Using Network of Workstations to Support a
Web-Based Visualization Service

Wilfrid Lefer and Jean-Marc Pierson

Laboratoire d’Informatique du Littoral
LIL, B.P. 719
62228 Calais, France
{lefer,pierson}@lil.univ-littoral.fr

Abstract. Nowadays, huge amount of data can be retrieved thanks to
the World Wide Web, raising to the need for new services for online
data exploration and analysis. In the other hand, scientific visualization
offers varying techniques to represent any kind of data visually, taking
advantage of the natural skills of the human brain to analyze complex
phenomena through visual representations. These techniques are compu-
tationally high demanding and can not be handled by a single machine.
A Web-based visualization service would rapidly overload the machine
and slow down the Web service dramatically. This paper describes wvis-
cWeb, a distributed visualization architecture, which allows us to use
a pool of workstations connected through Internet as a computational
resource for a Web-based visualization service. This general architecture
could be used to support any kind of Web-based computation service.
Key Words: Distributed Architecture, Web Based Visualization Ser-
vices, NOW.

Introduction

Nowadays, the World Wide Web is the most powerful facility to access to the
largest information space and raises the need for effective visualization systems
to speed up the process of searching and analyzing information. The most com-
monly used way to visualize information gathered on the Web consists in down-
loading the data onto a local workstation and then applying visualization al-
gorithms to compute images of the data. But this process raises a number of
problems. The memory necessary to store all the data could easily exceed the
local disk capacity and it could take a long time to download the whole data
set. Indeed, the user more likely would like to be able to browse the data for
identification of a particular area of interest before deciding to download part of
the data for further exploration and analysis.

At LIL we developed viscWeb [3], a distributed visualization architecture
which allows us to consider a pool of machines connected through Internet as
a networked resource to support a Web-based visualization service. This article
presents the main changes in the architecture, our scheme of automatic par-
allelization as well as new results. The outline of the article follows : the first

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 6246321 1999.
© Springer-Verlag Berlin Heidelberg 1999

Using Network of Workstations 625

part presents some related works, the second gives an overview of the service,
the third describes the system architecture while part four details some parts of
the implementation. Finally, we purpose response times for the service and we
analyze the benefit of the parallelism from the user point of view.

1 Previous Work

Previously published works include distributed architectures for computational
steering and Web-based visualization systems. The European project PAGEIN [3]
was initiated to set up and evaluate environments for distributed Computer
Supported Collaborative Work in a high performance computing and network-
ing context. The project led to the COVISE [14] environment for supporting
distributed visualization. Recent extensions to COVISE include a Web-based
interface and a distributed VR environment. Shastra [I] is a distributed visu-
alization environment supporting collaborative work. There are other systems
especially tuned for computational steering [12] [4].

The concept of a Web-based visualization service has been studied by several
authors. The objective is to put visualization on every desk. Typically the user
has access to a visualization service using a Web browser, and sends visualization
requests by means of HTML (Hyper Text Markup Language) forms. Several
scenarios have been investigated, including thin client, where the server computes
an image of the data and sends it back to the user, and intelligent client, where
a Java-based visualization program is downloaded on the client site to make the
visualization [15][8][13].

2 Overview of viscWeb

With viscWeb the user can submit parameterizable requests through HTML
forms and receives images or VRML descriptions (Virtual Reality Modeling
Language), which are visualized by the browser itself or an external applica-
tion. visc Web is not handled by a single machine but rather takes advantage of a
pool of Unix machines connected by Internet. The features currently supported
by viscWeb are:

— user sessions: each user is assigned his own user session and at least one
visualization server is entirely dedicated to that user,

— dynamic code placement: when a new visualization server has to be started,
a machine is elected among the pool of machines available for the service as
a function of various parameters, including machine charge and number of
currently logged users.

— dynamic code migration: servers can be moved from one machine to another
at any time, for instance if a charge imbalance occurs or a regular user logs
in the machine.

