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Abstract. For complex queries in parallel database systems, substantial amounts
of data must be redistributed between operators executed on different processing
nodes. Frequently, such intermediate results cannot be held in main memory and
must be stored on disk. To limit the ensuing performance penalty, a data alloca-
tion must be found that supports parallel I/O to the greatest possible extent.

In this paper, we propose declustering even self-contained units of temporary
data processed in a single operation (such as individual buckets of parallel hash
joins) across multiple disks. Using a suitable analytical model, we find that the
improvement of parallel I/O outweighs the penalty of increased fragmentation.

1  Introduction

In parallel database systems used for advanced applications like data warehousing,
complex queries are performed on very large data sets, often in terabyte ranges. Parallel
operators executed on different processing nodes exchange substantial amounts of in-
termediate results, and when the processors' memory capacity is exceeded, temporary
data must be stored on disk. The response time problems caused by slow disk access are
alleviated by parallel I/O, often using more disks than processors to avoid bottlenecks.

In a shared-disk architecture, intermediate results can be written out by the sender
nodes and read directly by the receivers. Such disk-based data transfer is convenient
and reduces the overhead of communication between processors. But depending on the
operators' access patterns, a smart disk allocation is required to limit disk contention.

In most algorithms, data fragments are stored on many disks, but each fragment is
kept on a single device. Thus, when a receiver processes its fragments sequentially, it
can read from just one disk at a time and parallel I/O is not fully exploited. In this article,
we propose declustering individual data fragments across multiple disks to increase the
performance of parallel database systems for complex queries on large amounts of data.
We develop an appropriate analytical model to show that the benefits of parallel I/O for
the receiving operator usually outweigh the additional disk load due to increased frag-
mentation. Our approach works for several operators and most system architectures.

Our paper is structured as follows: Sect. 2 describes the processing model of a par-
allel hash join in a shared-disk system, which serves as a case study throughout the text.
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Sect. 3 is devoted to finding the optimal degree of declustering and includes our analyt-
ical model. In Sect. 4, we outline possible extensions of our method to different opera-
tors and architectures. Related work is discussed in Sect. 5, and we conclude in Sect. 6.
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2  Parallel Hash Joins in Shared-Disk Architectures

For a clear presentation, we restrict most of this paper to a concrete case: a parallel two-
way hash equi-join in a shared-disk environment. We now describe the basic processing
model before we give some heuristics for parameter selection and disk allocation.

2.1  Processing Model

Let R and S be the inner and outer relations of a join query, declustered across r and s
disks, respectively. In the scan phase, R is read by n scan nodes which apply a selection
and partition their output into b buckets. If the scan result is very large, the buckets can-
not be held in main memory and are stored on d disks. S is processed similarly, possibly
by a different number of scan nodes but with a corresponding partitioning of buckets. 

In the join phase, m join nodes each process one bucket pair at a time, using hash
joins in which a hash table is built from an R-bucket and the matching S-bucket is
probed against it. The local results are merged at a specified processor. This model is
illustrated in Fig. 1. In the shared-disk environment we assume, the allocation of buck-
ets to processors can be chosen dynamically to balance the workload.

For large data sets, each join node processes several bucket pairs and each disk must
hold several buckets. Also, any scan node can contribute to any bucket, creating 
scan fragments. Consequently, disk contention between processors occurs. To limit
contention while supporting parallel I/O, buckets must be properly allocated to disks.
We introduce the parameter v, denoting the degree of bucket declustering. With each
bucket split across multiple disks, parallel reading is enabled. Assuming the same de-
gree of declustering for all buckets,  bucket fragments are stored on disk. 

Thus, the parameters n, m, d, b, and v must be found for a two-way equi-join query.

2.2  Selection of Basic Parameters and Disk Allocation
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Fig. 1. Processing model of a parallel hash join in a shared-disk architecture
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Our main concern is finding an optimal degree of declustering (v), which we discuss in
detail in Sect. 3. Before that, we provide a simple heuristic for the remaining parameters
and a disk allocation scheme as a basis for further calculations.
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The numbers of processors and disks—n, m, and d—should be set so as to match
their processing rates as closely as possible, starting from the degree of declustering r
of relation R. These calculations involve some information on system performance
(preferably reflecting the current load state) as well as the selectivity of the scan, which
is estimated by histograms or sampling. The number of buckets, b, should be large
enough to fit each bucket into a single node’s available memory (which may be just a
fraction of physical memory). When data skew occurs, bucket sizes will vary and b
must be selected high enough for the largest bucket to meet the memory restriction. 

