
Localization of Data Transfer in Processor

Arrays

Dirk Fimmel and Renate Merker

Department of Electrical Engineering
Dresden University of Technology

Abstract. In this paper we present an approach to localize the data
transfer in processor arrays. Our aim is to select channels between pro-
cessors of the processor array performing the data transfers. Channels
can be varying with respect to the bandwidth and to the communication
delay and can be bidirectional. Our objective is to minimize the imple-
mentation cost of the channels while satisfying the data dependencies.
The presented approach also applies to the problem of localizing data
dependencies for a given interconnection topology. The formulation of
our method as an integer linear program allows its use for automatic
parallelization.

1 Introduction

Processor arrays (PA) are well suited to implement time-consuming algorithms
of signal processing with real-time requirements. Technological progress allows
the implementation of even complex processor arrays in silicon as well as in
FPGAs. To explore the degrees of freedom in the design of processor arrays
automatic tools are required.
Processor arrays are characterized by a significant number of processors which
communicate via interconnections in a small neighborhood. Data transfer caused
by the original algorithm has to be organized using local interconnections bet-
ween processors. This paper covers the design of a cost-minimal interconnection
network and the organization of the data transfers using this interconnections.
A solution of the problem of organizing the data transfers for a given intercon-
nection network is also presented.
The design of processor arrays is well studied (e.g. [2, 7, 8, 10, 13]) and became
more realistic by inclusion of resource constraints [3, 5, 12]. But up to now,
only some work has been done in the organization of data transfer. Fortes and
Moldovan [6] as well as Lee and Kedem [9] discuss the need of a decomposition
of global interconnections into a set of local interconnections without conside-
ration of access conflicts to channels. Chou and Kung [1] present an approach to
organize the communications in a partitioned processor array, but do not give a
solution for the decomposition problem.
In this paper, we present an approach to localize the data transfer in processor
arrays. Channels with different bandwidth and latency can be selected to im-
plement the interconnections between processors. The data transfers which are

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 401–408, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

402 Dirk Fimmel and Renate Merker

given as displacement vectors are decomposed into a set of channels. The decom-
position of displacement vectors as well as the order of using the channels is deter-
mined by an optimization problem. The objective of the optimization problem is
to minimize the cost associated with an implementation of the channels in silicon.

The paper is organized as follows. Basics of the design of processor arrays are
given in section 2. In section 3 a model of channels between processors is intro-
duced. The communication problem which describes the organization of the data
transfers is discussed in section 4. In section 5 a linear programming approach
for the solution of the communication problem is presented. An example is given
in section 6 to explain our approach followed by concluding remarks in section 7.

2 Design of Parallel Processor Arrays

In our underlying design system of processor arrays we consider the class of
regular iterative algorithms (RIA) [10]. A RIA is a set of equations Si of the
following form:

Si : yi[i] = Fi(· · · , yj [fk
ij(i)], · · ·), i ∈ I, 1 ≤ i, j ≤ m, 1 ≤ k ≤ mij , (1)

where i ∈ Zn is an index vector, fk
ij(i) = i−dk

ij are index functions, the constant
vectors dk

ij ∈ Zn are called dependence vectors, yi are indexed variables and Fi

are arbitrary operations. The equations are defined in an index space I being
a polytope I = {i | Hi ≥ h0}, H ∈ Qnh×n,h0 ∈ Qnh . We suppose that RIAs
have a single assignment form (each instance of a variable yi is defined only once
in the algorithm) and that there exists a partial order of the instances of the
equations that satisfies the data dependencies.
Next we introduce a graph representation to describe the data dependencies of
the RIA. The equations of the RIA build the m nodes Si ∈ S of the reduced
dependence graph 〈S, E〉. The directed edges (Si, Sj) ∈ E are the data depen-
dencies weighted by the dependence vectors dk

ij . The weight of an edge e ∈ E is
called d(e), the source of this edge σ(e) and the sink δ(e).
The main task of the design of processor arrays is to determine the time and
the processor when and where each instance of the equations of the RIA has to
be evaluated. In order to keep the regularity of the algorithm in the resulting
processor array only uniform affine mappings [10] are applied to the RIA.
A uniform affine allocation function assigns an evaluation processor to each in-
stance of the equations and has the following form:

πi : Zn → Zn−1 : πi(i) = Si + pi, 1 ≤ i ≤ m, (2)

where pi ∈ Zn−1 and S ∈ Zn−1×n is of full row rank and assumed to be e-
unimodular [11] leading to a dense processor array (see [4] for further details).
Since S is of full row rank, the vector u ∈ Zn which is coprime and satisfies
Su = 0 and u 6= 0 is uniquely defined (except to the sign) and called projection
vector. The importance of the projection vector is due to the fact that those
and only those index points of an index space lying on a line spanned by the
projection vector u are mapped onto the same processor.