626 Wilfrid Lefer and Jean-Marc Pierson

Fig. 1. viscWeb architecture.

— automatic parallelization: depending on the number of machines available,
several of them can be used to process a visualization request in a parallel
scheme.

3 System Architecture

The architecture of the system is shown on figure [l A number of visualiza-
tion servers are running to process requests from currently connected users. The
distribution of the servers among the machines is managed by a special pro-
gram called General Manager. In addition, on every machine a Local Manager is
running. Each Local Manager provides the service with the same basic function-
alities, including launch a new server, get information about all servers currently
running on the machine, stop a server, Communications occur directly be-

Using Network of Workstations 627

tween CGI (Common Gateway Interface) programs executed on the machine
supporting the Web service and visualization servers executed on remote ma-
chines. The Local Manager communicates only with local visualization servers
and the Global Manager. Local Manager communications are only service mes-
sages, for instance to launch a new visualization server or to inform the Global
Manager about the situation on the local machine. All communications in wvis-
cWeb are based on sockets and TCP (Transport Control Protocol) to ensure
reliable transmissions. The visualization part of visc Web has been written with
VTK [10] (The Visualization ToolKit) because it is freely available on all major
systems as source code.

4 System Features

4.1 TUser Sessions and Server Placement

When a user connects to the service, a machine is elected and a visualization
server dedicated to that user is launched on this machine. This is achieved by a
RPC call (Remote Procedure Call). This implies that the visualization service
should have been declared on each machine or a least a registered daemon should
run on each machine. Data transmissions in visc Web rely on the XDR format
(eXternal Data Representation), which allows transparent data exchange be-
tween binary incompatible systems. Thus visc Web can handle any machine that
runs a Unix system.

The machine chosen to launch a new visualization server is elected as a func-
tion of a number of parameters. In the current version we check whether a regular
user session is currently running on the machine and we evaluate the average
workload of the machine. In the future, additional parameters will be taken into
account, such as the bandwidth between the machine and the Web server, the
amount of available memory, This visualization server is attached to the user.
Because parameter values are subject to changes over time, we have developed a
mechanism to dynamically move a server when necessary (see section f:2)). The
Global Manager maintains a table which contains, for each visualization server,
all necessary information concerning the link between this server (identity, IP
address, socket connection) and the related user.

In viscWeb a new visualization server is not started each time a visualization
request is received by the Web server but rather a new user session is initiated
when a user connects to the service and this session keeps running until the
user disconnects. The advantage of this solution is that it avoids recomputing
all the visualization pipeline each time a parameter is changed, which is the way
visualization pipelines are maintained by traditional softwares such as VTK or
IRIS Explorer. The drawback is that if the connected user does not disconnect,
its environment on the machine running its visualization server is not properly
cleared, and a mechanism to detect zombies servers must be installed.

628 Wilfrid Lefer and Jean-Marc Pierson

4.2 Dynamic Code Migration

The parameters used to choose a machine when a new user session is started
change over time. For instance a regular user of the machine may log in. In
this case it is not possible to complete the task on the same machine. The
Local Manager detects the user login and asks the Global Manager for a new
location where to move its visualization servers. The algorithm used by the
Global Manager is the same as for a new user connection. When new machines
have been found to handle the work, the Local Manager stops visualization
servers (by means of Unix signals) and gives them their identities. When a new
server is launched, it receives from the current server all data and information
necessary to complete the task, then the old server terminates.

4.3 Automatic Parallelization

When a visualization request has to be processed, several machines could be
available for the task. The final goal being to ensure response times as low as
possible, visc Web includes automatic parallelization. The Local Manager chooses
a subset of machines that can be used to process the data among the whole pool
of available machines, using the same parameters as for a new user connection.
In the current version, a data parallel scheme is used to distribute computation
and data over available machines. This mechanism is used for surface extraction
with the Marching Cubes and volumetric ray-tracing (both available as sequen-
tial codes in VTK). These algorithms are easily parallelizable but additional
investigations are needed for a general extension to automatic parallelization.
Nevertheless, for a good parallelization, the algorithm might take into account
such parameters as the network bandwidth, the individual power of the ma-
chines, ...in order to deal with heterogeneous load balancing. In the current
version, the Local Manager chooses all machines that are not used at the instant
of the request. If a second visualization request occurs in the service, a Local
Manager is likely to select the same machines since the parameters won'’t have
change much between two consecutive requests.

