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Abstract. High performance applications and the underlying hardware platforms
are becoming increasingly dynamic; runtime changes in the behavior of both
are likely to result in inappropriate mappings of tasks to parallel machines dur-
ing application execution. This fact is prompting new research on mapping and
scheduling the dataflow graphs that represent parallel applications. In contrast
to recent research which focuses on critical paths in dataflow graphs, this pa-
per presents new mapping methods that compute near-min-cut partitions of the
dataflow graph. Our methods deliver mappings that are an order of magnitude
more efficient than those of DSC, a state-of-the-art critical-path algorithm, for
sample high performance applications.

1 Introduction

Difficult steps in parallel programming include decomposing a computation into con-
currently executable components (‘tasks’), assigning them to processors (‘mapping’)
and determining an order of execution on each processor (‘scheduling”). When paral-
lel programs are run on dedicated multiprocessors with known processor speeds, net-
work topologies and bandwidths, programmers can use fixed task-to-processor map-
pings, develop good mappings by trial-and-error using performance analysis tools to
identify bottlenecks, perhaps based on the output of parallelizing compilers. The diffi-
culties with these approaches are well known. First, many problems, including ‘sparse
triangular solves’ (see Section [4.3)), are too irregular for partitioning by a human. Sec-
ond, when programs are decomposed by compilers, at a fine grain of parallelism, the
potential number of parallel tasks is too large for manual methods. Third, when using
LAN-connected clusters of workstations (see Figure[ll for the Georgia Tech IHPCL lab)
or entire computational grids (as in Globus [[13])), there are irregular network topologies
and changes in network or machine performance due to changes in load or platform
failures. Fourth, task sets may change at runtime either due to the algorithm or because
of computer-user interaction like visualization or steering [19, [I5] [8]. Finally, in load
balancing a busy processor occasionally shares tasks with a processor that has become
idle. It is useful to choose the share of the latter processor so that the communication
between both is minimized; this requires min-cut partitioning methods for dataflow
graphs (see below). In all these situations, automatically generated mappings are attrac-
tive or even required. For these and other reasons, the ultimate goal of our research is
to develop black-box mapping and scheduling packages that require little or no human
intervention.
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In Section[2], we define the formal problem that is to be solved and present examples
for its relevance. Section [3] discusses critical-path vs. min-cut mapping methods. Our
algorithmic contributions are presented in Sections3.3 and 3.4

Section[4T]introduces an abstract model of parallel hardware (suited for multipro-
cessor machines as well as for workstation clusters), which is then used for extending
2-processor mapping methods to an arbitrary number of processors. In Section[4.3] we
present two real-world sample problems; simulation results for them are shown, for our
two methods as well as DSC, a critical-path algorithm, and ‘DSC-spectral’, a variant of
DSC. For more details about our algorithms and experiments see [9} [10].

2 Formal Problem Definition

Sample Applications. Parallel applications are often modelled using dataflow graphs
(also known as ‘macro dataflow models’, ‘task graphs’, or ‘program dependence
graphs’). A dataflow graph is a directed acyclic graph (V, E) consisting of vertices
v € V representing computation steps, connected by directed edges (v, w) € E which
represent data generated by v and used by w. The vertices are weighted with the com-
putational costs t(v), whereas edges are weighted with the amounts of communication
c(v, w). We prefer cost measures like ‘FLOPS’ or ‘bytes’ rather than ‘execution time’
resp. ‘latency’ because the latter depend on where execution/communication take place
which is a priori unknown. An example is the graph shown in Figure [I. This graph
represents a two-hour iteration step in the Georgia Tech Climate Model (GTCM) which
simulates atmospheric ozone depletion. On our UltraSparc-II-cluster, the tasks in the
‘Lorenz iteration’ execute for about 2 seconds while the chemistry tasks run for about
10 seconds. One execution of the task graph represents 2 hours simulated time; problem
size ranges from 1 month (for ‘debugging’) to 6 years of simulated time. Each graph
edge corresponds to 100—400 KB of data. This application constitutes one of the exam-
ples addressed by our mapping (and remapping) algorithm. Another example exhibiting
finer grain parallelism is presented in Section 4.3 below.
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Fig. 1. Left: task graph in the Georgia Tech Climate Model; right: high-performance
hardware in the Georgia Tech IHPCL lab
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Problem Definition. ‘Mapping’ is the task of assigning each vertex v to 7 (v), one of P
available processors. ‘Scheduling’ (more precisely, ‘local scheduling’) is the subsequent
stage of determining an order of execution for the vertices on each processor (this order
can be strict or advisory). Usually, the objective is to minimize the ‘makespan’, the time
between start of the first and completion of the last task. We define

