Scheduling with Communication Delays and
On-Line Disturbances

Aziz Moukrim!, Eric Sanlaville!, and Frédéric Guinand?

! LIMOS, Université de Clermont-II, 63177 Aubiere Cedex France
{moukrim, sanlavil}@ucfma.univ-bpclermont.fr
2 LIH, Université du Havre, BP 540 76058 Le Havre Cedex France
guinand@fst.univ-lehavre.fr

Abstract. This paper considers the problem of scheduling tasks on mul-
tiprocessors. Two tasks linked by a precedence constraint and executed
by two different processors must communicate. The resulting delay de-
pends on the tasks and on the processor network. In our model an estima-
tion of the delay is known at compile time; but disturbances due to net-
work contention, link failures,... may occur at execution time. Algorithms
computing separately the processor assignment and the sequencing on
each processor are considered. We propose a partially on-line scheduling
algorithm based on critical paths to cope with the possible disturbances.
Some theoretical results and an experimental study show the interest of
this approach compared with fully on-line scheduling.

1 Introduction

With the growing importance of Parallel Computing issues, the classical problem
of scheduling n tasks subject to precedence constraints on m processors in the
minimum amount of time attracted renewed attention. Several models including
communication delays for both shared and distributed memory multiprocessor
systems have been proposed and widely studied [1, [8]. If two tasks T; and T are
executed by two different processors, there is a delay between the end of T; and
the beginning of T due to data transfer between the two processors. The problem
is NP-complete even for unit execution and communication times (the UECT
problem), on an arbitrary number of processors or on an unlimited number (see
the pioneering work of Rayward Smith [9], or the survey of Chrétienne and
Picouleau [2]).

In many models the communication delays only depend on the source and
destination tasks, not on the communication network. The general assumption
is that this network is fully connected, and that the lengths of the links are equal
([3, [10]). This is rarely the case for a real machine: the network topology and
the contention of the communication links, may largely influence the delays, not
to speak of communication failures. Some scheduling methods take into account
the topology as in [5]. It is also possible to use more precise models (see [7} [IT]
for simultaneous scheduling and routing) but the performance analysis is then

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 3503517 1999.
© Springer-Verlag Berlin Heidelberg 1999

Scheduling with Communication Delays and On-Line Disturbances 351

very difficult. In general, building an accurate model of the network is much
complicated and entails a very intricated optimization problem.

This paper proposes the following approach: an estimation of the commu-
nication delays is known at compile time, allowing to compute a schedule. But
the actual delays are not known before the execution. Building the complete
schedule before the execution is then inadvisable. Conversely, postponing it to
the execution time proves unsatisfactory, as we are then condemned to some-
what myopic algorithms. The method presented is a trade-off between these two
approaches.

The paper is organized as follows. In section 2] the model is stated precisely,
and the different algorithmic approaches are presented. The choice of two phase
methods, processor assignment then sequencing, is justified. Section Bl presents
a new partially on-line sequencing policy adapted to on-line disturbances. Some
theoretical results for special cases are presented in section d] and an experimen-
tal comparison is conducted and interpreted in section Bl for a fixed assignment,
our approach is compared with on-line scheduling.

2 Preliminaries

Model and Definitions We consider the schedule of n tasks T1, . .., T, subject
to precedence relations denoted T; < T, on m identical processors. Preemption
(the execution of a task may be interrupted) and task duplication are not allowed.
One processor may not execute more than one task at a time but can perform
computations while receiving or sending data. The duration of task T; is p;. If
two tasks T; and Tj verify T; < T and are executed on two different processors,
there is a minimum delay between the end of T; and the beginning of T;. The
communication delay between tasks executed on the same processor is neglected.
At compile time, the communication delays are estimated as ¢;; time units. It is
expected however (see section [B]) that these estimations are well correlated with
the actual values ¢;; (communication delays at execution time). The goal is to
minimize the maximum task completion time, or makespan.