This problem also will be addressed in future version of viscWeb, where a
limited number of machines will be chosen, sparing some of them for a following
request. Moreover, some algorithms become inefficient when being too much
parallelized, if the data is too partitioned and too many machines used. Many
known works point out this issue in purely parallel scopes. Indeed a balance has
to be found between increasing the number of machines and the computational
power, and increasing the control, hence the number of messages in the network.

4.4 Portability to Other Systems

Our software is fully written in C++4, it is based on sockets, TCP, XDR and
RPC calls for communications, and VTK for the graphic stuff. Because all these
technologies are Unix standards, the portability of viscWeb to any Unix system
is straightforward. Currently we have machines running under SGI IRIX and

Using Network of Workstations 629

Linux. The portability toward non-Unix worlds, such as Windows, more likely
involves using Java. In fact, since C++ and VTK are available on Windows,
only the communication part should be rewritten in Java, for which we plan to
use Java RMI (Remote Method Invocation), and the native code in C++ be
reused thanks to the JNI (Java Native Interface). This is part of the on-going
work concerning this project.

The client part of the software has been tested successfully on IE4.x and
Netscaped.x, what is an expected result since it is web pages, forms, and CGI
communication based on standard HTTP (Hyper Text Transfer Protocol). We
plan to rewrite the client part with Java to make te interface more interactive,
which would allow us for instance to validate the parameters before the form be
send to the server.

5 Results - Timings

One of the main issues of Web-based visualization concerns the time necessary
for the user to get the results. Important factors which affect significantly the
response time are the network bandwidth, the server charge and the computa-
tional requirements of the visualization. In order to decrease the response time,
it is necessary to consider all these three aspects. It is not in the scope of this
article to deal with algorithmic issues of scientific visualization and indeed in
visc Web we did not develop any specific visualization method. We fully rely on
the VTK toolkit, using well known algorithmic approach to parallelize our code.

The network problem is mainly a hardware issue. Today high bandwidth
networks such as the 622Mbps MBone offer a suitable solution for Web-based
visualization services, assuming no real-time interaction is required. VRML view-
ers provides us with some kind of real-time interaction but interaction is limited
in the navigation through pre-computed scenes, that is only the rendering phase
is interactive, the visualization phase remaining static. A suitable approach to
enhance interactivity is progressive downloading of hierarchical structures [2] (ei-
ther images or 3D descriptions), although VRML 2.0 does not support progres-
sive downloading and visualization. One of the goals of this work is to propose a
distributed architecture which allows us to take advantage of a pool of machines
to decrease the response time of the system.

In order to evaluate the effectiveness of our system, we had made two series of
measures for two different requests. A SPECT (Single Positron Emission Com-
puted Tomography) volume of the brain of resolution 64 x 64 x 10 is visualized.
This technique is used to detect disfunctionalities in the brain by imaging the
blood flow.

The Marching Cubes [7] algorithm is used to extract an iso-surface from the
volume which produces 14,000 triangles. Two kind of results had been produced
: an image of the volume of resolution 500 x 500 (image of size 10 kbytes), and
a VRML description of size 1 mega-bytes. Timings had shown, for a sequential
scheme, two main properties : the time to compute the image is highly prominent
as compared to the times to send the HTML form to the Web server, to send

630 Wilfrid Lefer and Jean-Marc Pierson

T1® T2b T3¢ T4¢ T5¢ T6!

