A Structured SADT Approach to the Support
of a Parallel Adaptive 3D CFD Code

Jonathan Nash, Martin Berzins, and Paul Selwood

School of Computer Studies, The University of Leeds
Leeds LS2 9JT, West Yorkshire, UK

Abstract. The parallel implementation of unstructured adaptive tetra-
hedral meshes for the solution of transient flows requires many com-
plex stages of communication. This is due to the irregular data sets and
their dynamically changing distribution. This paper describes the use
of Shared Abstract Data Types (SADTs) in the restructuring of such a
code, called PTETRAD. SADTSs are an extension of an ADT with the
notion of concurrent access. The potential for increased performance and
simplicity of code is demonstrated, while maintaining software portabil-
ity. It is shown how SADTSs can raise the programmer’s level of abstrac-
tion away from the details of how data sharing is supported. Performance
results are provided for the SGI Origin2000 and the Cray T3E machines.

1 Introduction

Parallel computing still suffers from a lack of structured support for the design
and analysis of code for distributed memory applications. For example, the MPI
library supports a portable set of routines, such that applications can be more
readily moved between platforms. However, MPI requires the programmer to
become involved in the detailed communication and synchronisation patterns
which the application will generate. The resulting code is hard to maintain,
and it is often difficult to determine which code segments might require further
attention in order to improve performance or to obtain good performance on
new platforms.

Abstract Data Types (ADTs) have been used in serial computing to support
modular and re-usable code. An example is a Queue, supporting a well-defined
interface (Enqueue and Dequeue methods) which separates the functionality of
the Queue from its internal implementation. Whereas an ADT supports informa-
tion sharing between the different components of an application, a Shared ADT
(SADT) e.g [, 2] can support sharing between applications executing across
multiple processors. High performance in a parallel environment is supported
by allowing the concurrent invocation of the SADT methods, where multiple
Enqueue and Dequeue operations can be active across the processors.

The clear distinction between functionality and implementation leads to
portable application code, and portable performance, since alternative SADT
implementations can be examined without altering the application. The poten-
tial to generate re-usable SADTs means that greater degrees of investment, care

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 651658} 1999.
© Springer-Verlag Berlin Heidelberg 1999

652 Jonathan Nash, Martin Berzins, and Paul Selwood

and optimisation can be made in the implementation of an SADT on a given
platform. In addition, an SADT can be parameterised by one or more user serial
functions, in order to tailor the functionality of the SADT to that required by
the application. This user parameterised form of the SADT is particularly useful
in dealing with different parts of complex data structures in different ways.

This paper describes work [1 investigating the use of SADTs in a parallel
computational fluid dynamics code, called PTETRAD [3] [4]. The unstructured
3D tetrahedral mesh, which forms the basis for a finite volume analysis, is par-
titioned among the processors by PTETRAD. Mesh adaptivity is performed by
recursively refining and de-refining mesh elements, resulting in a local tree data
structure rooted at each of the original base elements. The initial mesh parti-
tioning is carried out at this base element level, as is any repartitioning and
redistribution of the mesh when load imbalance is detected.

A highly interconnected mesh data structure is used by PTETRAD, in order
to support a wide variety of solvers and to reduce the complexity of using un-
structured meshes. Nodes hold a one-way linked list of element pointers. Nodes
and faces are stored as a two-way link list. Edges are held as a series of two-way
linked lists (one per refinement level) with child and parent pointers. In addi-
tion, frequently used remote mesh objects are stored locally as halo copies, in
order to reduce the communications overhead. The solver, adaptation and re-
distribution phases each require many different forms of communication within
a parallel machine in order to support mesh consistency (of the solution values
and the data structures), both of the local partition of the mesh and the halos.
PTETRAD currently uses MPI to support this.

In this paper it will be shown how parts of PTETRAD may be used in
SADTs based on top of MPI and SHMEM, instead of MPI directly, thus leading
to software at a higher level of abstraction with a clear distinction between the
serial and parallel parts of the code. Section 2 describes an SADT which has
been designed to support the different mesh consistency protocols within an
unstructured tetrahedral mesh. A case study in Section 3 will describe the use
of the SADT in supporting the mesh redistribution phase. A brief overview of
the implementation techniques for the SADT will be given in Section 4, together
with performance results for the SADT and for PTETRAD. The paper concludes
by pointing to some current and future work.

