
Null Messages Cancellation Through Load

Balancing in Distributed Simulations

Azzedine Boukerche and Sajal K. Das

Department of Computer Sciences, University of North Texas, Denton, TX. USA

Abstract. This paper presents the results of an emperical study of the
effects of null messages cancellation through load balancing in distributed
simulations. Our null-message-cancellation scheme is a modification of
the Chandy-Misra protocol, wherein old null messages are discarded. We
propose two load balancing strategies based upon a process migration
and study its scalability on an Intel paragon machine. The experimen-
tal results show the impact of our load balancing schemes on the null
message concellation protocol, where a significant reduction of the null-
message overhead was observed.

1 Introduction

Due to its importance, load balancing is a well studied problem in parallel and
distributed systems in general, and a significant body of literature exist. Most
of the research focused on designing effective partitioning and load balancing
algorithms with as low overhead as possible. The methods proposed range from
analytical study plus simulation to implementation plus testing. However, most
of the load balancing algorithms studied in distributed systems are not readily
suitable for distributed simulations. This is due the causality and the synchro-
nization constraints1 that exacerbate dependencies between the logical processes.

In this paper, we make use of Chandy-Misra protocol [4] which employs
null messages in order to avoid deadlocks and to increase the parallelism of the
simulation. When an event is sent on an output link a null message bearing the
same time stamp as the event message is sent on all other output links. As is well
known, it is possible to generate an inordinate number of null messages under
this scheme, nullifying any performance gain [1,2]. To increase the efficiency of
this basic scheme, we employ the following cancellation approach. In the event
that a null message is queued at an LP and a subsequent message arrives on
the same channel, we overwrite the old null message with the new message. We
associate one buffer with each input channel at an LP to store null messages,
thereby saving space and the time required to perform the queuing and de-
queuing operations associated with null messages.

1 Recall that in the conservative approach, a logical (LP) process is not allowed to
process an event unless it is certain that it will not receive an earlier event message.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 562–569, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Null Messages Cancellation Through Load Balancing 563

2 Null-Message Cancellation Through Load Balancing

We propose to implement the load balancing facility as two kinds of processes:
load balancer and process migration processes. In our implementation, both pro-
cesses belong to the same processor2. A load balancer makes decision on when
to move which process to where, while migration process carries out the decision
made by the load balancer to move processes between processors. In other words,
the load balancer plays the policy role while the migration process supplies the
mechanism in the load balancing facilities. This separation between policy and
migration provides us a flexibility of various load balancing schemes such as
preemptive and non-preemptive strategies [1]. Several approaches to both infor-
mation gathering and decision making were investigated. We propose to use a
centralized and a multi-level load balancing strategy due mainly to reduce the
message traffic over a fully distributed approach.

• Centralized Load Balancing (CL): The load balancer sends periodically
a message < Request Load > to each processor (Prk) requesting the load of
each logical process, LPi, which is assigned to Prk. When all processors have
responded, the load balancer computes the new load balance. later, we will define
the load, and show how to compute the load. Once the load balancer makes the
decision on when to move which LP to where, it sends< MigrateRequest,Which :
LP,Where To : Processor > to the migration process which in turns initiates
the migration mechanism. Note that the performance of this approach can be
degraded significantly by the fact that all request/reply messages are routed
through the LBF . Hence, this scheme may lead to a major bottleneck.

• Multi-Level Load Balancing (ML): In this approach, the goal is to
prevent the bottleneck and reduce the message traffic over a fully distributed ap-
proach. Several hierarchical strategies were investigated, in which processors are
grouped and work loads among processors are balanced hierarchically through
multiple levels. For simplification, we settle with a Two-Level scheme. In level 1,
we use a centralized approach that makes use of a (Global) Load Balancing Facil-
ity, (GLBF), and the global state consisting of process/processorsmapping table.
The load balancer (GLBF ) sends periodically a message < Request Load > to
a specific processor, called First Processor, within each cluster requesting the
average load of all processors within that cluster.