A schedule is composed of the assignment of each task to one processor and of
the sequencing (or ordering) of the tasks assigned to one processor. A scheduling
algorithm provides a complete schedule from a given task graph and a given
processor network. We shall distinguish between off-line algorithms and on-line
algorithms. An algorithm is off-line if the complete schedule is determined before
the execution begins. An algorithm is on-line if the schedule is built during the
execution; the set of rules allowing to build the final schedule is then called a
policy. In our model, the communication delays c;; are only known at execution
time, once the data transfer is completed. In order to take into account the
estimated delays a trade-off between off-line and on-line scheduling consists in a
partially on-line scheduling, that is, after some off-line processing, the schedule
is built on-line.

List-Scheduling approaches Without communication delay the so called
List Schedules (LS) are often used as they provide good average performances,

352 Aziz Moukrim, Eric Sanlaville, and Frédéric Guinand

even as the performance bounds are poor. Remember LS schedules are obtained
from a complete priority order of the tasks. In most cases the choice is based
upon Critical Paths (C'P) computation. When a processor is idle, the ready task
(all its predecessors are already executed) of top priority is executed on this
processor. A way to tackle scheduling with communication delays is to adapt
list scheduling. Then the concept of ready task must be precised. A task is ready
on processor w at time t if it can be immediately executed on that processor at
that time (all data from its predecessors have arrived to 7). This extension is
called ETF for Earliest Task First scheduling, following the notation of Hwang
et al [5].

Clustering approaches Another proposed method is the clustering of tasks
to build a pre-assignment [3, [0]. The idea is to cluster tasks between which
the communication delays would be high. Initially, each task forms a cluster.
At each step two clusters are merged, until another merging would increase
the makespan. When the number of processors m is limited, the merging must
continue until the number of clusters is less than m. The sequencing for each
processor is then obtained by applying the CP rule.

Limits of these approaches The above methods suppose the complete knowl-
edge of the communication delays. Now if unknown disturbances modify these
durations, one may question their efficiency. ETF schedules might be computed
fully on-line, at least for simple priority rules derived from the critical path.
The first drawback is the difficulty to build good priority lists. Moreover, fully
on-line policies meet additional problems: if the communication delays are not
known precisely at compile time, the ready time of a task is not known before the
communication is achieved. But if this task is not assigned yet, the information
relevant to that task should be sent to all processors, to guaranty its earliest
starting time. This is impossible in practice.

The clustering approach would better fit our needs since the assignment might
be computed off-line, and the sequencing on-line. But it suffers from other limi-
tations. The merging process will result in large makespans when m is small. It
is also poorly suited to different distances between processors.

It follows from the above discussion that the best idea is to compute the assign-
ment off-line by one method or another (anyway, finding the optimal assignment
is known to be NP-complete [T0]). Then the sequencing is computed on-line so
that the impact of communication delay disturbances is minimized. The on-line
computation should be very fast to remain negligible with regard to the pro-
cessing times and communication delays themselves. But it can be distributed,
thus avoiding fastidious information exchanges between any processor and some
“master” processor. Note that finding the optimal schedule when the assignment
is fixed is NP-hard even for 2 processors and UECT hypotheses [2].

3 An Algorithm for Scheduling with On-Line
Disturbances

New approach based on partially on-line sequencing For a fixed as-
signment, the natural way to deal with on-line disturbances on communication

Scheduling with Communication Delays and On-Line Disturbances 353

delays is to apply a fully on-line sequencing policy based on ETF. After all
communication delays between tasks executed on a same processor are zeroed,
relative priorities between tasks may be computed much more accurately. It is
expected however that this approach will result in bad choices. Suppose a com-
munication delay is a bit larger than expected, so that at time ¢ a task with
high priority, say T;, is not yet available. A fully on-line policy will not wait. It
will instead, schedule some ready task 7); that might have much smaller priority.
If T; is ready for processing at ¢ + €, for e arbitrarily small, its execution will
nonetheless be postponed until the end of 7. We propose the following general
approach (the choices for each step are detailed next).

Step 1 compute an off-line schedule based on the ¢&;’s.

Step 2 compute a partial order <, including <, by adding precedences between
tasks assigned to a same processor.

Step 3 at execution time, use some ETF policy to get a complete schedule
considering assignment of step 1 and partial order of step 2.