2 An SADT for Maintaining Data Partition Consistency

The SADT described in this paper has focused on the problem in which a data
set has been partitioned among p processors, with each processor holding internal
data (the shared area), and overlapping data areas which must be maintained in
a consistent state after being updated. PTETRAD maintains an array of point-
ers to base and leaf elements, which can be used to determine the appropriate
information to be sent between partitions. For example, after mesh adaptation,

! Funded by the EPSRC ROPA programme - Grant number GR/L73104

A Structured SADT Approach 653

Processor 0 Processor 1 Processor 2 Processor 3

data ‘a‘b‘c‘d‘e‘f‘g‘h‘i‘

‘ Counter

Compute

send -2 l3]2
counters
counters -1 | |] -] BLLDT 2]]-]) Antoan
send bld ‘
buff g |h clg|h Multicast
uffers 1 -

Fig.1. The SADT communications stages

any refined elements will require that their halo copies also be refined. Also, in
the redistribution phase, the base element list can be used to determine which
elements need to be moved between partitions. In constructing an SADT for this
pattern of sharing, four basic phases of execution can be identified. The SADT
contains a consistency protocol which specifies these phases of execution, with
the generic form:

void Protocol (in, out) /* interface with in and out data listsx*/

{ int send[p]l, recvlpl; /* Counters used in communications. */
pre-processing; /* Initialisation of intermal data. */
communications preamble; /* Identifying data exchanges . 74
data communications; /* Exchanging data between partitions.*/
post-processing;} /* Format the results. */

The protocol is called with a set of user-supplied input and output data
lists (in and out), for example the lists of element pointers described above,
and each phase requires the user to supply a number of application-specific
serial functions. The SADT is thus parameterised by these user functions which
allow the communications phases to be tuned by evaluating various condition
functions, for example to determine whether a data item is to be communicated
to a given partition (if it has been refined or needs to be redistributed). The
SADT also contains basic functions to pack/unpack selected fields of data items
to/from message buffers, and to process the new data items which are received.

Figure [I] shows an example of the operation of the protocol for a typical
processor. For reasons of clarity the pre-processing and post-processing phases
are removed. The protocol can make use of a communications library for global
communications operations (denoted by Comms Function), and may require one
or more user-defined serial functions (denoted by User Function).

(i) The communications preamble is given by:
(a) Comms CounterCompute: For each data item, User CounterCondition
decides if it is to be communicated, and User CounterIndexing will
update the associated values in the counters send[] and recv[].

654 Jonathan Nash, Martin Berzins, and Paul Selwood

(b) Comms A11ToAll: An all-to-all communication is executed, in which the
other processors note the expected number of items to be received from
processor i in recv[i] (if Comms CounterCompute is able to determine
the counter values in recv[] then this communication can be avoided).

(ii) The actual data communications phase is given by Comms Multicast:

(a) For each input item and each processor in turn, User SendCondition
decides if the item should be sent to the processor. User PackDatum will
choose the selected fields of the data item to send, and place them in
a contiguous memory block, so that it can be copied into the message
buffer for that processor (User DatumSize allows the system to allocate
the required total send and receive buffer space).

(b) Once the buffers have been communicated between the processors, each
item is removed in turn, using User UnpackDatum, and the local data
partition is updated, based on this item, with User ProcessDatum.

3 Case Study: Mesh Redistribution

At the application level of PTETRAD [4], local mesh access is supported by a
library of mesh routines. The mesh repartitioning strategy is handled by link-
ing in parallel versions of either the Metis or Jostle packages. The global mesh
consistency is handled by making calls to the SADT, which also performs local
mesh updates through the mesh library. The coordination between processors
is supported by a small communications library which supports common traf-
fic patterns, from a simple all-to-all exchange of integer values, up to the more
complex packing, unpacking and processing of data buffers which are sent to all
neighbouring mesh partitions.

The new SADT-based approach makes use of MPI, so that it may be run on
both massively parallel machines and on networks of workstations, and also uses
the Cray/SGI SHMEM library, to exploit the high performance direct memory
access routines present on the SGI Origin 2000 and the Cray T3D/E. The use
of an alternative communications mechanism is simply a matter of writing a
new communications library (typically around 200 lines of code), and linking
the compiled library into the main code.

The operation of the redistribution phase can be divided into four stages. The
new mesh partitions at the base element level, are computed in the repartition
stage using the parallel versions of Metis or Jostle. The local and halo owner
fields for elements, edges, nodes and faces are updated in the assign owners
stage. The data to be moved and the new halo data is communicated in the
redistribute stage. Finally the establish links stage destroys any old commu-
nications links between local and halo mesh objects, and create the new links.
The following examples focus on the second stage of assigning the new owners
for edges in the partitioned mesh, in which the halo edges must be updated with
the new owner identifiers. PTETRAD maintains an array of edge lists, with each
list holding the edges at a given level of refinement in the mesh. An edge stores
pointers to the halo copies which reside on other processors. This array is used

A Structured SADT Approach 655

Pack the datum into a buffer

void User PackDatum (PTETRAD Edge *edge, char *buf, int *pos, int pe)
/* mesh edge list, storage space at buf[*pos], processor pe */