Example. Let base relation R be scanned by six processors. If each node’s output rate
is sufficient to keep two disks busy, twelve disks are used to store the buckets. If, in the
join phase, one node can process the data delivered by three disks, only four join nodes
are required. Assuming a total scan result of 800 MB with 10 MB of memory available
on each of the selected processing nodes, 80 buckets are created (no skew). This exam-
ple is depicted in Fig. 2; the allocation and declustering applied are justified below. ❏

For a given selection of all five parameters, the following allocation scheme (also ex-
emplified in Fig. 2) can be shown to yield the smallest number of processors accessing
the same disks, thus minimizing disk contention. As in most studies, we assume integer
proportions between some parameters for simplicity.
1. Arrange the d disks into a matrix of v columns and  rows (one disk per cell).

scan nodes

join nodes

buckets

bucket fragments

disks

Fig. 2. Example of the processing model and the allocation scheme. Eighty buckets (not all
shown) are processed using six scan nodes and four join nodes. The buckets are declustered
across twelve disks with a degree of three. To minimize access conflicts, each disk is used by just
two scan nodes and one join node. The parameters from Sect. 2.1 are set as follows:

n 6= m 4= d 12= b 80= v 3=

σ σ σ σ σ σ

d v⁄

2. Assign  buckets to each row, declustering every bucket across v disks.
3. Assign  scan nodes to each column; make them write to the  disks there.
4. Assign  join nodes to each row; let them read from the v disks in that row.

b v d⁄⋅
n v⁄ d v⁄
m v d⁄⋅
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3  Determining the Degree of Declustering

In this section, which constitutes the core of our study, we trade off parallel I/O against
disk contention to determine the optimal degree of bucket declustering, v. We define
and analyze basic indicators of processing performance before introducing our analyti-
cal model that leads to the final solution. All of these considerations are based on the
above allocation scheme. Details omitted due to space restrictions are discussed in [5].

3.1  Performance Indicators

Since disks are normally shared by several nodes, the available degree of I/O parallel-
ism cannot be measured simply by the number of disks a processor can access at a time.
Rather, it must be interpreted as the number of disks available divided by the number
of nodes accessing them. With each scan node writing to  disks and a disk shared
by  nodes, the available degree of write parallelism is , which is inde-
pendent of v. In the join phase, each node reads from v disks to assemble its current
bucket. It may have exclusive access to these if ; otherwise, a disk is shared
by  processors. Thus, the degree of read parallelism is .

Disk contention can be defined by the number of concurrent read and write opera-
tions per disk. With k such operations running at a given time, the disk read-write head
will have to move between k different positions, and the resulting seek times constitute
the allocation-dependent share of I/O cost. In the scan phase, k is the number of bucket
fragments per disk. Thus, write contention is measured as . During the
join, a disk is accessed by only one node if  or shared by  processors
otherwise (as mentioned above). With each node reading from a single position, read
contention is .

In the example from Sect. 2.2 and Fig. 2, the performance indicators have the fol-
lowing values: , , , .

Observations. Although these coefficients are not proportional to either performance
or response times (their precise effects are analyzed in Sect. 3.2), we can make some
general observations: While both write and read contention are best avoided for low val-
ues of v, higher degrees of bucket declustering are useful to support read parallelism.
Write parallelism, however, is constant; thus, we need not regard wp any further. 

Let us examine three common-sense settings of v, viz.: no declustering ( ),
full declustering ( ), and read-optimal declustering ( ). The latter is so
named because it just allows full read parallelism without introducing read contention.
As can be inferred from Table 1, the optimal degree of declustering must be between 1
and . In this interval, there is a true trade-off between parallelism and contention.
For , however, contention is increased without further gains in parallelism. To
find the true optimum within the range of , we have devised an elaborate
analytical model which is presented in the next section.