Req 1 (1 host) 1,213.8 432.9 | 102,341.4 | 139.98 | 36.26 | 104,164.47
Std deviation 7.21% 5.86% 6.45% 61.52% | 16.79% 6.41%
% of total 1.16% 0.41% 98.24% 1.34% | 0.03% 100%
Req 2 (2 hosts) | 1,322.08 | 574.79 | 81,087.19 | 157.32 | 40.30 83,181.71
Std deviation 22.76% | 43.21% | 13.58% | 66.65% | 16.83% 13.18%
% of total 1.58% 0.69% 97.48% 0.18% | 0.04% 100%
Req 3 (4 hosts) | 1,120.08 | 480.79 | 73,491.76 | 76.80 28.19 75,197.64
Std deviation 7.82% 9.88% 3.11% 67.28% | 83.12% 2.92%
% of total 1.48% 0.63% 97.73% 0.1% 0.03% 100%

* Time spent by the CGI program to analyze the request.

® Event transmission from the CGI program to the visualization server.
¢ Visualization time.

¢ Result transmission from the visualization server to the CGI program.
¢ Result transmission from the CGI program to the Web server.

f Total time necessary to process the visualization request.

Table 1. Impact of parallelism in visc Web. Times are in milliseconds.

the data to the visualization server or to send back the result to the client (from
86% for the VRML description up to 99 % for the GIF image. Please refer to
[6] for further details.

We decided obviously to figure out the benefit obtained using a parallel
scheme compared to the previous sequential one. We used a bigger data set
of resolution 64 x 64 x 64, which produces up to 70,000 triangles. Three requests
have been executed with 1, 2 and 4 machines to compute these triangles. In this
scheme, only the Marching Cube part of the algorithm is parallelized, where each
machine handles the same number of voxels (this will have to be improved since
it might lead to an unbalanced system where each machine compute different
number of resulting triangles).

Table [details some of the results obtained for each request. We used the
workstations of our lab to test the system: SGI R4600PC with 32Mbytes for
the Web server and SGI R5000SC with 256Mbytes for the visualization server
with the sequential scheme, and up to four SGI R4600PC with 32Mbytes for
the parallel one. Since the charge of our LAN and the workstations change
continuously each request has been executed five times and the given values are
the average values. Requests 1, 2 and 3 outline timings using respectively 1, 2
and 4 machines, associated to compute the final result.

Using Network of Workstations 631

The values in rows 2, 5, 8, 11 and 14 give the standard deviation and rows 3, 6,
9, 12, 15 give the percentage of the total time spent in each stage. A first remark
concerns the high standard deviation which is due to the fact that machine
and network charges change over time. The network also is shared between the
members of the laboratory : we did the tests during the day, when others were
using the network, leading to high unbalance in the network related times of the
result table. We did not want to have especially artificial good results, which
could have been achieved using the visualization server during the night, since
we wanted to test its behavior over a realistically loaded network.

We can easily see that most of the time is spent in the visualization time,
with 1, 2 or 4 machines. The speedup we obtain for 2 processors is about 1.25
and reach 1.4 with 4 processors. The total time to compute the result is lowered
by about 30 seconds, which is a great improvement for the user connected to
the service. The results could be even better if the final stage of the pipeline
visualization (rendering of the produced triangles) was also parallelized.

6 Conclusion and Future Work

visc Web allows us to enhance the quality of a Web-based visualization service
by increasing the computational power used to support the service. Statistical
studies have been made about the usage of workstations in a LAN, which has
shown that the CPU usage is generally far below average [9][L1]. The goal of
this version of viscWeb is to use the available power in a LAN to support a
Web-based visualization service. The next step is to propose a flexible Internet-
wise environment to provide visualization services to end-users with a basic
equipment. Depending on the hardware and software requirements of a user
request, the visualization pipeline will have to be distributed over the global
Internet. The placement of the visualization servers will depend on the location
of the data, on the availability of the software components necessary to process
the request, on the location of the computational resources, on the network
bandwidth, ...and we should include the possibility for the user to handle part
of the pipeline on its own machine. Moreover such a flexible environment should
be perfectly interfaced with DBMS (Data Bases Management System). This
involves taking into account all recent standards and technologies for data and
code exchange over heterogeneous platforms at the Internet level, such as Java
and Corba.

