
Process Mapping Given by Processor and

Network Dynamic Load Prediction

Jean-Marie Garcia, David Gauchard, Thierry Monteil, and Olivier Brun

LAAS-CNRS, 7 avenue du Colonel Roche 31077 Toulouse, France
tél : 05 61 33 69 13, fax : 05 61 33 69 69,

jmg@laas.fr

keywords: task allocation, observation, prediction, Round-Robin, network of
workstations

1 Introduction

This article describes a process mapping algorithm for a virtual parallel host.
The algorithm is a part of a mapping and virtual machine resource watcher tool:
the Network-Analyser. This system collects information about the states of the
hosts (CPU, memory, network traffic, etc), saves some of this information, and
gives the ability to use different mapping algorithms. All of this is accessible by a
graphical interface and an API [1]. The algorithm uses both the current and the
average load of the hosts and the network, so that it is able to estimate the exe-
cution time of the tasks. The model of the processor and the network operation
is based on a “round robin” model. Next, a differential equation describes the
transient behaviour of the queues. The running time of regular parallel applica-
tions can be estimated by the integration of that equation, taking into account
the stochastic load of the hosts and the networks. This algorithm is compared
to other algorithms, by making event simulations.

2 Load Prediction Mapping Algorithm

2.1 Model of a Loaded Processor

The model of a loaded processor can be made using a “round robin” scheme
[2]. Let’s assume that Q is the time quantum, λ the poisson arrival rate, σ the
leaving probability, and µ = (1 − σ)/Q. This system can be described using
Markov chain theory. Even though this model is far simpler than systems like
UNIX, it gives a good description of the behaviour of the hosts. Assuming that
Pi(t) is the probability to have i processes in the system at time t, and X(t),
Ẋ(t) are the expectancy and its variation at time t, we get the equation (1).

Ẋ(t) = λ − µ(1 − P0(t)) (1)

If t → ∞ in equation (2.1), it can be seen that we get the stationary case.
Then we approximate (1 − P0(t)) using the expression X(t)

1+X(t) . Thus we obtain
an autonomous equation (2.2) in which Xa(t) is the approximation of X(t).

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 291–294, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



292 Jean-Marie Garcia et al.

1 − P0(t → ∞) = ρ =
X(t → ∞)

1 + X(t → ∞)
,
∂Xa(t)

∂t
= λ − µ

Xa(t)
1 + Xa(t)

(2)

For a real host, coefficients λ and µ are time-dependant. We observed our
laboratory’s hosts for several months. So that we have been able to distinguish
two different types of behaviour according to the hosts: we use the current value
to predict the near future behaviour:

– special: the current load of the host is very different from its average load
for this day of the week, or the host has a constant load (perhaps no load).

– cyclic: the current load is close to the average load for this particular week
day and time: we use an estimator that will smoothly forget the current
value and which will approach the average values of the last few weeks.

2.2 Execution on Processor Time Prediction

We wish to predict the deterministic process execution time in the stochastic
model. Let’s say that we have a process to run at date t0 that needs tc processor
units, and there are X(t0) processes in the system. We would like to find out the
exit time expectancy E(tf ). UNIX has a time shared policy, and for a long enough
process, the UNIX mechanisms (scheduler, priority, ...) have a light influence.
So that we can write the relation (3.1). It can be more general for N processes
that verify t1c ≤ t2c ≤ . . . ≤ tNc (equation (3.2)[1]) (t0f = t0).

tc =
∫ E(tf )

t0

1
1 + X(t)

dt, tjc =
j∑

i=0

∫ E(ti
f )

E(ti−1
f

)

1
(1 + X(t))(N − i + 1)

dt (3)

2.3 Network Modelisation

Network packets may have a variable size, and are serialized into a wire. This
allows us to model the network as in the above scheme. In this case, the time
given by the server (network) to the client (emitted message) to process a packet
is the time needed to transmit the packet over the wire. We noticed with the
Network-Analyser that the network behaviour is nearly the same as the cpu
behaviour. Thus we are able to use the same prediction method for the network.