> vey load,

efficiency = 7
makespan- ) _, speed,

where load,, refers to the number of ¢-units task v takes, and speedp refers to the speed
of processor p in t-units per second. The numerator contains the total workload mea-
sured in Z-units, the denominator contains the amount of ¢-units provided by the pro-
cessors during the makespan.

Many existing mapping/scheduling algorithms are restricted to homogeneous pro-
cessors connected by a uniform network. For the cluster and grid machines used in
our work (see Figure [T)), however, we have to deal with processors of different speeds
(“‘weakly heterogeneous multiprocessors’) or even different architectures (‘strongly het-
erogeneous multiprocessors’ — some processors are well-suited for floating-point com-
putations (MIPS, UltraSPARC) while others were designed for integer tasks (Intel)).
The size of on-chip caches is important as well. Some machines (SGI Origin) utilize
high performance interconnects, whereas the workstation clusters employ commodity
networks like switched Ethernet for interprocessor communication. Finally, processor
and network speeds can vary over time due to shared use with other applications. The
methods we describe deal with weak heterogeneity, and they are suited for remapping
in case of changes in program behavior or resource availability.

The performance of parallel applications is affected by various factors, includ-
ing CPU performances, amounts of main memory and disk space, network latencies
and bandwidths. Some parallel programs are bandwidth-limited in the sense that net-
work congestion causes slowdown. Others are latency-limited: slowdown results from
point-to-point delays in frequent, fine-grain communication. This paper considers both
latency- and bandwidth-limited programs.

3 Mapping Algorithms

This section first describes a popular mapping algorithm called ‘Dominant Sequence
Clustering” (DSC). Next, we present new mapping algorithms, called ‘spectral map-
ping’ and ‘greedy mapping’. In Section[4] these algorithms are shown to be superior to
DSC in terms of mapping quality.

3.1 Critical-Path Methods

Critical-path methods require ¢(v) resp. ¢(v, w) to be computation resp. communication
time. If the sum of ¢(v) and ¢(v, w) on a path in the dataflow graph (the ‘path length”)
equals the makespan, the path is called ‘critical’. In order to decrease the makespan, the
lengths of all critical paths have to be decreased (by assigning v to a faster processor
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resp. v, w to the same processor or processors connected by a faster link). The most ad-
vanced critical-path algorithm known to us is ‘Dominant Sequence Clustering” "DSC”,
[22]). It is as efficient as older algorithms in minimizing makespan [14]]; in addition, it
is faster since it recomputes critical paths less often.

Usually, critical-path methods do not try to minimize cut size. DSC forms clusters
of tasks; the clusters are assigned to processors blockwise or cyclically. In [22]], the use
of Bokhari’s algorithm [3] for overcoming this limitation is proposed: an undirected
graph is formed, with the clusters as vertices and edges (¢, d) weighted with the amount
of communication C'(¢, d) between clusters ¢ and d:

Cle,d):== > (c(v,w) + c(w,v)).
vEC,wEd

The cut size is reduced by computing small-cut partitions of the cluster graph and as-
signing them to processors. We propose to partition the graph by spectral bisection
rather than Bokhari’s algorithm (below, this variant is referred to as ‘DSC-spectral’).

3.2 Min-Cut Methods

Min-cut methods do not proceed by shortening critical paths; they try to find a mapping
m:V — {1,..., P} of the task graph with small cut size, and loads approximately

proportional to the respective speeds of the processorsp = 1,..., P:
cutsize(r) = Z c(v,w), load, (7) := Z t(v).
(vyw)eER, (v)#r(w) 7(v)=p

Previous Work. To the best of our knowledge, there has been no previous attempt to
define explicit min-cut mapping algorithms for arbitrary dataflow graphs. However,
dataflow graphs often arise from undirected graphs like finite-element grids. There has
been progress on min-cut partitioning algorithms for undirected graphs ([17, 12, 120,
16]; for a survey see [11]). Unfortunately, these methods cannot be trivially applied to
the problem we are solving, since our complex parallel applications typically consist of
several coupled subcomponents (e.g., a finite-element elasticity code, a finite-volume
gas dynamics code, chemistry and visualisation) that cannot be scheduled easily by
partitioning a single physical grid.

