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Abstract. Recently, a number of graph partitioning applications have
emerged with additional requirements that the traditional graph parti-
tioning model alone cannot effectively handle. One such class of problems
is those in which multiple objectives, each of which can be modeled as a
sum of weights of the edges of a graph, must be simultaneously optimized.
This class of problems can be solved utilizing a multi-objective graph par-
titioning algorithm. We present a new formulation of the multi-objective
graph partitioning problem and describe an algorithm that computes
partitionings with respect to this formulation. We explain how this algo-
rithm provides the user with a fine-tuned control of the tradeoffs among
the objectives, results in predictable partitionings, and is able to han-
dle both similar and dissimilar objectives. We show that this algorithm
is better able to find a good tradeoff among the objectives than parti-
tioning with respect to a single objective only. Finally, we show that by
modifying the input preference vector, the multi-objective graph parti-
tioning algorithm is able to gracefully tradeoff decreases in one objective
for increases in the others.

1 Introduction

Graph partitioning is an important and well-understood problem. Here, the goal
is to find a partitioning of a graph into k disjoint subdomains subject to the con-
straint that each subdomain has a roughly equal number of vertices, and with
the objective to minimize the number of edges that are cut by the partitioning
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(referred to as the edge-cut). There are many applications for this problem from
a wide range of diverse domains. Some examples are the parallelization of nu-
merical simulations, computation of fill-reducing orderings of sparse matrices,
the efficient fragmentation of databases, and the partitioning of VLSI circuits.
The key characteristic of these applications is that they require the satisfaction
of a single balance constraint along with the optimization of a single objective.

Recently, a number of applications have emerged with requirements that the
traditional (i.e., single-objective) graph partitioning model cannot effectively
handle. Specifically, there is a need to produce partitionings that optimize mul-
tiple objectives simultaneously. For example, a number of preconditioners have
been developed that are focused on the subdomains assigned to each processor
and ignore any intra-subdomain interactions (eg., block diagonal preconditioners
and local ILU preconditioners). In these preconditioners, a block diagonal ma-
trix is constructed by ignoring any intra-domain interactions, a preconditioner
of each block is constructed independently, and then they are used to precon-
dition the global linear system. The use of a graph partitioning algorithm to
obtain the initial domain decomposition ensures that the number of non-zeros
that are ignored in the preconditioning matrix is relatively small. However, the
traditional partitioning problem does not allow us to control both the number as
well as the magnitude of these ignored non-zeros. Ideally, we would like to obtain
a decomposition that minimizes both the number of intra-domain interactions
(reducing the communication overhead) and the numerical magnitude of these
interactions (potentially leading to a better preconditioner).

Another example is the problem of minimizing the overall communications of
parallel multi-phase computations. Multi-phase computations consist of m dis-
tinct computational phases, each separated by an explicit synchronization step.
In general, the amount of interaction required between the elements of the mesh
is different for each phase. Therefore, it is necessary to take the communica-
tions requirements of each phase into account in order to be able to accurately
minimize the overall communications.

A natural extension to the graph partitioning problem is to assign a weight
vector, we, of size m to each edge and a scalar weight, wv, to each vertex. Now
the k-way partitioning problem becomes that of partitioning the vertices of the
graph into k disjoint subdomains such that each subdomain has a roughly equal
amount of vertex weight and at the same time each one of the m objectives is op-
timized. Karypis and Kumar refer to this formulation as the multi-objective graph
partitioning problem in [3]. Both the problems of minimizing the number and
magnitude of the non-zero elements ignored by block-diagonal preconditioners
and minimizing the overall communication of parallel multi-phase computations
can be modeled as multi-objective partitioning problems.

In this paper, we present a formulation for the multi-objective graph par-
titioning problem, as well as an algorithm for computing multi-objective parti-
tionings with respect to this formulation. We explain how this scheme is able to
be tuned by a user-supplied preference vector in order to control the tradeoffs
among the different objectives in the computed partitionings, how this scheme
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results in predictable partitionings based on these inputs, and how this scheme is
able to handle both similar and dissimilar objectives. We show that this multi-
objective graph partitioner is better able to balance the tradeoffs of different
objectives than partitioning with respect to a single objective only. We also
show that by modifying the input preference vector, the multi-objective graph
partitioning algorithm is able to gracefully tradeoff decreases in one objective
for increases in the others.