3.2  Analytical Model
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We construct a cost function to capture the total disk response time for the I/O of the
join buckets.  comprises writing and reading in the scan and join phase,
respectively. Let p be the total number of pages (or other suitable, uniform I/O gran-

T Tw Tr+=
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ules) to be written into the buckets. If all d disks are busy all the time (neglecting skew),
then , where  is the average time for a single write operation, estimat-
ed as .

Here,  denotes the number of disk access positions used at the time of writing.
There is a probability of  that the disk head need not be moved because it is al-
ready in the right position from the previous access. This case causes a “short” disk ac-
cess ( ); otherwise, a “long” access ( ), including a track seek operation, occurs. This
is the most important distinction to make when modeling disk activity because seek
times are known to dominate disk response times [11]. Note that average values of 
and  are quite sufficient for our purposes since we are interested in the overall sum of
access times only. Defining , we can now simplify .

The number of access positions on each disk, , corresponds to the number of
bucket fragments per disk plus an adequate number of entry points for concurrent que-
ries in multi-user mode, x. The term x can be composed of arbitrary sub-terms; we are
only interested in its average total magnitude. While this model of multi-user mode may
seem simplistic, we will see later that it is quite sufficient. For now, .

Note that our formula does not include waiting times caused by write requests not
being served immediately. Rather, we assume asynchronous access so that processing
can continue while data is (queuing to be) written. We further presume that the disks are
kept busy but are not overloaded; this assumption is justified because we specifically
selected the ratio of disks and processing nodes so as to match their processing rates (cf.
Sect. 2.2). Thus, our model need only capture the actual disk access times.

For read operations in the join phase, we can assume only  disks to be used at
the same time (each of the m join nodes assembles its current bucket from v disks). Note
that  cannot exceed d because we have limited v to a maximum of  in the pre-
vious section. Now, we can define  with , similar to
the scan phase. The number of access positions, however, is lower now because we can
exclude contention within the current join: .

We assume x to have the same value as in the scan phase to represent the same de-
gree of inter-query contention. After some more transformations, we can write the com-
plete cost formula as a function of v:

Table 1. Development of performance indicators for different degrees of declustering

contention parallelism

declustering write read write read

none ( ) low none
constant

low

read-optimal ( ) medium none high

full ( ) high high high
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To find its minimum within the bounds of , we discern several cases.
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Single-User Mode. With  to represent single-user mode, T simplifies to

. (2)

The properties of this function depend on the relationship of  to  or, re-
arranging the terms, of  to . If both should happen to be equal—in other
words: if the number of buckets per join node corresponds to the ratio of disk seek time
and short access time—the function is constant and all values of v are equivalent.

If  is greater (many buckets), total I/O cost strictly decreases with v because
the performance gains from parallel reading outweigh the losses due to write conten-
tion. In this case, v should be selected as large as possible, i. e. . If  is
less than  (few buckets), the opposite applies and disk contention dominates.
Now, a small value of v is appropriate, i. e. . 

Multi-User Mode. In multi-user mode, the cost function cannot be simplified, and
lengthy calculations ensue. However, it can be shown that  is strictly decreasing if 

. (3)

This condition is true for most sensible parameters (i. e.  and ). In
other words: Unless we are “almost” in single-user mode ( , meaning that there is
just one competing operation per disk at any given time), or we process just one bucket
per join node, we should decluster the buckets with a degree of .

If no such property can be ensured, more case distinctions are required. We found
that for all cases of , the degree of declustering should be set to . For some
very small values of x, declustering should be avoided. This corresponds to “near”-
single-user mode with few buckets per join node as above. There is only a very narrow
margin of values of x for which the optimum of v is within the interval . 

Analysis. The results for both single- and multi-user mode can be interpreted as fol-
lows: For a high number of buckets, disk contention in the scan phase is already severe
because there are many fragments on each disk, causing a very low probability of
“short” write times. Thus, further increasing  through declustering has little effect on
the scan phase while the join phase is sped up considerably through parallel reading.
This is true even when inter-query contention affects both phases. This result also jus-
tifies our choosing a simple coefficient like x: It is unnecessary to use a more complex
term that will still exceed the boundary of 1 in any true multi-user system.