In [4], an undirected doubly-weighted graph of communicating long-running pro-
cesses is partitioned in a Simulated Annealing fashion. [[5]] proposes a method based on
greedy pairwise exchange, for a problem similar to our dataflow graphs. However, this
method recomputes the makespan (or a similar objective function) after every exchange
which is very expensive.

Min-cut algorithms for directed graphs cannot easily be adapted to dataflow graphs
since the partition with smallest cut size might be the worst rather than the best mapping
(see Figure P). As evident from the example in the figure, it is important to take the
directedness of the graph into account. Toward this end, we define the earliest-start
resp. earliest-finish times’ est(v) and eft(v) by

est(v) := ﬁig& eft(w), eft(v) := est(v) + t(v)
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(note that this definition is valid because the graph is acyclic). The nodes are sorted by
est and separated into K sets V7, ..., Vxwith (almost) equal size so that

i<jveViweV, = est(v)<est(w).

Instead of requiring load proportional to speed on each processor, we require propor-
tionality in each set Vy;:

speed,, ~ load,, x(7) := Z t(v).
vEV}, m(v)=p

This means that we have load balance in K ‘time intervals’ rather than overall. Of
course, the exact start and finish times of the tasks are not known in advance; in addition,
our definition of est and eft does not involve ¢(v, w). Nevertheless, est and eft are a
practical way of estimating the relative execution order of tasks in advance. In our
experiments, we compute the longest (here, length = number of vertices) path in the
dataflow graph and set K to half its length. Figure[2] shows the improved mapping.

Partition 1 § f § f §

Set 1 Set 2 Set 3

Fig. 2. Left: a bad min-cut mapping; right: improved mapping

3.3 Spectral Mapping

We have adapted spectral bisection[20] to dataflow graphs since it delivers, along with
multilevel partitioning[[16], the best partitions for undirected graphs. Its disadvantages
are low speed and difficult implementation.

For simplicity, we assume that V' = {1, ...,|V|}. The ‘Laplacian matrix’ (compare
[7]) L = (Lyy) is defined by

—c(v,w), v#w,(v,w) € Eor (w,v) € E
Ly = Z(v,w)eE C(’U, ’LU), vV=w
0, else
It is a positive semidefinite matrix, with (1,...,1) as eigenvector for the eigenvalue

0. The second smallest eigenvalue is always positive if the graph is connected. The
corresponding eigenvector z is called ‘Fiedler vector’. It solves

Zv,wGE c(v,w)(zy — xw)2

¢(I) . ZUEE .’1712}

— min, s.t. Ju,w @y F Xy
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Note that ¢(z) is small if, for adjacent vertices v, w, the difference x, — x,, is small.
The ‘closer’ vertices are in the graph, the closer are their x-values. For dataflow graphs,
we minimize ¢(x) with respect to the constraints

Z t(v)z, = 0.
vEVy

This corresponds to finding the smallest eigenvalue and corresponding eigenvector of
the operator P L P where P is an orthogonal n x (n — K) matrix mapping R*~%
into the constraint subspace of R™. A ‘bisection’ (2-partition) is obtained by choosing
thresholds T, k = 1, ..., K, and setting, for v € V4,

1, Ty > T}

w(v) =

() {0, else

Let P; be the set of processors executing partition ¢; the T} are chosen so that
loadg () - > pep, SPeed,,

~ Q=
loadg k() + load; () > pepup, Speed,

Spectral mapping is much slower than DSC or greedy mapping (see below), but it
takes only about 1.7 seconds for a 1000 vertices/4000 edge graph (20 seconds for
10000/40000) on an SGI O2 (R10000 2.6 195 MHz). These times can be improved sig-
nificantly, as our current implementation is sequential and not very sophisticated; [1, 2]
propose multilevel parallelized variants for spectral bisection that achieve an order-of-
magnitude performance improvement and can be adapted to spectral mapping.