Localization of Data Transfer in Processor Arrays 403

Using the allocation function πi(i) dependence vectors d(e) are mapped onto
displacement vectors v(e) by: v(e) = Sd(e) + pδ(e) − pσ(e).
A uniform affine scheduling function assigns an evaluation time to each instance
of the equations and has the following form:

τi : Zn → Z : τi(i) = τ T i + ti, 1 ≤ i ≤ m, (3)

where τ ∈ Zn, ti ∈ Z.
The following causality constraint ensures the satisfaction of data dependencies:

τT d(e) + tδ(e) − tσ(e) ≥ dσ(e), ∀e ∈ E , (4)

where di is the time needed to compute operation Fi.
Due to the regularity of the index space and the uniform affine scheduling func-
tion, the processor executes the operations associated with that index points
consecutively if τT u 6= 0 with a constant time distance λ = |τT u| which is
called iteration interval.

3 Channels and Decomposition of Displacement Vectors

A set W = {w1, · · · ,w|W|} of channels wi ∈ Zn−1 between processors is sup-
posed to be given. The subset W∗ ⊆ W of channels can be used bidirectional, the
subset W\W∗ of onedirectional channels is denoted W+. Each channel wi ∈ W
is weighted by implementation cost ci and by a communication time li. The com-
munication time li can depend on data dependencies, i.e. li = li(e), which allows
to consider both channels and data with different bandwidth. The value li(e) is
assumed to already contain a multiple use of a channel wi if the bandwidth of
value yσ(e) exceeds the bandwidth of that channel. In our model, the communi-
cation on a channel is restricted to one value per time even if the bandwidth of
a channel would allow some values of smaller bandwidth per time.
In order to organize the data transfer the displacement vectors v(e) have to be
decomposed into a linear combination of channels wi ∈ W :

v(e) =
|W|∑
i=1

bi(e)wi, ∀e ∈ E , (5)

where bi(e) ∈ Z and ∀wi ∈ W+.bi(e) ≥ 0.
Since the summation in (5) is commutative we allow the use of the channels in
an arbitrary order.

4 Communication Problem

The communication problem consists in minimizing the implementation cost for
the channels subject to a conflict free organization of the data transfer. Due
to the regularity of the processor array it is sufficient to consider one iteration
interval of one processor to describe the communication problem.

404 Dirk Fimmel and Renate Merker

Following the notation of the previous sections the implementation cost for the
channels are measured by C =

∑|W|
i=1 nici, where ni is the number of instances

of channel wi ∈ W leading off from one processor, and ci is the implementation
cost of channel wi.
The data transfer must be causal which includes the following points for a data
dependence e ∈ E :

– Data transfer can start at time tstart(e) = tσ(e) + dσ(e),
– Data transfer must be finished at time tend(e) = τTd(e) + tδ(e),
– When a data transfer e uses several channels successively, the use of that

channels must not be overlapping. Suppose that tji (e) and tlk(e) are the star-
ting time of the j-th and l-th communication on the channels wi and wk

respectively. Then either tji (e) ≥ tlk(e) + lk(e) or tlk(e) ≥ tji (e) + li(e) has to
be satisfied depending on which communication is starting first.

The causality of an example data transfer e ∈ E is depicted in figure 1. Either
tstart(e) ≤ t11(e) ≤ t11(e) + l1(e) ≤ t12(e) ≤ t12(e) + l2(e) ≤ tend(e) or tstart(e) ≤
t12(e) ≤ t12(e) + l2(e) ≤ t11(e) ≤ t11(e) + l1(e) ≤ tend(e) has to be satisfied.

d()e

w1

w2

t e1

1
() t e2

1
()

l e1()

l e2()

t e
start

()

t e
end

()

t e2

1
()

t e1

1
()

l e1()

l e2()