In level 2, the processors are partitioned into clusters. The processors within
each cluster are structured as a virtual ring and operate in parallel to collect the
work loads of processors. We choose to use a distributed scheme at level 2 to
improve the efficiency and the performance of our load balancing algorithm. A
virtual ring is designed to be traversed by a token, which originates at a partic-
ular processor, called First Processor, passes through intermediate processors,
and ends its traversal at a preidentified processor called Last Processor. Each
of the rings will have its own circulating token, so that information (i.e., work
loads) gathering within the rings is concurrent. As the token travels through
the processors of the ring, it accumulates such information as the load of each

2 One could as well use two processors instead.



564 Azzedine Boukerche and Sajal K. Das

processors and id of the processors that contain the highest/lowest loads, so that
when it arrives at the last processor, information have been gathered from all
processors of the ring. The token is generated at First Processor whenever the
first processor receives a Request Load message from the GLBF . It is destroyed
at the Last Processor. However, since the Last Processor possess the informa-
tion requested by the GLBF , Last Processor sends a reply message with the
updated information about the ring to GLBF . When the Last Processor (s) of
each cluster have responded, the load balancer (GLBF ) computes the new load
balance. Once the load balancer makes the decision on when to move which LP
to where, it sends < MigrateRequest,Which : LP,Where To : Processor > to
the migration process which in turns initiates the migration mechanism.

Process Migration: A process migration facility in a distributed system
dynamically relocates running processes among the component machines. Such
relocation can help cope up with dynamic fluctuations in load and service needs.
The use of process migration for optimistic distributed simulation may also be
found in [6]. We choose the following implementation for the process migration.
Let us denote by MAP (LPi) the identity of the processor handling the logical
process LPi where each processor maintains the mapping table. We denote by
SLPi and DLPi , the source and the destination processors, which respectively
indicate from where to move LPi to where. In our mechanism, when LPi mi-
grates from processor SLPi to DLPi , the process transfer occurs in three phases:

i) Establishment: Processors SLPi andDLPi , after being told by the LBF (i.e.,
the process migration) to migrate the logical process LPi, agree to the transfer.
DLPi will keep all messages that should be sent to LPi (hence to SLPi). That
is possible only if LPi has neighbors that are assigned to DLPi . If DLPi does
not keep these messages, they would have been sent to SLPi which will forward
them back to DLPi since LPi does not reside anymore in SLPi . In order to avoid
this, we decided to keep these messages and then forward them to LPi which
resides now in Processor DLPi . When the migration of LPi from SLPi to DLP i

is terminated, DLPi will forward these messages to LPi.
ii)Transfer:SLPi sends a message of typemigrate, i.e.,<MigrateLP ,Which :

LPi,Where To : DLPi > to DLPi . This message will include all information re-
garding LPi, i.e., data structure pertaining to the migrant process including its
local simulation time (LST), and the event messages waiting in its input queues.
Note that the transfer is made only when a process finishes processing its event
message (and not while it is processing the event).

iii) Notification: SLPi must inform its neighboring processors about LPi-
migration. Upon receipt of such message, each processor will update its mapping
table, MAP. In our implementation, SLPi will notify it’s neighbors only after the
migration procedure is finished. This will avoid any confusion, such as having a
node being notified about the transfer before actually performing the migration.

Once SLPi has sent the message of type migrate, any messages received
later by SLPi and scheduled for LPi will be forwarded to DLPi . In order to
decrease the communication overhead, we store the messages sent to LPi and
check periodically if SLPi receives messages for LPi, which will be forwarded to



Null Messages Cancellation Through Load Balancing 565

DLPi . Our experiments show that this simple mechanism decreases significantly
the network traffic and the communication overhead.

Load Calculation: The computational load in our distributed simula-
tion model consists of executing the null and the real messages. We choose to
measure the current load at each processor and then balance the load at run
time so that all available processors will be assigned the same load.