2 Challenges in Multi-objective Graph Partitioning

One of the real difficulties in performing multi-objective optimization is that
no single optimal solution exists. Instead, an optimal solution exists for each
objective in the solution space. Furthermore, finding an optimal solution for one
objective may require accepting a poor solution for the other objectives [4]. The
result is that the definition of a good solution becomes ambiguous. This being
the case, before a multi-objective graph partitioning algorithm can be developed,
it is first necessary to develop a formulation that allows the user to disambiguate
the definition of a good solution. This formulation should satisfy the following
criteria.

(a) It should allow fine-tuned control of the tradeoffs among the objectives. That
is, the user should be able to precisely control the amount that one or more
objectives may be increased in order to decrease the other objectives when
these objectives are in conflict with one another.

(b) The produced partitionings should be predictable and intuitive based on
the user’s inputs. That is, the output partitioning should correspond to the
user’s notion of how the tradeoffs should interact with each other.

(c) The formulation should be able to handle objectives that correspond to quan-
tities that are both of similar as well as of different types. Consider the exam-
ple of minimizing the overall communications of a multi-phase computation.
Here, all of the objectives represent similar quantities (i. e., communications
overhead). However, other applications exist whose objectives are quite dis-
similar in nature. The preconditioner application is an example. Here, both
the number and the magnitude of the non-zero elements off of the diagonal
are to be minimized. Minimizing the number of non-zero elements off of the
diagonal will reduce the communications required per iteration of the com-
putation, while minimizing the magnitude of these elements will improve its
convergence rate. These are quite dissimilar in nature.

Two straightforward means of disambiguating the definition of a good multi-
objective solution are (i) to prioritize the objectives, and (ii) to combine the
objectives into a single objective. We next discuss each of these in the context
of the above formulation criteria.

Priority-based Formulation. The definition of a good multi-objective solution is
ambiguous when the relationship between the objectives is unclear. One simple
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way of defining this relationship is to list the objectives in order of priority [5].
Therefore, one possible formulation of the multi-objective graph partitioning
problem is to allow the user to assign a priority ranging from one to m to each
of the m objectives. Now, the multi-objective partitioning problem becomes that
of computing a k-way partitioning such that it simultaneously optimizes all m
objectives, giving preference to the objectives with higher priorities.

This formulation is able to handle objectives of different types as the rela-
tionship between the objectives is well-described and the objectives are handled
separately. It will also result in predictable partitionings, in that the highest
priority objective will be minimized with the rest of the objectives minimized to
the amount possible without increasing higher priority objectives. However, this
formulation does not provide the user with a fine-tuned control of the tradeoffs
among the objectives. For example, consider a two-objective graph from which
three partitionings are computed. The first has an edge-cut of (1.0, 100.0), the
second has an edge-cut of (1.01, 2.0), and the third has an edge-cut of (500.0, 1.0).
Typically, the second of these would be preferred, since compared to the first
partitioning, a 1% increase in the edge-cut of the first objective will result in a
98% decrease in the edge-cut of the second objective. Also, compared to the third
partitioning, a 100% increase in the second objective will yield a 99.8% decrease
in the first objective. However, under the priority-based formulation, the user is
unable to supply a priority list that will produce the second partitioning. This is
because partitionings exists with better edge-cuts for each of the two objectives.
From this example, we see that the priority-based formulation is unable to allow
the user fine-tuned control of the tradeoffs between the objectives.

Combination-based Formulation. While prioritizing the objectives describes their
relationship well enough to disambiguate the definition of a good solution, it is
not powerful enough to allow the user fine-tuned control over the tradeoffs among
the objectives. One simple approach that has been used in other domains is to
combine the objectives into a single objective and then to use a single objective
optimization technique [1, 5]. This is done by taking the sum of the elements
of the objective vector weighted by a preference vector, p. A formulation of the
multi-objective graph partitioning problem that uses this approach is to assign
to each edge a scalar combined weight, wc, such that

wc =
m∑

i=1

we
i pi. (1)

The resulting graph can then be partitioned utilizing an existing (single-objective)
graph partitioning algorithm. For example, if we would like to scalarize the edge
weights of a three-objective problem and want to give the second objective five
times the weight of the first and third objectives, we could use a preference vec-
tor of (1, 5, 1). An edge with a weight vector of (2, 2, 1), for example, would
then be assigned a combined weight of 2+10+1=13.

