) 24–30

[3] Xu, Z., Hwang, K.: Modeling Communication Overhead: MPI and MPL Perfor-
mance on the IBM SP2, IEEE Parallel & Distributed Technology 4(1) (1996) 9–23

	Introduction
	Point-to-Point Communications
	One-to-All Communications: Broadcast
	All-to-One Communications: Reduction
	Conclusions