Let Rk
avg and Nk

avg the average CPU-queue lengths for real messages and null
messages at each processor Prk. In order to distribute the null messages and the
real messages among all all the processors, let us define the (normalized) load at
each processor Prk as a function, F , of Rk

avg and Nk
avg. It is defined as follows :

Loadk = F(Rk
avg , N

k
avg) = αRk

avg/Ravg +(1−α)Nk
avg/Navg; where α and (1−α)

are respectively the relative weights of the corresponding parameters.
The value of α was determined empirically. In our experiments, α = 0.25

yielded good results. An intuitive explanation lies in the nature of the Chandy-
Misra protocol and the cancellation scheme described at the beginning of this
section. Since the Chandy-Misra protocol generates an inordinate number of null
messages, the success and the efficiency of our scheme depends on the number
of null messages present during the simulation. The more the null messages,
the more likely that the scheme will overwrite the old null messages, thereby
reducing the null messages that would have been generated.

The load is well balanced if Loadk is equal to 1, i.e., α+ (1− α). If the load
balancing algorithm requires that each processor strives to adjust its load to be
exactly equal to the average, processor thrashing may result. The migration of a
process to an underloaded processor may increase its load to the point of making
it overloaded, necessitating the migration of that LP to yet another processor.
We avoid this by defining a tolerance factor, δ, within which the load of all the
processors should fall. The value of δ is to be determined empirically. (In our
experiments, δ = 0.2 yielded good results.) Thus, if we suppose that the max-
imum deviation δ from an equal distribution is allowed in the simulation, then
1 − δ ≤ Loadk ≤ 1 + δ, where k = 1, ...,K, and K is the number of proces-
sors. Consequently, the processor is overloaded if Loadk > 1 + δ. The tolerance
factor determines the responsiveness as well as the communication cost of the
load balancing algorithm. However, a wider tolerance allows more variation in
load among the processors. Choosing the appropriate tolerance allows the load
balancing algorithm to adapt in the distributed simulation environment. Our
approach is then to balance the workload among the processors while minimiz-
ing the inter-processor communication. One way to decrease the communication
overhead is to combine logical processes together. So we choose the following
method: The load balancer selects a (heavily overloaded) process LPs from the
heavily overloaded processor, such that LPs has at least r neighbor processes
{LP1, LP2, ..., LPr}, and has at least one process LPi, where i = 1...r, assigned
to a different processor than the one containing LPs. Here r is can be determined
either empirically or from the network topology under consideration Then, the
migration process sends this selected process to the lightly underloaded neigh-
boring processor.



566 Azzedine Boukerche and Sajal K. Das

3 Simulation Experiments

The experiments were conducted on an Intel Paragon at CalTech. The Paragon
is a distributed memory multicomputer, consisting of 72 nodes, arranged in a
two-dimensional mesh. In this paper, we consider a distributed communication
network, and a traffic flow network. The communication and the traffic flow
networks are realistic simulation models that mimic many real world problems.

Fig. 1. Distributed Communication
Network

L L

LL Cars   Traffic

Cars   Traffic L L

LL Cars   Traffic

Cars   Traffic

Fig. 2. Traffic Flow Network

An initial set of experiments was performed in which the routing probability
was characterized by a uniform distribution, In this case, the obtained results
indicated that our dynamic load balancing did not provide any significant im-
provement over a static partitioning algorithm. These results led us to ask if
these results are applicable to asymmetric workload as well. Consequently, we
selected an unbalanced network with the following routing probability: at the
beginning of each simulation run, each process randomly selects one link as a
favorite link which will receive twice as many messages as the other(s).