Fig. 1. Causality of data transfer

As already mentioned above it is sufficient to consider one iteration interval to
ensure a conflict free use of the channels, since the data transfer on each channel
is repeated periodically with the period λ. W.l.o.g. we consider the interval
[0, λ). To this end we decompose the starting time of the j-th communication on
channel wi used for the data transfer e ∈ E into tji (e) = pj

i (e)λ + oj
i (e), where

0 ≤ oj
i (e) < λ and pj

i (e), o
j
i (e) ∈ Z. A conflict free use of channel wi by data

transfers e1, e2 ∈ E is satisfied if:

oj
i (e1) − ok

i (e2) ≥ li(e2),
λ − oj

i (e1) + ok
i (e2) ≥ li(e1),

}
if oj

i (e1) > ok
i (e2),

ok
i (e2) − oj

i (e1) ≥ li(e1),
λ − ok

i (e2) + oj
i (e1) ≥ li(e2),

}
if oj

i (e1) ≤ ok
i (e2),

(6)

for all e1, e2 ∈ E , 1 ≤ j ≤ |bi(e1)|, 1 ≤ k ≤ |bi(e2)|.
The case oj

i (e1) ≤ ok
i (e2) is depicted in Fig. 2. We have pj

i (e1) = 0 and pk
i (e2) = 1

since tji (e1) = oj
i (e1) and tki (e2) = λ + ok

i (e2).

Localization of Data Transfer in Processor Arrays 405

t e o ei 1 i 1

j j
()= ()

>l ei 2()

l 2l 3l0

>l ei 1()

o ei 2

k
()

t ei 1

j
()+l

t ei 2

k
() t ei 2

k
()+l

t ei 1

j
()+2l

Fig. 2. Conflict free use of channels

The grey bars show the delay time that must exceed the communication time li of
channel wi. Two remarks have to be added to the conflict free use of channels:
1) The implementation of several instances of channel wi ∈ W requires the
solution of (6) only if e1 and e2 use the same instance of wi. 2) Particularly in the
case of bit-serial channels wi communication time li(e) may exceed the iteration
interval λ, i.e. li(e) ≥ λ. Then bli(e)/λc instances of wi are permanently used
by communication e ∈ E and li(e) has to be replaced by (li(e) mod λ) in (6).
Both remarks are satisfied in the integer linear program formulation presented
in the next section.

Next, we give a constraint for the solvability of the communication problem. The
minimal communication time ∆t(v(e)) needed for the data transfer e ∈ E under
assumption of unlimited instances of channels wi ∈ W is:

∆t(v(e)) = min
v=

|W|P

i=1
bi(e)wi

|W|∑
i=1

|bi(e)|li(e), bi(e) ∈ Z, ∀wi ∈ W+.bi(e) ≥ 0. (7)

Note that a fast computation of the value of ∆t(v(e)) is possible if matrix W =
(w1, · · ·w|W|) is e-unimodular which leads to an integer polyhedron {bi(e) | v =∑|W|

i=1 bi(e)wi} [11].
In order to get a solution of the communication problem the causality constraint
(4) has to be replaced by:

τTd(e) + tδ(e) − tσ(e) ≥ dσ(e) + ∆t(v(e)), ∀e ∈ E . (8)

A value needed for the program formulation in the next section is the maximal
number of channels wi = (wi1, · · · , win−1)T ∈ W that can be used for data
transfer e ∈ E . We call this value bmax

i (e). If we restrict the data transfer to
have no steps backwards in each component of vj(e), 1 ≤ j ≤ n − 1, of the
displacement vector v(e) then bmax

i (e) can be computed by:

bmax
i (e) = max{ max

sign(wij)vj(e)≥biwij ,1≤j≤n−1
bi, 0}, 1 ≤ i ≤ |W|, ∀e ∈ E . (9)

For wi ∈ W∗ it is easy to prove that bmax
i (e) = 0 either for wi or for −wi.

406 Dirk Fimmel and Renate Merker

minimize:
|W|P

i=1
nici, ni ∈ Z, #1

subject to:

