
P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 440-444, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Post-Scheduling Optimization of Parallel Programs

Stephen Shafer
1
and Kanad Ghose

2

1
Lockheed Martin Postal Systems, 1801 State Route 17 C,

Owego, NY 13827-3998
shafer@cs.binghamton.edu

2
 Department of Computer Science, State University of New York,

Binghamton, NY 13902-6000
ghose@cs.binghamton.edu

Abstract. No current task schedulers for distributed-memory MIMD machines
produce optimal schedules in general, so it is possible for optimizations to be
performed after scheduling. Message merging, communication reordering, and
task duplication are shown to be effective post-scheduling optimizations. The
percentage decrease in execution time is dependent on the original schedule, so
improvements are not always achievable for every schedule. However,
significant decreases in execution time (up to 50%) are possible, which makes
the investment in extra processing time worthwhile.

1. Introduction

When preparing a program for execution on a distributed-memory MIMD machine,
choosing the right task scheduler can make a big difference in the final execution time
of the program. Many static schedulers are available which use varying methods such
as list scheduling, clustering, and graph theory for deriving a schedule. Except for a
few restricted cases, however, no scheduler can consistently produce an optimal
answer. Thus, post-scheduling optimizations are still possible. Assuming that tasks
are indivisible, and that the ordering of tasks on each processor does not change, there
are two possible sources for improvements in execution time: the tasks themselves,
and the inter-processor messages.

There are two different communication-related optimizations that we explore here.
First, there is the possibility that pairs of messages from one processor to another may
be combined, or merged, so that the data from both are sent as one message. This can
result in a reduction of the execution time of the program. The second
communication-related optimization deals with those tasks that have multiple
messages being sent to tasks on other processors. For those tasks, the order of the
messages may be changed so that more time-critical messages are sent first. We show
two different orderings and how they affect the final execution time. Finally, we have
implemented a task-related optimization that duplicates tasks when the messages that
they send are causing delays in the destination tasks.

 Post-Scheduling Optimization of Parallel Programs 441

2. Message Merging

2.1 The Concept of Merging

Wang and Mehrotra [WM 91] proposed a technique for merging messages that
correspond to data dependencies. Their approach reduces the number of
communications by combining a pair of messages from a source processor to the
same destination processor into a single message that satisfies the data dependencies.
In [SG 95], we showed that this method can actually increase the execution time, and
might even introduce deadlock. We also showed that message merging can reduce
execution time without introducing deadlock if the right pairs of messages are
merged. In our previous work, however, I/O channel contention was not considered
when execution times were calculated, so our results could have been more accurate.
The results in this paper include the effects of channel contention. The entire merging
process is explained in [SG 95].

2.2 Merging Results

The merging process was performed on sets of randomly created task graphs with
varying numbers of tasks, from 100 tasks up to 800 tasks. In addition, several task
graphs from actual applications were tested. The results are shown in Figure 1.

The actual applications fared the worst, with no merges being performed for any of
the graphs tested. However, merging does not always guarantee a positive result.
Given the small number of real graphs tested (five), it is possible that they just did not
have the right circumstances for a profitable merge. The random graphs did much
better. The number of graphs tested for each number of tasks was around fifty. That
is, there were about 50 graphs with 100 tasks, 50 with 200 tasks, and so on. The
results are shown as percent reduction in execution time, with maximums and
averages shown. The results of merging depend on the original schedule. We expect
that task graphs partitioned and scheduled by hand will show much better results than
these.

3. Reordering Outgoing Communications

When multiple messages are being sent by one task, it is possible that more than one
needs to be sent on the same link. When that occurs, and one of those messages is on
the critical path, it may be delayed waiting for another message before it can get sent.

2%

4%

6%
A: 100 tasks
B: 200 tasks
C: 400 tasks
D: 800 tasks
E: real graphs1.12

2.29

4.56
5.80

igure 1. Message merging results on task graphs of varying sizes.

max
avg

A B C D E

Percent reduction
in execution time

0.0

442 Stephen Shafer and Kanad Ghose

We have implemented two reordering schemes that determine whether the execution
time of a schedule can be reduced by changing the order of outgoing communications.

The first reordering consists of sending any messages on the critical path first. This
should avoid any extra communication delay caused by the critical path message
waiting for the link unnecessarily. The second reordering consists of sorting all
outgoing messages from all tasks by their scheduling level, or s-level, which is
defined as the length of the longest path from a node to any terminal node. This
optimization attempts to send messages first to those tasks that are highest up in the
task graph in the belief that the schedule length will be reduced if the higher tasks are
executed first.

The results (see Figure 2) show that a delay due to the order of outgoing
communications can occur in schedules, and can be avoided. Again, the numbers
shown are percent decreases in the execution times of the schedule. Like the results of
the merging optimization, the average decreases are small, caused by not being able to
improve all schedules. The results here, however, are better than those for merging.
The best decrease was a 19.38% reduction in execution time. Like merging, however,
the results depend to a great degree on the schedule itself. The average reduction in
execution time is rather small, but the chance of a greater reduction is still there.

4. Task Duplication

The study of task duplication has been motivated by the fact that the execution time of
a parallel program can be greatly affected by communication delays in the system.
Sometimes, these delays cause a task on the critical path to wait for a message from
another task. If such a delay could be reduced, or removed, then the execution time of
the program can be reduced. Task duplication tries to decrease these delays.