Unlike the priority-based formulation, this one allows a fine-tuned control of
the tradeoffs among the objectives, since the objectives are weighted and not
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merely ordered. However, this formulation cannot handle dissimilar objectives.
This is because it requires that the objectives be combined (by means of a
weighted sum). For dissimilar objectives (such as the number and magnitude of
the ignored elements off of the diagonal), this combination can be meaningless.

One possible solution is to divide each edge weight by the average edge weight
for the corresponding objective in an attempt to normalize all of the objectives.
Normalization will help us to combine dissimilar objectives in a more meaningful
way. However, this solution fails the predictability criteria. Consider the example
two-edge-weight graph depicted in Figure 1(a). In the center of this graph is a
clique composed of edges with edge weight vectors of (10000, 1), while the rest
of the edges have vectors of (1, 1). (Note, not all of the edges have their weights
marked in the figure.) In this example, the first edge weight represents the degree
to which we would like to have the vertices incident on an edge to be in the same
subdomain. The second edge weight represents the interaction between vertices
as normal. Therefore, in partitioning this graph, we have two objectives. (i)
We would like the vertices of the clique to be in the same subdomain. (ii) We
would like to minimize the edge-cut. The intuitive meaning of this graph is that
the clique should be split up only if doing so reduces the edge-cut by tens of
thousands. Figure 1(b) gives the new edge weights after normalization by the
average edge weight of each objective. Here we see that the first edge weights of
the clique edges have been scaled down to about five, the first edge weights of
the non-clique edges have been scaled down to about zero, and the second edge
weights of all edges have remained at one. Now, consider what will happen if we
input different preference vectors and partition the graph. If the preference vector
gives each objective equal weight (i.e., a preference vector of (1, 1)), then the
clique will not be split during partitioning. This is as expected, since the clique
edges in the input graph have very high edge weights for the first objective. Also,
if we favor the first edge weight to any extent (i.e., supply a preference vector
between (2, 1) and (1000000, 1)), this trend continues. However, if we favor the
second edge weight only moderately (eg., a preference vector of (1, 6)), then
the optimal partitioning will split the clique. This is because normalizing by the
average edge weight has caused the first edge weights of the clique edges to be
scaled down considerably compared to the second edge weights. The result is
that we lose the intuitive meaning that the first edge weights had in Figure 1(a).

3 A Multi-objective Graph Partitioning Algorithm

As discussed in the previous section, existing formulations of multi-objective op-
timization problems, including that of multi-objective graph partitioning, do not
fully address the requirements of the multi-objective graph partitioning problem.
In this section, we present a novel new formulation that allows the user to control
of the tradeoffs among the different objectives, produces predictable partition-
ings, and can handle objectives of both similar as well as dissimilar type.

Our formulation is based on the intuitive notion of what constitutes a good
multi-objective solution. Quite often, a natural way of evaluating the quality of



A New Algorithm for Multi-objective Graph Partitioning 327

(10000, 1)

(1, 1)

(1, 1)(1, 1)

(1, 1) (10000, 1)

(1, 1)

(1, 1) (1, 1)

(1, 1)

(5.3,  1)

(5.3,  1)

(0.0005,  1)

(0.0005,  1)

(0.0005,  1)

(0.0005,  1) (0.0005,  1)

(0.0005,  1)

(0.0005,  1)

(0.0005,  1)

(a) (b)

Fig. 1. This is a two-edge-weight graph. The edges of the clique in the center of the
graph are weighted (10000, 1) in (a) and (5.3, 1) in (b). The other edges are weighted
(1, 1) in (a) and (.0005, 1) in (b). The edge weights in (b) are computed by normalizing
the edge weights in (a) by the average edge weights of the corresponding objective.

a multi-objective solution is to look at how close it is to the optimal solutions
for each individual objective. For example, consider a graph with two objectives,
let P1,2 be a multi-objective partitioning for this graph, and let C1 and C2 be
the edge-cuts induced by this partitioning for the first and second objectives,
respectively. Also, let P1 be the optimal partitioning of the graph with respect
to only the first objective, and let Co

1 be the corresponding edge-cut. Finally,
let P2 be the optimal partitioning of the graph with respect to only the second
objective, and let Co