v(e) =
|W|P

i=1

bmax
i (e)P

j=1
βj

i (e)wi, βj
i (e) ∈ {0, 1}, ∀e ∈ E, #2

NiP

k=1
αj

ik(e) = 1, αj
ik(e) ∈ {0, 1}, 1 ≤ i ≤ |W|, 1 ≤ j ≤ bmax

i (e),∀e ∈ E, #3

ni ≥
NiP

k=1
kαj

ik(e) − (1 − βj
i (e))Ni +

P

e∈E

bmax
iP

j=1
βj

i (e)bli(e)/λc, #4

1 ≤ j ≤ bmax
i (e), ∀e ∈ E

(li(e)modλ)6=0
, 1 ≤ i ≤ |W|,

tstart(e) ≤ pj
i (e)λ + oj

i (e), #5

tend(e) ≥ pj
i (e)λ + oj

i (e) + li(e),

pj
i (e) ∈ Z,1 ≤ j ≤ bmax

i (e), 1 ≤ i ≤ |W|,∀e ∈ E,

pj
i (e)λ + oj

i (e) − pl
k(e)λ − ol

k(e) ≥ lk(e) − (γjl
ik

(e) + (1 − βj
i (e)) + (1 − βl

k(e)))Ck(e), #6

pl
k(e)λ + ol

k(e) − pj
i (e)λ − oj

i (e) ≥ li(e) − ((1 − γjl
ik

(e)) + (1 − βj
i (e)) + (1 − βl

k(e)))Ci(e),

γjl
ik

(e) ∈ {0, 1}, 1 ≤ j ≤ bmax
1 (e), 1(+j if i = k) ≤ l ≤ bmax

k (e), 1 ≤ i ≤ k ≤ |W|,∀e ∈ E,

oj
i (e1)−ok

i (e2)≥ li(e2)−(δjk
i (e1, e2)+(2−αj

il
(e1)−αk

il(e2))+(2−βj
i (e1)−βk

i (e2)))(2λ+li(e2)), #7

λ−oj
i (e1)+ok

i (e2)≥ li(e1)−(δjk
i (e1, e2)+(2−αj

il
(e1)−αk

il(e2))+(2−βj
i (e1)−βk

i (e2)))li(e1),

ok
i (e2)−oj

i (e1)≥ li(e1)−((1−δjk
i (e1, e2))+(2−αj

il
(e1)−αk

il(e2))+(2−βj
i (e1)−βk

i (e2)))(2λ+li(e1)),

λ−ok
i (e2)+oj

i (e1)≥ li(e2)−((1−δjk
i (e1, e2))+(2−αj

il
(e1)−αk

il(e2))+(2−βj
i (e1)−βk

i (e2)))li(e2),
1 ≤ l ≤ Ni, 1 ≤ j ≤ bmax

i (e1), 1(+j if e1 =e2) ≤ k ≤ bmax
i (e2),∀e1, e2 ∈ E, 1 ≤ i ≤ |W|.

Table 1. Integer linear program of the communication problem

5 Solution of the Communication Problem

In this section we present an integer linear program formulation of the communi-
cation problem. The entire program is listed in table 1. The constraints in Table
1 are explained in the following:
#2 (Decomposition of displacement vectors): Variable bi(e) is substituted by
bi(e) =

∑bmax
i (e)

j=1 βj
i (e), where βj

i (e) determines whether channel wi ∈ W is used
for data transfer e ∈ E or not. Channel wi has to be replaced by −wi if wi ∈ W∗.
#3 (Assignment to instances of channels) : Instance

∑Ni

k=1 kαj
ik(e) of channel wi

is used for communication e ∈ E , Ni is the maximal number of instances of chan-
nel wi leading away from one processors.
#4 (Number of instances of channels): The first part ensures that instance∑Ni

k=1 kαj
ik(e) of channel wi has to be considered only if βj

i (e) = 1. The
second part includes additional instances of channel wi if li(e) ≥ λ as discussed
in the previous section.
#5, #6 (Causality of data transfer): The binary variables γjl

ik are used to de-
cide whether the j-th communication on channel wi starts before or after
the l-th communication on channel wk. Constant Ci(e) can be determined by
Ci(e) = tend(e) − tstart(e) + li(e).
#7 (Conflict free use of channels): The binary variables δjk

i (e1, e2) decide the
if part of constraint (6). As mentioned in the previous section li(e) has to be
replaced by (li(e) mod λ) if li(e) ≥ λ.

Localization of Data Transfer in Processor Arrays 407

The integer program consists of |W| + 2
∑

e∈E
∑|W|

i=1 bmax
i (e) integer and∑

e∈E
∑|W|

i=1(1 + Ni)bmax
i (e) +

∑
e∈E(

∑|W|
i=1 bmax

i (e)(
∑|W|

i=1 bmax
i (e) − 1))/2+∑|W|

i=1(
∑

e∈E bmax
i (e)(

∑
e∈E bmax

i (e) − 1))/2 binary variables. The number of
constraints is 3

∑
e∈E

∑|W|
i=1 bmax

i (e)+
∑

e∈E(
∑|W|

i=1 bmax
i (e)(

∑|W|
i=1 bmax

i (e)− 1))+
|E|(n − 1) + 2

∑|W|
i=1 γi(

∑
e∈E bmax

i (e)(
∑

e∈E bmax
i (e) − 1)).