3.4 Greedy Mapping

A faster but lower-quality method for min-cut bisection is ‘greedy mapping’. It corre-
sponds to the greedy bisection methods developed for undirected graphs[[17,[12]]. At the
beginning, an arbitrary initial mapping 7 is chosen. The ‘gain’ of a vertex is defined as
the decrease in cutsize when this vertex is moved to the other partition (7 (v) is changed
from 0 to 1 or vice versa). The vertices are moved between partitions, in order of de-
creasing gain. In every iteration, a vertex may be moved only once. A vertex v € Vj,
may not be moved if moving it would make

[¢

larger than a threshold (for example, 0.07). An iteration finishes when no vertices with
nonnegative gain are left. In our experience, there is no improvement after 1015 itera-
tions.

B loady, k()
loadg () + load; k()

4 Evaluation

4.1 Modeling Topologies

This section proposes a simple but representative model for real-world networks. A
model consists of processors with different speed, each connected to an arbitrary num-
ber of buses. Buses themselves can be connected by switches (‘zero-speed processors’).
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In order to apply our bisection algorithms to topologies with more than 2 processors,
a hierarchy of ‘nodes’ is computed. At each step, the bus with highest bandwidth is
chosen and, together with the connected processors (atomic nodes), folded into a single
parent node. When all buses have been folded, only one node is left. The clustering is
undone in reverse order. At each step, one node is unfolded into a bus and the adjacent
nodes. The dataflow graph partition corresponding to the parent node is distributed to
the children by repeated bisection. « is chosen according to processor performances in
each bisection step. Finally, all steps have been undone, and every processor has been
assigned a partition of the graph.

As an example, consider Figure[Il Each cluster is (somewhat inaccurately) modeled
as a bus to which machines and switches are connected. The p-processor machines can
be treated as single-processor machines with p-fold speed, or (for large multiproces-
sor machines) as a separate bus with p nodes connected to it. Starting with the Gigabit
Ethernet links, each link is folded into a node. After this, the ATM links are folded.
Our bisection algorithm will try to assign coherent pieces of the dataflow graph to the
Gigabit clusters and minimize communication via the slow ATM switch. However, the
example also demonstrates the limitations of our simplistic topology treatment: the link
‘A’ interconnecting the two Gigabit switches might be folded first (before any of the
Gigabit-switch-to-processor links is folded). Since it might represent a bottleneck, fold-
ing it last (i.e. assigning coherent pieces of the dataflow graph to the processors on each
side) is more appropriate. A more sophisticated algorithm would consider the cluster
topology as an undirected graph and apply spectral bisection to it.

4.2 Local Scheduling

[21]] discusses good heuristics for computing local schedules on processors and com-
pares them for randomly generated graphs. Interestingly, taking communication delays
into account (as in the ‘RCP*’ scheme) and neglecting them (in the ‘RCP’ scheme) does
not affect schedule quality. In our experiments we use the RCP scheme (in its non-strict
form, i.e. out-of-order execution is allowed if the highest-priority task is not ready).

4.3 Sample Problems

We have chosen two sample problems that are rather complementary and reflect the
variety of parallel applications. The first, ‘sparse triangular solves’, is very fine-grain
and latency-limited: each task runs for < 1 us, each edge corresponds to 12 bytes.
The second problem, the Georgia Tech climate model[[18] which has already been in-
troduced in Section 2] is a very coarse-grain and usually bandwidth-limited problem.
The tasks execute for several seconds; the edges correspond to data in the order of 100
kilobytes. The model runs for a very long time; this is typical for many of the so-called
grand-challenge applications.

In our simulations, we use some simplifications: data is sent in packets that have
equal size on all buses. The bandwidth of a bus is determined by the number of packets
per second. Network interfaces have unlimited memory and perfect knowledge about
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Fig. 3. Lower triangular matrix and its dataflow graph. Vertices are labeled with the
index of the corresponding matrix row.

the other interfaces on the bus. When a bus becomes available, one of the waiting inter-
faces is chosen randomly with uniform probability. These simplifications are not vital.
By varying the packet size it is possible to simulate networks with different latencies.

Sparse Triangular Solves. Our first test problem are sparse triangular solves (STS):
solve for z in the linear system Az = b where A is a lower triangular matrix with few
nonzero entries. Task ¢ corresponds to solving for x;; this requires all z; with a;; # 0.
The dataflow graph is determined by the sparsity structure of A (see Figure[3]). The time
for distribution of A, b is neglected (initial data locations depend on the application).