2 be the corresponding edge-cut. Given these definitions, we
can easily determine whether or not P1,2 is a good multi-objective partitioning
by comparing C1 against Co

1 and C2 against Co
2 . In particular, if C1 is very close

to Co
1 and C2 is very close to Co

2 , then the multi-objective partitioning is very
good. In general, if the ratios C1/Co

1 and C2/Co
2 are both close to one, then the

solution is considered to be good.
Using this intuitive notion of the quality of a multi-objective partitioning,

we can define a scalar combined edge-cut metric, cc, to be equal to

cc =
m∑

i=1

ci

co
i

(2)

where ci is equal to the actual edge-cut of the ith objective, and co
i is equal to

the optimal edge-cut of the ith objective. We can augment this definition with
the inclusion of a preference vector, p. So Equation 2 becomes

cc =
l∑

i=1

pi
ci

co
i

. (3)

Equation 3 then becomes our single optimization objective. In essence, min-
imizing this metric attempts to compute a k-way partitioning such that the
edge-cuts with respect to each objective are not far away from the optimal. The
distance that each edge-cut is allowed to stray from the optimal is determined
by the preference vector. A preference vector of (1, 5) for example, indicates that
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we need to move at least five units closer to the optimal edge-cut of the second
objective for each one unit we move away from the optimal edge-cut of the first
objective. Conversely, we can move one unit closer to the optimal edge-cut of
the first objective if it moves us away from the optimal edge-cut of the second
objective by five or less. In this way, the preference vector can be used to traverse
the area between the optimal solutions points of each objective. This results in
predictable partitionings based on the user-suppled preference vector as well as
fined-tuned control of the tradeoffs among the objectives. Finally, since divid-
ing by the optimal edge-cuts in Equation 3 normalizes the objectives, we can
combine similar and dissimilar objectives in this way.

If we further expand the ci term of Equation 3, it becomes

=
m∑

i=1

pi

∑
jεcut w

ej

i

co
i

(4)

where the term
∑

jεcut w
ej

i represents the sum of the ith weights of the edges
cut by the partitioning. By manipulating this equation, we get the following.

=
∑
jεcut

(
m∑

i=1

piw
ej

i

co
i

)
(5)

The term
∑m

i=1
piw

ej
i

co
i

in Equation 5 gives the scalar combined weight of an edge
(defined in Equation 1) with each weight normalized by the optimal edge-cut
of the corresponding objective. Since Equations 3 and 5 are equal, we have
shown that minimizing the normalized combined weights of the edges cut by
the partitioning minimizes the combined edge-cut metric from Equation 3. That
is, the problem of computing a k-way partitioning that optimizes Equation 3
is identical to solving a single-objective partitioning problem with this proper
assignment of edge weights.

We have developed a multi-objective partitioning algorithm that is able to
compute partitionings with respect to this new formulation. In our algorithm,
we utilize the k-way graph partitioning algorithm in MeTiS [2] to compute a
partitioning for each of the m objectives separately. We record the best edge-cuts
obtained for each objective. Next, our scheme assigns to each edge a combined
weight equal to the sum of the each edge weight vector normalized by the best
edge-cuts and weighted by the preference vector. Finally, we utilize MeTiS to
compute a partitioning with respect to these new combined edge weights.

4 Experimental Results

The experiments in this section were performed using the graph, MDUAL2. It
is a dual of a 3D finite element mesh and has 988,605 vertices and 1,947,069
edges. We used this graph to construct two types of 2- and 4-objective graphs.
For the first type, we randomly select an integer between one and 100 for each
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edge weight element. For the second type, we obtained the edge weights in the
following manner. For the first objective, we computed a set of nine different
7-way partitionings utilizing the k-way graph partitioning algorithm in MeTiS
and kept a record of all of the edges that were ever cut by any one of these
partitionings. Then, we set the first edge weight element of each edge to be
one if this edge had ever been cut, and five otherwise. Next, we computed a
set of eight different 11-way partitionings utilizing the k-way graph partitioning
algorithm in MeTiS and set the second edge weight elements to one if the edge had
been cut by any one of these partitionings and 15 otherwise. For the 4-objective
graphs we then similarly computed a set of seven different 13-way partitionings
and set the third edge weight elements to either one or 45 depending on whether
the corresponding edge had been cut. Finally for the 4-objective graphs, we
computed a set of six 17-way partitionings and similarly set the fourth edge
weight elements to either one or 135.