6 Experimental Results

Because of lack of space we present only one example. We assume that we have
three data transfers and four available channels. The related data are summa-
rized in Table 2. The iteration interval is given with λ = 8.

e1 e2 e3

v(e) (1, 0)T (3, 2)T (4, 1)T

tstart(e) 2 4 7

tend(e) 18 26 28

w1 w2 w3 w4

(1, 0)T (0, 1)T (1, 1)T (2, 1)T

li(e) 4 4 4 16
ci 8 8 8 2

Table 2. Data transfers and available channels

Application of the integer program leads to the result that minimal cost for the
implementation of channels arise using two instances of channel w1 and one
instance of channels w3 and w4. The starting time of each use of a channel is
shown in Table 3 and depicted as a bar chart in Figure 3.

t11(e1) t13(e2) t14(e2) t11(e3) t21(e3) t31(e3) t13(e3)

11 4 10 7 11 15 24

Table 3. Starting time of communications

t e1 1

1
()

0 4 8 12 16 20 24 28 32 36

w3

w1

w1

w4

t e1 3

1
()

t e3 2

1
()

t e4 2

1
()

l 2l 3l 4l

t e1 3

2
() t e1 3

3
()

t e3 3

1
()

w4

Fig. 3. Bar chart of communications

The linear program has 36 integer and 148 binary variables and consists of 588
constraints if we set Ni = 3, 1 ≤ i ≤ 4. The solution takes about 28 seconds on
a SUN-SPARC station.

408 Dirk Fimmel and Renate Merker

7 Conclusion and Further Research

The presented approach is suitable to implement the data transfer in parallel
processor arrays using local communications. The objective of the approach is
the minimization of implementation cost for the channels. Only small changes
to the integer program are required to match a given interconnection topology.
To this end, (#1) in Table 1 can either be replaced by minimize:

∑|W|
i=1 ni or

left empty, whereas the constraint ni ≤ Ni, 1 ≤ i ≤ |W|, has to be added.
The iteration interval λ as well as tstart(e) and tend(e) depend on the scheduling
function τ(i). Hence, a more consequent approach consists in solving the commu-
nication problem and determining the scheduling function in one problem. This
can be done by adopting techniques presented in [5]. In principle, this allows to
determine a scheduling function, the functionality of processors and the chan-
nels between processors by solving one optimization problem. Unfortunately, the
arising integer program tends to long solution time even for small problems.
The presented method also applies to the problem of limited communication
support in partitioned processor arrays and extends the approach in [1].

References

[1] W.H. Chou and S.Y. Kung. Scheduling partitioned algorithms on processor arrays
with limited communication support. In Proc. IEEE Int. Conf. on Application
Specific Systems, Architectures and Processors’93, pages 53–64, Venice, 1993.

[2] A. Darte and Y. Robert. Constructive methods for scheduling uniform loop nests.
IEEE Trans. on Parallel and Distributed Systems, 5(8):814–822, 1994.

[3] M. Dion, T. Risset, and Y. Robert. Resource constraint scheduling of partitioned
algorithms on processor arrays. Integration, the VLSI Journal, 20:139–159, 1996.

[4] D. Fimmel and R. Merker. Determination of the processor functionality in the
design of processor arrays. In Proc. IEEE Int. Conf. on Application Specific
Systems, Architectures and Processors’97, pages 199–208, Zürich, 1997.

[5] D. Fimmel and R. Merker. Design of processor arrays for real-time applications.
In Proc. Int. Conf. Euro-Par ’98, pages 1018–1028, Southampton, 1998. Lecture
Notes in Computer Science, Springer.

[6] J.A.B. Fortes and D.I. Moldovan. Parallelism detection and transformation tech-
niques useful for vlsi algorithms. Journal of Parallel and Distributed Computing,
2:277–301, 1985.

[7] R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the ACM, 14:563–590, 1967.

[8] S.Y. Kung. VLSI Array Processors. Prentice Hall, Englewood Cliffs, 1987.
[9] P.Z. Lee and Z.M. Kedem. Mapping nested loop algorithms into multidimensional

systolic arrays. IEEE Trans. on Parallel and Distributed Systems, 1:64–76, 1990.
[10] S.K. Rao. Regular Iterative Algorithms and their Implementations on Processor

Arrays. PhD thesis, Stanford University, 1985.
[11] A. Schrijver. Theory of Integer and Linear Programming. John Wiley & Sons,

New York, 1986.
[12] L. Thiele. Resource constraint scheduling of uniform algorithms. Int. Journal on

VLSI and Signal Processing, 10:295–310, 1995.
[13] Y. Wong and J.M. Delosme. Optimal systolic implementation of n-dimensional

recurrences. In Proc. ICCD, pages 618–621, 1985.

	Introduction
	Design of Parallel Processor Arrays
	Channels and Decomposition of Displacement Vectors
	Communication Problem
	Solution of the Communication Problem
	Experimental Results
	Conclusion and Further Research