With few buckets, there is still a significant share of short write operations that are
destroyed by declustering, outweighing the performance gain during the join. Note that
the number of data pages, p, does not directly influence the number of seek positions
although b usually increases with p. Also, the ratio  varies with the size of the
read/write granule; the larger the granule, the more useful bucket declustering will be.

Summary. Looking for an optimal degree of bucket declustering, we found that in all
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practical cases, the read-optimal setting from Sect. 3.1 is favorable. The only notable
exception is for small numbers of buckets in single-user mode; in this case, declustering
should be avoided. Medium degrees of declustering are not useful to consider.
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4  Extensions

To account for the second relation, S, the computations of n, d, and m work as in Sect.
2.2. However, the declustering of base relations they start from, r, must now be replaced
with , , or the like, depending on whether R and S are stored on disjunct
disks. If R and S result from sub-queries, their processing rates must be used. For the
number of bucket pairs, b, the previous heuristics must be applied to the inner relation
(usually the smaller one). To find an appropriate value of v, we can also use the previous
rules but have to interpret v differently, e. g.,  (for separate scanning as in
standard hash joins) or  (for simultaneous scanning as in sort-merge joins).

Our approach is not restricted to two-way equi-joins. In principle, it is applicable to
all blocking operators that exchange large amounts of data (exceeding main memory)
in a many-to-many relationship. Possible applications include non-equi-joins, distribu-
tion sort (cf. Sect. 5), and several types of aggregation, especially when combined with
group-by clauses. Some adaptations of the allocation scheme may be required for oper-
ators with different access patterns.

Our approach assumes that every processor can access any disk. Thus, our method
can be used in shared-disk and shared-everything systems, some hybrid architectures,
or certain variants of NUMA. It can even be adapted to shared-nothing architectures by
transferring the data through the network and having the receivers write the buckets
back to their local disks as above, provided that each node owns at least  disks.
However, shared-nothing architectures are less flexible in dynamic task allocation,
complicating load balancing and/or causing a higher communication overhead [4, 9].

5  Related Work

While parallel I/O in general is naturally applied in parallel database systems, declus-
tering of single data units such as join buckets has received little attention. Of the oper-
ators we mentioned, aggregation and grouping have not been associated with this idea.

In the context of joins, most load balancing studies have focused on CPUs and main
memory [1, 4, 8, 10, 13]. While the significance of I/O has been asserted, only its over-
all reduction has actually been addressed [10]; declustering is either not performed or
not discussed. For shared-nothing architectures, bucket spreading (full declustering)
was introduced to equalize skew effects [3], but optimizing I/O was not a primary goal.

Mergesort algorithms naturally provide for parallel reading; in addition, workfiles
may be striped across disks. Full striping is indeed found useful [14] especially in multi-
user mode if the striping unit corresponds to the read granule; workload is balanced
across disks by randomization. These results, however, cannot be easily generalized due
to the particular access patterns of the mergesort operator. For distribution sort, which
is more similar to joins and aggregation, full striping of single files is used to achieve
parallel I/O [7]. Again, optimal declustering is not an aim.

Disk arrays automatically provide parallel I/O. But even though allocation strategies
have been developed for various applications [6, 12], disk arrays cannot address the par-

r s+ max r s,( )

vR vS v= =
vR vS+ v=

d m⁄
ticular allocation requirements of different algorithms. Specifically, independent join
buckets are best stored on disjunct devices to allow reading them without contention;
automatic (possibly full) striping in disk arrays usually defeats this goal [2].
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6  Conclusion

In this paper, we have investigated ways of allocating intermediate results of large da-
tabase queries across the disks of a parallel system. Based on a well-founded analytical
model for the sample case of join queries, we concluded that in most cases, it is useful
to decluster even individual join buckets across several disks to enable parallel reading
in the subsequent query stage. The benefits of parallelism usually outweigh the penalty
of disk contention. The optimal degree of declustering is such that the receiving proces-
sors can keep all disks busy without introducing intra-query contention.

Our results are applicable to several different operators and largely independent of
the underlying system architecture. To the best of our knowledge, this is the first study
that has considered bucket declustering in such a general context. In the future, we plan
to validate our results by simulation studies for various architectures and workloads.
Acknowledgment. The author would like to thank Dr. Dieter Sosna for his help in han-
dling the cost function used in Sect. 3.2.
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