The Distributed communication model [6] used in our experiments, models a
national network consisting of four regions which are connected through four cen-
trally located delays. Final message destination is not known when a message is
created. Hence, no routing algorithm is simulated. Instead one third of messages
arrival are forwarded to neighboring nodes. A uniform distribution is employed
to select which neighbor receives a message. Messages may flow between any two
nodes, possibly through several paths. Nodes receive messages at varying rates
that are dependent on traffic patterns. There are numerous deadlocks in this
model, and hence it provides a stress test for any conservative synchronization
mechanism. Various simulation conditions were created by mimicking the daily
load fluctuation found in large communication network operating across time
zones. Therefore, in the pipeline region, for instance, we arranged the sub-region
into stages, and processes in the same stages perform the same normal distribu-
tion with a standard deviation 20%. The time required to execute a message is
significantly greater than the time to raise an event message in the next stage



Null Messages Cancellation Through Load Balancing 567

(message passing delay). We use a pipeline sub-model with 26 processes, a toroid
sub-model with 25 processes, a fully connected sub-model with 5 processes, and
a circular sub-model with 20 processes. We choose a shifted exponential ser-
vice time distribution for the 3 sub-regions (circular, toroid, and fully connected
sub-regions).

In our next model, we represent the traffic network as a square mesh com-
posed of streets running in the horizontal and vertical directions with traffic lights
at the intersections of the street. This model is partitioned into sub-systems;
which we refer to as grids. Each grid is assigned to a logical process (LP). The
cars enter the simulation and travel within and between the grids using message
passing. To reflect traffic flow network model, we define a light interval to be
a triple < r, g, y >; where r is the number of clock ticks that the light is red,
g is the number of clock ticks that the light is green, and y is the number of
clock ticks that the light is yellow. Fig. 2 illustrates an example of network traffic
with two grids, where each grid contains four lights. A car enters the simula-
tion at a construction site labeled a Source Sink. All of the boundary streets, as
shown in this figure, are sources and sinks where cars are generated according
to a probability distribution. A car might travel either North, South, West, or
East with a fixed probability distribution of changing directions at any given
intersection. We also consider the contention problem at the intersection, i.e., if
a car is turning left into a path of a car going straight, then a contention mech-
anism will inhibit one of the cars until the other car clears the intersection. In
our experiments, we choose an average traffic flow of 100,000 cars. The number
of lights is the traffic network is held constant at 576 lights for controlling the
workload of the system. To make the simulation more interesting, we choose 20
hot spots uniformly distributed among all the grids, where the probability of car
is generated at a source is 0.25.

• Performance Results

The experimental results were obtained by averaging several trial runs. First,
we present in the form of graphs the results for the execution time (in sec-
onds). Next, we study the synchronization overhead as the null message ratio
(NMR) which is defined as the number of null messages processed by the sim-
ulation using Chandy-Misra null-message approach divided by the number of
real messages processed. It is important to understand that there are no existing
(dynamic) load balancing algorithms for the conservative simulation paradigm
against which we can compare the performance our algorithm. Hence compar-
isons were made to a static partitioning algorithm. The static algorithm used
for comparisons is based upon [5]. The algorithm basically attempts to mini-
mize the communication overhead by uniformly distributing the execution load
among the processors. We assume that there are as many clusters as there are
processors, and each cluster is assigned to one processor. The algorithm starts
with an initial random partition, and then iteratively moves processes between
clusters until no improvements can be found (a local optimum). The processes
are moved among the clusters so that the total cut-size is reduced and the clus-
ter sizes remain balanced. All possible moves for each process are considered,



568 Azzedine Boukerche and Sajal K. Das

and the process which contributes to the maximum gain is chosen. A process is
moved only if it does not violate the cluster size constraints.

Let us now turn to our results. Fig. 3 show respectively the run times for
distributed communication network and flow traffic models. The trends of the
curves and the relative performances are relatively similar to the other simulation
models. We see a reduction of 20-25% in the execution time when we increase
the number of processors from 2 to 8, and 40-45% when we increase the number
of processors from 16 to 64. We observe a significant decrease in the running
time when the CL and ML load balancing schemes are used, for both methods
and for both models. We observe 50% reduction in the execution time when ML
strategy is used compared to the static algorithm. The results also indicate that
the CL scheduling performs worse than the ML load balancing method for all
four simulation workload models. This is due to the nature of the centralized
scheme that leads to a major bottleneck, thereby slowing down the simulation.
On the other hand, the ML scheduling tries to avoid the bottleneck and reduces
the message traffic by undertaking a fully distributed approach.

