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Abstract. In this paper, a multithreaded implementation technique for
piecewise execution of memory-intense nested data parallel programs is
presented. The execution model and some experimental results are de-
scribed.

1 Introduction

The flattening transformation introduced by Blelloch & Sabot allows us to im-
plement nested data parallelism while exploiting all the parallelism contained
in nested programs [2]. The resulting programs usually have a high degree of
excess parallelism, which can lead to increased memory requirements. E.g., in
many programs, operations known as generators produce large vectors, which
are reduced to smaller vectors (or scalars) by accumulators almost immediately
afterwards. High memory consumption is one of the most serious problems of
nested data parallel languages. Palmer, Prins, Chatterjee & Faith introduced an
implementation technique known as Piecewise Execution [4]. Here, the vector
operations work on vector pieces of constant size only. In this way, low memory
bounds for a certain class of programs can be guaranteed. One algorithm in this
class is, e.g. the calculation of the maximum force between any two particles in
N-body computations [1].

In this paper, we propose a multi-threaded implementation technique of
piecewise execution. Constant memory usage can be guaranteed for a certain
class of programs. Furthermore, the processor cache is utilized well.

2 Piecewise Execution

The Nesl program presented in Figure 1 is a typical example of a matching
generator/accumulator pair. The operation [s:e] enumerates all integers from
s to e, plus scan calculates all prefix sums, {x * x : x in b} denotes the
elementwise parallel squaring of b, and sum sums up all values of a vector in
parallel. Typically, there is a lot of excess parallelism in such expressions that
must be partly sequentialized to match the size of the parallel machine. However,
if the generator executes in one go, it produces a vector whose size is proportional
to the degree of parallelism. In many cases, then, memory consumption is so high
that the program cannot execute.
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function SumSqScan (s, e) =
let

a = [s : e];
b = plus scan (a);
c = {x ∗ x : x in b}

in
sum (c);
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Figure 1: Example program Figure 2: Speedups

In piecewise execution, each operation receives only a piece, of constant size, of
its arguments at a time. The operation consumes the piece to produce (a part of)
its result. If the piece of input is completely consumed, the next piece of input is
requested. Once a full piece of output is produced, it is passed down as an input
piece to the next vector operation. Thus, large intermediate vectors never exist
in their full length. However, some means of control are needed to keep track
of the computation. In [4], an interpreter is employed to manage control flow.
Unfortunately, interpretation involves a significant overhead.

3 Execution Model and Implementation

We propose an execution model for piecewise execution using multiple threads.
Threads in our model cannot migrate to remote processors. At the start of a
thread, arguments can be supplied as in a function call. A thread can suspend and
return control to the thread (or function) from which it was called or restarted
using the operation switch to parent. Each thread has an identifier, which is
supplied to restart thread to reactivate it from anywhere in the program.

3.1 Consumer/Producer Model

A piecewise operation consumes one input piece and generates one output piece
at a time. In general, a generator produces numerous output pieces from one
input piece, whereas an accumulator consumes many pieces of input before com-
pleting a piece of output. Elementwise vector operations produce one piece of
output from one piece of input. In the program DAG, the bottom node (realized
as p threads on p processors cooperating in SPMD style) calculates the overall
result. It requests a piece of input from the node(s) on which it depends. The
demand is propagated to the top thread, which already has its input. Whenever
a thread completes a piece of output, it suspends and control switches to the
consumer node below. If a thread runs out of input before a full piece of output
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has been built, it restarts (one of) its producer node(s). In this way, control
moves up and down in the DAG until the last node has produced the last piece
of the overall result.

Only certain parts of a flattened program should run in a piecewise fashion.
Thus, it must be possible to switch seamlessly between ordinary and piecewise
execution mode. There are two special thread classes pw in and pw out, which
provide an entry/exit protocol for piecewise program fragments. A pw in thread
consumes an ordinary vector at once, which is then supplied in pieces to the
underlying threads of the piecewise program fragment. Thus, pw in is always the
topmost producer of data. However, it does not really produce data. It copies its
argument vector(s) to the output in pieces. It never restarts any thread, because
its input is supplied at once at call time. At the other end of the piecewise
program fragment, pw out is the last consumer of data. It collects all data pieces
from above until the last piece is finished. Then, the complete result is passed
on to the remaining part of the program, which works in an ordinary manner.
An instance of pw out never calls switch to parent but uses return after the
complete result has been assembled. Often, pw in and pw out are not required,
if – like in the example – scalars are consumed or produced. They are atomic
values requiring constant space, making it impossible to supply them in pieces.

In our execution model the computation is triggered by the last thread,
and the demand for data is propagated upwards in the program DAG. This
resembles a demand-driven dataflow-like execution. However, to have normal
execution order in the whole program, the threads in the piecewise program
part are spawned in the same order as the other operations. First the producer
is called, then the consumer. When a thread is spawned, it returns a closure and
suspends. A closure consists of a thread handle and the address of a buffer for
its output. The consumer receives the closure of its producer as an argument to
be able to restart it if it needs data.

The threads are self-scheduled, i.e control switches explicitly among threads.
For every piecewise operation, there is exactly one thread per processor and the
structure of calls, suspends and restarts is the same on every processor. The
threads constituting a piecewise operation run in sync with one another and use
barriers to synchronize.

4 Experiments and Benchmarks

To test the feasibility of our approach, we transformed the example program
SumSqScan from Figure 1 manually and implemented it on the Cray T3E. Keller
& Chakravarty have proposed a new intermediate language Dkl, whose main
feature is the separation of local computations from communication of flattened
parallel programs [3]. Local computations can be optimized by a set of trans-
formations, the most important optimization being the fusion of consecutive
loops. For our experiments, we tried to combine the proposed optimizations
with piecewise execution. Thus, we implemented four combinations of features:
A plain library version, a fused version in which parallel operations are fused
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as much as possible and the piecewise variants of both. The programs are writ-
ten in C in SPMD style using the StackThreads library [5]. Communication
and synchronization among processors is realized using the native Cray shmem
communication library. We ran the four versions of the program for different pa-
rameter ranges and calculated the absolute speedups. The speedups are shown
in Figure 2. The piece size was set to the respective optimum of the piecewise
version, which corresponds to the size of the processor cache. Surprisingly, the
combination of fusion and piecewise techniques yields the fastest results. Fusion
leads to a significant improvement, but employing piecewise execution leads to
shorter runtimes in this example, too. The optimized use of the processor cache
would appear to compensate the overhead incurred by the multithreading im-
plementation. Furthermore, the improvement of fusion and piecewise execution
seem to mix well. Both techniques reduce memory requirements in an orthogo-
nal way. The pure library and fusion versions cannot execute in some situations
because of memory overflow. The input size of the piecewise versions is limited
only by the maximum integer value.

5 Conclusion and Future Work

We have presented a new implementation technique for piecewise execution
based on cost-effective multithreading. We have shown that piecewise execution
does not necessarily mean increasing runtime. On the contrary, the combination
of program fusion and piecewise execution resulted in the best overall perfor-
mance for a typical example. Piecewise execution allows us to execute a large
class of programs with large input sizes that could not normally run owing to
an insufficient amount of memory.

We intend to develop transformation rules that automatically find and trans-
form program fragments suitable for piecewise execution for use in a compiler.
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