The simplest situation in which to duplicate tasks is when there is only one start node
of the task graph, and it has multiple children. Figure 3 shows an example of this
where it is assumes there are five processors, and each task and communication take
unit time. In this situation, task 1 can be duplicated on every processor, allowing tasks
2 through 6 to start execution without waiting for a message from another processor.
The final schedule length has been reduced by the duplication. A more complex
example would be where a task with multiple incoming messages and multiple
outgoing messages is causing one of its child tasks to be delayed. In this case, when
the task is duplicated, all of its incoming messages must also be sent to the copies,

5%

10%

15%

20%

4.73

11.809.87

19.38

Critical Path Comms First

6.22

igure 2. Reorder communications sent by one task.

5.80
9.299.47

17.16

Sort Comms By S–Level

5.03

A B C D E A B C D E

A: 100 tasks
B: 200 tasks
C: 400 tasks
D: 800 tasks
E: real graphs

max
avg

 Post-Scheduling Optimization of Parallel Programs 443

and each copy must only send a subset of the outgoing messages, with none of the
messages being sent twice.

4.1 Duplication During Scheduling

There are several schedulers including [CC 91], [CR 92], [SCM 95], and [AK 98] that
have used task duplication in the scheduling process. [AK 98] includes a comparison
of these and other schedulers. All of them use task duplication during scheduling,
which typically searches for an idle time slot on the destination processor in which to
put the duplicated task. This ensures that nothing besides the delayed task's start time
will be affected by the duplication. We feel that this is too restrictive. By allowing
tasks only to be placed in idle processor time, opportunities for duplication are passed
up that may have adversely affected some task's start time, but if that task is not on
the critical path then it might not matter. The possible benefit of duplication is lost.

If task duplication were to allow a duplicated task to adversely affect some task's start
time, however, there is no way to know during scheduling whether or not the
duplication has increased the final schedule length. We feel that the answer is post-
scheduling task duplication.

4.2 Duplication After Scheduling

Duplicating tasks can reduce the execution time of a program, but it can also increase
it. Copies of tasks other than start tasks require duplication of incoming messages
also. Before the final schedule is produced, the effects of these extra messages on the
schedule length can't be known. If duplication is performed after scheduling,
however, all affects of any change can be known before that change is accepted. In
addition, unnecessary duplication can be avoided since only the critical path needs to
be checked for possible duplications. The major steps that need to be performed are:

- copy the task to the new PE
- duplicate messages sent to the task so that both copies of the task receive them
- have each copy of the task send a disjoint subset of outgoing messages, depending

on the destination

The results of testing this approach are shown in Figure 4. There are significant
decreases in execution time seen for all categories of task graph tested. One of the
actual application graphs, a task graph for an atmospheric science application even
had an almost 50% reduction in execution time.

1

2 4 63 5

igure 3. Simple case of task duplication.

Task graph

1
2

3 4 5 6

1

2 3 4 5 6

1 1 1 1

Original schedule
Schedule length = 3

Modified schedule
Schedule length = 2

444 Stephen Shafer and Kanad Ghose

5. Summary

We have shown three different types of post-scheduling optimizations: message
merging, communication reordering, and task duplication. None of them promises to

be able to reduce the execution time of every schedule. In almost all cases tested, the

average reduction seen was rather low, around 1 to 2 percent. However, the chances
of achieving some reduction ranges from a low of 39.4% (comm reordering) to a high
of 82.5% (task duplication). This makes it very likely that the execution time can be
reduced to some extent. Given the maximum reductions seen for these optimizations,
the possibility of significantly reducing the execution time is worth the extra
processing time to try. We believe that these optimizations are best tried after
scheduling has already been completed. The actual critical path is known at that point
and there is no chance of making some change to the system without knowing what
effect it will have on the final execution time.

References

[AK 98] I. Ahmad, Y.K. Kwok, “On Exploiting Task Duplication in Parallel Program
Scheduling", IEEE Trans. Parallel and Distrib. Systems, vol. 9, no. 9, September 1998.

[CR 92] Chung, Y.C., Ranka, S., “Application and Performance Analysis of a Compile-Time
Optimization Approach for List Scheduling Algorithms on Distributed-Memory
Multiprocessors", Proc. Supercomputing '92, pp.512-521, November 1992.

[CC 91] Colin, J.Y., Chretienne, P., “C.P.M. Scheduling With Small Computation Delays and
Task Duplication", Operations Research, pp. 680-684, 1991.

[SG 95] S. Shafer, K. Ghose, “Static Message Combining in Task Graph schedules", Proc.
Int'l. Conf. on Parallel Processing, August 1995, Vol.-II.

[SCM 95] Shirazi, B., Chen, H., Marquis, J., “Comparative Study of Task Duplication Static
Scheduling versus Clustering and Non-Clustering Techniques", Concurrence: Practice and
Experience, vol. 7, no. 5, pp. 371-390, August 1995.

[WM 91] Wang, K.Y., Mehrotra, P., “Optimizing Data Synchronizations On Distributed
Memory Architectures, Proc. 1991 Int'l. Conf. on Parallel Processing, Vol. II, pp. 76-82.

10%

20%

30%

40%

50%
48.4

8.78.2

1.1

14.7

2.4

27.2

4.9

37.4

12.0

igure 4. Results from Post Scheduling Task Duplication

A B C D E

A: 100 tasks
B: 200 tasks
C: 400 tasks
D: 800 tasks
E: real graphs

max
avg

Percent reduction
in execution time

	Post-Scheduling Optimization of Parallel Programs
	Introduction
	Message Merging
	The Concept of Merging
	Merging Results

	Reordering Outgoing Communications
	Task Duplication
	Duplication During Scheduling
	Duplication After Scheduling

	Summary
	References