References

[1] V. Anupam and C. Bajaj. Shastra: an architecture for development of collabora-
tive applications. International Journal of Intelligent and Cooperative Information
Systems, pages 155-172, jul 1994.

[2] Andrew Certain, Jovan Popovit, Tony DeRose, Tom Duchamp, David Salesin, and
Werner Stuetzle. Interactive multiresolution surface viewing. Computer Graphics,
pages 91-98, aug 1996. Proc. of SIGGRAPH ’96.

632

3]

[4]

[5]

[10]

[11]

[12]

[15]

Wilfrid Lefer and Jean-Marc Pierson

Michel Grave. PAGEIN: Pilot application in a gigabit european integrated net-
work. Technical Report R2031/ONE/DI/034/bl, ONERA, Chatillon, France, feb
1996.

J.J. Hare, J.A. Clarke, and C.E. Schmitt. The distributed interactive comput-
ing environment. Proc. of the Workshop on Distributed Visualization Systems,
Research Triangle Park, NC, oct 1998.

Wilfrid Lefer. A distributed architecture for a web-based visualization service,
apr 1998. Proc. of Nineth Eurographics Workshop on Visualization in Scientific
Computing, Blaubeuren, Germany.

Wilfrid Lefer and Jean-Marc Pierson. A thin client architecture for data visual-
ization on the world wide web. In International Conference on Visual Computing
(ICVC99), Goa, India, feb 1999.

William E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D sur-
face construction algorithm. Computer Graphics, 21(3):163-169, jul 1987. Proc.
of SIGGRAPH ’87.

Cherilyn Michaels and Michael Bailey. Vizwiz: A java applet for interactive 3D
scientific visualization on the web. In Roni Yagel and Hans Hagen, editors, Proc.
of IEEFE Visualization ’97, pages 261-267. IEEE Press, Los Alamitos, CA, oct
1997.

D. A. Nichols. Using idle workstations in a shared computing environment. ACM
Operating System Review, 21(5):5-12, nov 1987.

William Schroeder, Kenneth Martin, and Bill Lorenzen. The Visualization Toolkit
- An Object-Oriented Approach to 3D Graphics. Prentice Hall, 1996.

M. M. Theimer and K. A. Lantz. Finding idle machines in a workstation-based
distributed environment system. IEEE Transactions on Software Engineering,
15(11):1444-1458, nov 1989.

Robert van Liere, J.A. Harkes, and W. C. de Leeuv. A distributed blackboard
architecture for interactive data visualization. In Proc. of IEEE Visualization
’98, Research Triangle Park, North Carolina, Oct 19-24, 1998. IEEE Press, Los
Alamitos, CA, oct 1998.

Kiril Vidimce, Viktor Miladinov, and David C. Banks. Simulation and visualiza-
tion in a browser. Proc. of the Workshop on Distributed Visualization Systems,
Research Triangle Park, NC, oct 1998.

A. Wierse, U. Lang, and R. Riihle. A system architeture for data-oriented visu-
alization. In John P. Lee and Georges G. Grinstein, editors, Database Issues for
Data Visualization, number 871 in Lecture Notes in Computer Science, pages 148—
159. Springer-Wien-New-York, 1993. Proc. of IEEE Visualization 93 Workshop,
San Jose, California.

Jason Wood, Ken Brodlie, and Helen Wright. Visualization over the world wide
web and its application to environmental data. In Roni Yagel and Gregory M.
Nielson, editors, Proc. of Visualization ’96, pages 81-86. IEEE Press, Los Alami-
tos, CA, oct 1996.

	Previous Work
	Overview of viscWeb
	System Architecture
	System Features
	User Sessions and Server Placement
	Dynamic Code Migration
	Automatic Parallelization
	Portability to Other Systems

	Results - Timings
	Conclusion and Future Work