A workstation cluster is appropriate only for very large A; otherwise a multiproces-
sor machine with good interconnect is mandatory. Results from [6] for a CM-5 imple-
mentation of STS with mapping by DSC suggest that DSC is too slow: mapping time
exceeds execution time, even if one mapping is reused many times (which is possible in
typical applications). Since spectral mapping is slower than DSC, we consider STS as
a source for real-world dataflow graphs rather than a practical application. The results
shown in Figure [] were obtained by simulation using the hardware model in Section
Bl with t(v) = 1 us, c(v,w) = 12 Byte (z; (double), i (long)) and 16 processors
connected by a 16 Byte/packet bus. The matrix is ‘becspwrl0’ from the Harwell-Boeing
collection (5300 x 5300, 8271 below-diagonal nonzeros; available in ‘netlib’); other
matrices from the ‘bespwr’ set yield similar results, as do randomly generated matrices.

Spectral mapping achieves the best results, followed by greedy mapping which of-
fers a fast alternative. DSC-spectral improves DSC performance but cannot compete
with the min-cut methods. It is worth noting that for the “bespwr05” matrix (443 x 443,
590 below-diagonal nonzeros), 16 CPUs and an ‘infinitely fast’ network (bandwidth
103Y MB/s), spectral mapping achieves 95 % efficiency while DSC achieves about 51%.
Even in this case where communication delays can be neglected, the min-cut algorithm
generates better mappings.

Atmospheric Ozone Simulation. In our second application, speedup is bandwidth-lim-
ited due to large data items. Our topology consists of two B MB/s buses with 8 equal-
speed processors at each, connected by a B MB/s link. This topology represents typical
bottleneck situations — in Figure [1] these could occur if a computation is distributed
between the nodes in the UltraSPARC cluster and the 16-node SGI Origin. Figure El
gives results for this problem (with 32 atmospheric levels). In this simulation we used a
network packet size of 256 byte; this size is representative for commodity workstation
interconnects which are well-suited for GTCM.
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Fig. 4. Simulation results for STS (left) and GTCM (right)

Obviously, small cut size is essential: spectral mapping achieves the same efficiency
as DSC for B a factor 10 smaller. Again, greedy mapping qualifies as a fast alternative
with fair quality while DSC-spectral is slightly better than DSC without reaching the
two min-cut methods.

5 Conclusions

The main contribution of our work is a paradigm for applying undirected-graph min-cut
methods to dataflow graph min-cut mapping, by means of the ‘time intervals’ defined
above. We have adapted spectral and greedy bisection to dataflow graph mapping. These
methods are applicable to a wide range of processor/network speed ratios. We have
demonstrated that, with respect to quality, min-cut mapping methods are slightly better
than critical-path methods for fast networks where small cut size does not seem to
matter, and that they are clearly superior for slow networks. Mapping speed is traded
off for these advantages.

Future work includes the acceleration of spectral mapping in order to make it prac-
tical for a wider range of applications, and additional work on greedy spectral mapping
in order to assess whether this method performs well for large dataflow graphs (greedy
algorithms ‘look’ at the graph in a ‘local’ way) — toward this end, multilevel strate-
gies as discussed in [[16] for undirected graphs are promising. We have not considered
strongly-heterogeneous clusters; for an application that consists, for example, of ‘inte-
ger’ as well as ‘floating-point tasks’ and runs on a mixed Intel and MIPS CPU cluster,
this would lead to serious performance penalties. Finally, it is not clear whether our sim-
plistic topology clustering method is appropriate for all network topologies appearing
in practice.

If processor or network performances change during execution, it is necessary to
compute a new mapping. For example, GTCM runs for several minutes to several days.
During this time, network links and computers can break down and become available
again; other users start and stop their own applications on a part of the clusters. It is
impossible to adapt to these changes manually because 24-hour operator supervision
would be necessary. The only alternative is to develop automatic mapping methods like
the ones we describe. Greedy mapping is sufficiently fast for a remapping frequency
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on the order of 1/second and is easily adapted to take initial data location into account.
Spectral mapping is too slow except for long-running applications like our atmospheric
simulation.
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