We now examine the synchronization overhead,, namely the null-message
ratio (NMR). Fig. 4 displays the NMR as a function of the number of processors
employed in the network models. We observe a significant reduction of null-
messages for all load balancing schemes in all four models. Also NMR increases
as the number of processors increases for all four simulation models. For instance,
in Fig. 8, if we confine ourselves to less than 8 processors, an approximately
20-25% reduction of the synchronization overhead using the CL dynamic load
balancing algorithm is observed over the static one. Increasing the number of
processors from 8 to 32, we observe about 30-40% reduction of NMR. The
hierarchical scheme strategy always outperforms the centralized one. We observe
a 45-50% reduction using ML strategy over the static one, when we increase the
number of of processor from 32 to 64. Similar results were obtained with the fully
connected communication model, the distributed communication network, and
the traffic flow model. The trends of the curves and the relative performances
are relatively similar. These results conclude that the multi-level load balancing
strategy significantly reduces the synchronization overhead when compared to a
centralized strategy. In other words, a careful dynamic load balancing improves
the performance of a conservative distributed simulation.

4 Conclusions

In this paper, we have presented a null-messages cancellation scheme through
load balancing in distributed simulation. Our results show that a significant
reduction of null message using our scheme. A significant decrease in run-time
was also obtained with the use of our proposed cancellation scheme as compared
to the use of a static partitioning algorithm.We note that a hierarchical approach
seems to be a promising solution in reducing further the execution time of the
simulation.



Null Messages Cancellation Through Load Balancing 569

(b)  Traffic Flow Control(b)  Traffic Flow Control(a)  Distributed Communication Network(a)  Distributed Communication Network

Fig. 4.Fig. 4. Synchronization Overhead  Vs. Number of Processors Synchronization Overhead  Vs. Number of Processors

References

[1] Boukerche, A.: “Time Management in Parallel Simulation”, in High Performance
Cluster Computing, Vol. 2, Prentice Hall, 1999. (Eds. R. Buyya, and M. Baker).

[2] Boukerche, A., and Tropper C.: “A Static Partitioning and Mapping Algorithm for
Conservative Parallel Simulations”, IEEE/ACM PADS’94, 1994, 164–172.

[3] Fujimoto, R. M.: “Parallel Discrete Event Simulation”, CACM, 33(10) 1990.
[4] Misra, J., “Distributed Discrete-Event Simulation”, ACM Comp. Surveys, 1986.
[5] Nandy, B., and Loucks, W. M., “An Algorithm for Partitioning and Mapping Con-

servative Parallel Simulation onto Multicomputer”, PADS’92, 139–146.
[6] Glazer, D., and Tropper, C.,“On Process Migration and Load Balancing in Time

Warp”, IEEE Trans. on Parallel and Distributed Systems, 4(3), 1993, 318–327.

NN
MM
RR

NN
MM
RR

ProcessorsProcessors ProcessorsProcessors

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

Static

CL

ML

0

10

20

30

40

50

60

70

0 8 16 24 32 40 48 56 64

Static

CL

ML

RR
uu
nn

TT
ii
mm
ee

RR
uu
nn

TT
ii
mm
ee

Fig. 3Fig. 3. Run-Time Vs. Number of Processors. Run-Time Vs. Number of Processors

0

500

1000

1500

2000

2500

3000

3500

4000

0 8 16 24 32 40 48 56 64

Static

CL

ML

0

500

1000

1500

2000

2500

3000

3500

4000

0 8 16 24 32 40 48 56 64

Static

CL

ML


	Introduction
	Null-Message Cancellation Through Load Balancing
	Simulation Experiments
	Conclusions 