We generated the Type 1 problems to evaluate our multi-objective graph par-
titioning algorithm on randomly generated problems. We generated the Type 2
problems to evaluate our algorithm on some particularly difficult problems. That
is, each graph should have a small number of good partitionings for each objec-
tive. However, our strategy of basing these good partitionings on 7-, 11-, 13-,
and 17-way partitionings was designed to help ensure that the good partition-
ings of each objective do not significantly overlap. Therefore, computing a single
partitioning that simultaneously minimizes each of these objectives is difficult.

Qualitative Evaluation of the Multi-objective Graph Partitioner. Figure 2 com-
pares the results obtained by the multi-objective graph partitioner with those
obtained by partitioning with respect to each of the objectives alone with the
single objective graph partitioner implement in MeTiS. Specifically, we show the
results of 2- and 4-objective 64-way partitionings of Type 1 and 2 problems. In
Figure 2(a) we give the results of partitioning the 2-objective Type 1 problem.
In (b) we give the results of partitioning the 2-objective Type 2 problem. In (c)
we give the results of partitioning the 4-objective Type 1 problem. Finally, in
(d) we give the results of partitioning the 4-objective Type 2 problem. All of
the edge-cuts are normalized by those obtained by partitioning with respect to a
single objective only. Therefore, they give an indication of how far away is each
objective from the optimal edge-cut.

Figure 2 shows that our multi-objective algorithm is able to compute par-
titionings such that a good tradeoff is found among the edge-cuts of all of the
objectives. Partitioning with respect to a single objective obtains good edge-cut
results for only a single objective. All of the other objectives are worse than
those obtained by the multi-objective algorithm.

Control of the Tradeoffs by the Preference Vector. Figure 3 demonstrates the
ability of our multi-objective graph partitioner to allow fine-tuned control of the
tradeoffs of the objectives given a user-suppled preference vector. Specifically, it
gives the results of a number of preference vectors for 4-objective 64-way parti-
tionings of Type 2 problems. Here, three of the four elements of the preference
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Fig. 2. This figure compares the normalized edge-cut results obtained by the multi-
objective graph partitioner and those obtained by partitioning with respect to each of
the objectives alone for a 2-objective Type 1 problem (a), a 2-objective Type 2 problem
(b), a 4-objective Type 1 problem (c), and a 4-objective Type 2 problem (d).

vector are set to one, while the fourth is set to a value x. This value is plotted on
the x-coordinate. The y-coordinate gives the values of the edge-cuts of each of
the four objectives obtained by our multi-objective algorithm. So, as we move in
the direction of positive infinity on the x-axis, a single objective is increasingly
favored. The preference vector used in (a) is (x, 1, 1, 1), (b) is (1, x, 1, 1), (c) is
(1, 1, x, 1), and (d) is (1, 1, 1, x). All of the edge-cuts are normalized by those
obtained by partitioning with respect to a single objective only.

Figure 3 shows that by increasing the values of one of the elements of the
preference vector, it is possible to gracefully tradeoff one objective for the others
with the multi-objective partitioner. We see that in each result, the value at x = 1
is a good tradeoff among the four objectives. As x is increased, the edge-cut of
the corresponding objective approaches that of the partitioning with respect to
that objective only. The edge-cuts of the other objectives increase gracefully.

5 Conclusion

We have described a new formulation for the multi-objective graph partition-
ing problem and an algorithm that computes multi-objective partitionings with
respect to this formulation. We have shown that this algorithm is able to mini-
mize the edge-cut of a multi-objective problem given a user-supplied preference
vector. We have shown that this algorithm provides the user with a fine-tuned
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Fig. 3. This figure gives the normalized edge-cut results for 4-objective 64-way par-
titionings of Type 2 problems. The preference vector used in (a) is (x, 1, 1, 1), (b) is
(1, x, 1, 1), (c) is (1, 1, x, 1), and (d) is (1, 1, 1, x).

control of the tradeoffs among the objectives, results in intuitively predictable
partitionings, and is able to handle both similar and dissimilar objectives. Fi-
nally, we have shown that this algorithm is better able to find a good tradeoff
between the objectives than partitioning with respect to a single objective only.
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