Detailed partially on-line algorithm The schedule of step 1 is built by
an FTF algorithm, based on Critical Path priority. We said that Critical Path
based policies seemed best suited, as shown by empirical tests with known com-
munication delays [12], and also by bound results (see [5], and [4] for a study of
the extension of the Coffman—Graham priority rule to communication delays).
These empirical tests, and ours, show that the best priority rule is the follow-
ing: for each task T; compute L*(4), the longest path to a final task, including
processing times and communication delays (between tasks to be processed on
different processors), the processing time of the final task but not the process-
ing time of T;. The priority of T; is proportional with L*(¢). The heuristic that
sequences ready tasks using the above priority is called RCP* in [12] (RCP if
the processing time of T; is included).

The partial order of step 2 is obtained as follows. Suppose two tasks T;
and T} are assigned to the same processor. If the two following conditions are
respected:

1. T; has larger priority than T} for RCP*

2. T; is sequenced before T} in the schedule of step 1,
then a precedence relation is added from 7; to 7}. This will avoid that a small
disturbance leads to execute T} before T; at execution time.

In step 3, RC'P* is again used as sequencing on-line policy to get the com-
plete schedule.

The resulting algorithm is called PRCP* for Partially on-line sequencing
with RCP*. The algorithm for which the sequencing is obtained Fully on-line
by RCP* is denoted by FFRCP*.

Example Figures [and 2lshow how our approach can outperform both fully
off-line and fully on-line sequencing computations. A set of 11 unitary tasks is
to be scheduled on two processors. All estimated communication delays are 1.
Schedule a) is obtained at compile time by RCP*. The resulting assignment
is kept for scheduling with the actual communication delays. Schedule b) sup-
poses the sequencing is also fixed, regardless of on-line disturbances (fully off-line

354 Aziz Moukrim, Eric Sanlaville, and Frédéric Guinand

o]
@-aw\

O
1.50,
@9 @
e 0.70 @
©
a) o 1 2 3 4 5 6 p) o 1
P2l 2 6 8 10 p2| 2 6
PI| 1 3 4 7 PI| 1 3

Fig. 1. RCP* schedule at compile time and associated completely off-line sched-
ule

schedule). Schedule c) is obtained by PRCP*, and schedule d) by FRC P*. After
zeroing the internal communication delays, only a4, 45, and ¢49 remain (bold
arcs). The following precedences are added by our algorithm: for processor P,
Ty=,T7, Ty<,T11, and for processor Pa, Ts<,T5, and Tg<,T1o (dashed arcs).
Consider now the following actual communication delays: co4 = 1.25, c45 = 1.50,
and cg9 = 0.70. At time 2, task Ty is not ready for processing, but 7 is. FRC' P*
executes T7 whereas PRCP*, due to the partial order <, waits for 7. At time 4
for PRC'P*, processor P is available, and Ty is ready. No additional precedence
was added between T5 and Ty as they have the same priority, hence Ty is exe-
cuted and then T5 is ready, so that P, has no idle time. For FRC' P*, exchanging
T7 and Ty results in idleness for Py, as Ty is indeed critical.

In what follows we consider the merits of the different strategies for sequencing,
once the assignment has been fixed. Hence optimality is to be understood within
that framework: minimum makespan among all sequencing policies, for a fixed
assignment. There is little hope to obtain theoretical results (optimality, bounds)
for anything but very special cases. Two of them are presented in section [4l.

4 Optimality of PRC P* for Fork and Join Graphs

Fork graphs In that case one task T is the immediate predecessor of all the
others, which are final tasks. For fixed communication delays, RCP or RC P*
find the minimum makespan (see [12]).