2.4 Task Mapping over the Network

We use an application model in which there is a rendez-vous between all the
tasks at each calculus step (figure 1). Let’s assume that N is the number of
tasks, K the number of steps, M the number of processors, ti(k) the date when
the step k ends, tnc (k) the time used by the calculus step of the task n during the
step k, tnr (k) the time needed by the communication step of the task n during
the step k, and tns (k) the time needed to synchronize between the task n and
with the others. Mapping the task in the optimal way can be done if we know



Process Mapping Given by Processor and Network Dynamic Load Prediction 293

N

t (0)i it (1) it (k)it (k-1)
1
ct (1) 1

r
1
st (1)

synchronisation

t (1)

Task 1

Task 2

processing network

Step 1 Step k

...
Task N

c rt (k) t (k)s
N

t (k)N

Fig. 1. Application model

the optimal mapping function P̂ , where P : N −→ M, n 7−→ m is a function
which associates a task n with a host m. Let ϕ be the ensemble of the mapping
function P . At step k, we have:

tnc (k) + tnr (k) + tns (k) = ti(k + 1) − ti(k) (4)

For a given task n of the application, we look for P̂ such that the total time
of the application is a minimum:

min
P∈ϕ

K∑
k=1

E(tnc (k) + tnr (k) + tns (k)) (5)

Using the results of the equation (3), we can evaluate E(tnc (k)) and E(tnr (k)).
To find tns (k), one can use the following two relations ((6.1) and (6.2)).

ti(k) = max
n∈1...N

tnc (k) + tnr (k), tns (k) = ti(k) − (tnc (k) + tnr (k)) (6)

For speed reasons, we use an heuristic that comes from the LPT algorithm [3]
to determine an approximate value of P̂ : Tasks are mapped one-by-one. Ghost
communications with still non mapped tasks are assumed to take into account
the network even from the very beginning of the algorithm. These are mapped
on the fastest links connected to the processor which has the current task.

3 Simulations

3.1 System Description

The network on which we did our simulations consists of two clusters of four
processors each. The hosts of the first cluster are interconnected by a 10Mbits/s
link, while the others connected to both the first link, and a 1Gbits/s link. Each
application is a group of six tasks each having five calculus steps, and commu-
nications between them are all-to-all. The type of the algorithms we tested are
random mapping, cyclic mapping, minimum run queue mapping, processor load
prediction, and network and processor load prediction. We use granularity 20 for
5 times faster processors on the fast network, and granularity 2 for homogoneous
processors.



294 Jean-Marie Garcia et al.

0

500

1000

1500

2000

2500

3000

3500

4000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

en
d 

tim
e 

ex
pe

ct
an

cy

Granularity 20, heterogeneous environment - X = 1/lambda (seconds)

Random
Cyclic

Minimum Run Queue
Network & CPU load prediction

Weight minimum run queue
CPU load prediction

500

1000

1500

2000

2500

3000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

en
d 

tim
e 

ex
pe

ct
an

cy

Granularity 2, homogeneous environment - X = 1/lambda(s)

Random
Cyclic

Minimum Run Queue
Network & CPU load prediction

CPU load prediction

Fig. 2. Simulation results

Mapping policies become critical when the whole system is not well balanced,
which is frequent. Figure 2 (granularity 20) shows that the applications with large
granularity are badly mapped with the blind algorithms. Though, policies taking
into account the current state of the system are much more efficient (closed loop
policy). The proposed algorithm (and its simpler version not taking into account
the network) has a better behaviour. Generally, one can say that the minimum
run queue algorithm is a correct heuristic and very easy to implement. The
network and processor load prediction algorithm is more complex to implement
but offers a better guarantee for efficient use of the resources.

4 Conclusion

Sytems like the Network-Analyser are essential for an efficient parallelisation.
The mapping algorithms presented in this article show their superiority com-
pared to the classical algorithm we usually use - thanks to their precision over
the execution time. The main point is the use of time in the decision model,
assuming the distributed system as a stochastic system; the proposed algorithm
takes into account heterogeneous communication networks.

References

[1] T. Monteil : Etude de Nouvelles Approches pour les Communications, l’Observation
et le Placement de Tâches dans l’Environnement de Programmation Parallèle
LANDA. Thèse, LAAS-CNRS, France, novembre 1996.

[2] E.G. Coffman, P.J Denning : Operationg Systems Theory. Prentice-Hall series in
automatic computation, 1973.

[3] R.L. Graham : Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl.
Math.. Vol 17, No. 2, mars 1969.


	Introduction
	Load Prediction Mapping Algorithm
	Model of a Loaded Processor
	Execution on Processor Time Prediction
	Network Modelisation
	Task Mapping over the Network

	Simulations
	System Description

	Conclusion