Adding disturbances do not much complicate. After the assignment a group
of final tasks is to be sequenced on the same processor as 17, say P;. All com-

Scheduling with Communication Delays and On-Line Disturbances 355

Fig.2. PRCP* and FRCP* schedules

munication delays are zeroed, hence the completion time on P; is the sum of
the completion times of all these tasks, and is independent of the chosen policy.
Consider now a group of final tasks executed on another processor. Each has a
ready time (or release date), r; = p1 + c14, and a processing time p;. Minimizing
the completion time on this processor is equivalent to minimizing the makespan
of a set of independent tasks subject to different release dates on one machine.
This easy problem may be solved by sequencing the tasks by increasing release
dates and processing them as soon as possible in that order. If a fully on-line
policy is used, it will do precisely that, whatever priority is given to the tasks.
On the other hand, a partially off-line algorithm may add some precedence re-
lations between these tasks. This may lead to unwanted idleness. Indeed, using
RCP may enforce a precedence between T; and T} if ¢1; < €15, and p; > p;.
During the execution you may have ci; > ci;, and the processor may remain
idle, waiting for T; to be ready. However with RC P*s, all priorities of the final
tasks are equal, hence no precedence will be added, which guaranty optimality.

Theorem 1. A PRCP* sequencing is optimal for a fixed assignment when the
task graph is a fork graph.

Join graphs RCP* is optimal for join task graph (simply reverse the arcs of a
fork graph) and fixed communication delays, whereas RC'P is optimal only if all
tasks have the same duration (see [12]). This is no longer true if the communica-
tion delays vary, as in that case there is no optimal policy: the sequencing of the
initial tasks must be done using the ¢;,,’s. During the execution the respective
order of these communication delays may change, thus implying a task exchange
to keep optimality; but of course the initial tasks are already processed.
However if some local monotonic property is verified by expected and actual com-
munication delays (for instance, when disturbances depend only on the source
and target processors), PRCP* is optimal. Indeed counsider the following prop-
erty on the disturbances (task 7T, is final):

(T; and T are assigned to the same processor and &, < éjn) = Cin < Cjn

356 Aziz Moukrim, Eric Sanlaville, and Frédéric Guinand

| | LCT | SCT | UECT |
n |m||Mean|nb|Max|Mean|nb|Max||Mean| nb |Max
50 (3| 0.93 |285.65(0.07 |4 2.2 || 1.83 | 50|9.42
50 |4 0.59 [28]5.00]| 1.71 |38]11.9%|| 2.64 |50|9.13
50 (10| 0.44 |22]|4.83|| 0.11 |12]1.25] 0.23 | 6 |4.40
100{ 3 || 1.35 |68]|5.17|| 0.04 |16|1.50 || 1.17 | 50 |8.01
100} 4 || 0.77 |48|7.10| 2.16 |66|7.79 || 2.26 |76 |5.33
100{10|| 0.24 |20|2.61 || 0.47 |34|3.04 || 0.87 |38 |4.91
150] 3 || 0.75 |54|5.47|| 0.34 |48 1.39 || 0.99 |60 | 4.87
150| 4 || 0.85 |52|3.44 || 2.45 |86|6.57 || 1.88 |90 | 4.36
150(10|| 0.18 |16 1.72| 0.25 |20| 1.69 || 0.47 |24 |5.33
200| 3 || 0.53 |66|4.32 | 0.14 [34|1.57 || 1.01 |72 |3.83
200| 4 || 0.85 |62]3.37 | 1.23 [92(5.38 || 2.13 | 84 |5.01
200|10}{| 0.39 |36|2.73 | 0.63 [48]3.90 || 0.90 | 62 |3.20
250| 3 || 1.14 |68]5.01 || 0.28 [64|1.00 || 0.46 |44 |5.19
250(4 || 0.37 |56|3.03 || 1.73 |92|4.68 || 2.15 [96"|5.13
250|101 0.69 |58|3.29 || 0.34 [46[1.29 || 0.98 | 76 | 4.23

Table 1. Results for wide task graphs, 3, 4 and 10 processors

Theorem 2. If the communication delays respect the local monotonic property,
then PRC P* sequencing is optimal for a fixed assignment

Proof. Any sequencing respecting the non increasing order of the ¢;,,’s on all pro-
cessors is optimal, as the induced release date for T}, is then minimized. PRC P*
respects this order for the ¢;;’s, hence for the c;;,’s because of the property. 0O

The trees are a natural extension of fork and join graphs. However the prob-
lem is already NP-complete in the UECT case and an arbitrary number of pro-
cessors (see [6]).

5 Experimental Results

In this section, PRCP* and F RCP* are compared. The fully off-line approach
is not considered, as it leaves no way to cope with disturbances. If the ¢;;’s are
poor approximations of the actual communication delays, the policy of choosing
any ready task for execution might prove as well as another. Hence we admitted
the following assumptions: ¢;; is obtained as ¢;; = ¢;; + m;;, where m;;, the
disturbance, is null in fifty percent of the cases. When non zero, it is positive
three times more often than negative. Finally, its size is chosen at random and
uniformly between 0 and 0.5. 500 task graphs were randomly generated, half
relatively wide with respect to the size of sets of independent tasks (wide graphs),
half strongly connected, thus having small antichains and long chains. The results
for the first case are presented. The number of vertices varies from 50 to 250.
The durations are generated three times for a given graph to obtain LCT, SCT
and UECT durations (Large and Small estimated Communications Times, and

Scheduling with Communication Delays and On-Line Disturbances 357

Unit Execution and estimated Communication Times, respectively). In the first
case p; is taken uniformly in [1,5] and &; in [5,10], in the second case it is the
opposite, in the third all durations are set to 1. For each graph, 5 duration sets of
each type are tested. The table displays the mean percentage of improvement of
PRCP* with respect to FRCP*, the number of times (in percentage) PRCP*
was better, and the maximum improvement ratio obtained by PRCP*.
PRCP* is always better in average. The mean improvements are significant,
as the assignment is the same for both algorithms. Indeed an improvement of
5% is frequent and might be worth the trouble. The results are logically more
significant in the SCT and UECT cases. In the case of strongly connected graphs,
the differences are less significant, as often there is only one ready task at a time
per processor. But when there are differences they are in favor of PRC P*.

References

[1] Bampis E., Guinand F., Trystram D., Some Models for Scheduling Parallel Pro-
grams with Communication Delays, Discrete Applied Mathematics, 51, pp. 524,
1997.

[2] CHRETIENNE Ph., Picouleau C., Scheduling with communication delays: a survey,
in Scheduling Theory and its Applications, P. Chrétienne, E.G. Coffman, J.K.
Lenstra, Z. Liu (Eds), John Wiley Ltd 1995.

[3] GErRASOULIS A., Yang T., A Comparison of Clustering Heuristics for Scheduling
DAGSs on Multiprocessors, J. of Parallel and Distributed Computing, 16, pp. 276—
291, 1992.

[4] HANEN C, Munier A, Performance of Coffman Graham schedule in the presence of
unit communication delays, Discrete Applied Mathematics, 81, pp. 93-108, 1998.

[5] HwaNG J.J., Chow Y.C., Anger F.D., Lee C.Y., Scheduling precedence graphs in
systems with interprocessor communication times, SIAM J. Comput., 18(2), pp.
244-257, 1989.

[6] LENSTRA J.K., Veldhorst, M., Veltman B., The complezity of scheduling trees with
communication delays, J. of Algorithms 20, pp. 157-173, 1996.

[7] MoukRrIM A., Quilliot A., Scheduling with communication delays and data Touting
in Message Passing Architectures, LNCS, vol. 1388, pp. 438-451, 1998.

[8] PapaDIMITRIOU C.H., Yannakakis M., Towards an Architecture-Independent Anal-
ysis of Parallel Algorithms, SIAM J. Comput., 19(2), pp. 322-328, 1990.

[9] RAYWARD-SMITH V.J., UET scheduling with interprocessor communication delays,
Discrete Applied Mathematics, 18, pp. 5571, 1986.

[10] SARKAR V., Partitioning and Scheduling Parallel Programs for Execution on Mul-
tiprocessors, The MIT Press, 1989.

[11] SiH G.C., Lee E.A., A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures, IEEE Trans. on Parallel and Dis-
tributed Systems, 4, pp. 279-301, 1993.

[12] YaNG T., Gerasoulis A., List scheduling with and without communication delay,
Parallel Computing, 19, pp 1321-1344, 1993.

	Introduction
	Preliminaries
	An Algorithm for Scheduling with On-Line Disturbances
	Optimality of $PRCP^*$ for Fork and Join Graphs
	Experimental Results