{ PTETRAD EdLnk *halo; /* edge halo pointer */
int size = User DatumSize(); /* the amount of storage required */
while (edge) { /* inspect each edge */
halo = edge — halo; /* inspect the halos of the edge */
while (halo) { /* for each edge halo */

if (Edge HaloHome (halo, pe)) { /* is the halo on processor pe ? */
/* PACK THE HALO */
Comm.ed = halo — edge; /* note the halo’s local address... */
Comm.own = edge — owner; /* on processor pe, and the owner */
Pack (&Comm, size, buf, pos);/* pack this into the buffer area */
} halo = halo — next; /* go on to the next halo */
} edge = edge —next; /* go on to the next edge */

I

Fig. 2. SADT data communication functions: sending side

as the input to the SADT protocol, with the user functions processing each edge
list in turn.

The data transmission SADT functions Comms Multicast makes use of the
user function shown in Figure B]. This is part of the SADT consistency protocol
relating to the packing, communication, unpacking and processing of the actual
mesh edges. Figure 2l shows the initial packing stage. User DatumSize returns
the size of the “flattened” data structure, which forms the contiguous memory
area to be communicated. In this case, it is an address of a halo edge on a remote
processor, and the new owner identifier to be assigned to it. These details are held
in the variable Comm. For a particular processor, User PackDatum is used to
search a list of edges at a given mesh refinement level, and determine if any edge
halos are located on that processor. Those halos are packed into a contiguous
buffer area, ready for communication. The “Pack” function is a standard call
within the SADT library, which will copy the data into the communication
buffer. At this stage, the data buffers have been filled, and Comms Multicast will
carry out the communication between the processors. Once the data has been
exchanged the SADTs User UnpackDatum will transfer the next data block from
the communications buffer into the FdgeOwner variable. User ProcessDatum
will use the ed field to access the halo edge, and set its owner identifier to the
new value.

4 Implementation Details and Performance Results

The amount of source code in the original and new PTETRAD versions, for
the mesh redistribution phase, was reduced from 9,080 to 5,220 lines, by using
the SADT approach. A significant reduction in the amount of application code
has also been achieved by supporting the stages of global mesh consistency as

656 Jonathan Nash, Martin Berzins, and Paul Selwood

SADT calls, and implementing the mesh access operations within a separate
library. The mesh access library is also being re-used during the restructuring
of the solver and adaptation phases. As a typical example, the code for the
communication of mesh nodes during redistribution is reduced from 340 lines to
100 lines, with only around 20 of these lines performing actual computation.

Within the SADT library, the main Update SADT, for maintaining mesh
consistency, contains 200 lines of code, and an Exzchange SADT (for performing
gather/scatter operations) contains 25 lines. The MPI and SHMEM communica-
tions interfaces each have their own library which support the Comms Function
operations (see Section [2] and below). New libraries can easily be written to ex-
ploit new high performance communications mechanisms, without any changes
to the application code.

4.1 The SADT Communications Library

The communications operations employed by an SADT are supported by a small
communications library, as outlined in Section Bland above. This contains oper-
ations such as an all-to-all exchange (Comms A11ToAll), and the point-to-point
exchange and processing of data buffers representing new or updated mesh data
(Comms Multicast).

FigureBl(a) shows the performance of Comms A11ToAll for the platforms be-
ing studied. On the Origin, the difference between using MPI send-receive pairs
and the collective routine M PI Alltoall is quite small. Pairwise communication
performs better up to around 8 processors. Collective communications take 2, 300
psecs on 32 processors, as opposed to 2,770 psecs for the pairwise implemen-
tation. On the T3FE, pairwise communication performs very similarly, but the
collective communications version performs quite substantially better in all cases
(eg 258 psecs down from 1377 psecs on 32 processors), outperforming the Origin
version. For both platforms, it can be seen that the pairwise implementation be-
gins to increase greater than linearly, due to the p? traffic requirement, whereas
the collective communications version stays approximately linear. A third imple-
mentation, using the SHMEM library, outperforms pairwise communication by
at least an order of magnitude, due to its very low overheads at the sending and
receiving sides, taking 30 usecs on 32 processors for the T3E, and 110 usecs on
the Origin. In PTETRAD, this stage of communication represents a small frac-
tion of the overall communications phase, so it is not envisaged that alternative
implementation approaches will have any real impact on performance.

The performance of Comms Multicast, in which each processor i exchanges
N words with its four neighbours i — 2,4 — 1, i+ 1 and 7 + 2 (in the case of p
< 4, exchange occurs between the p — 1 neighbours) (the user (un)packing and
processing routines are null operations). On the Origin, performance reaches a
ceiling of around 20 MBytes/sec for N = 1000 or larger using MPI, and 33
MBytes/sec using SHMEM, across the range of processors. For very small mes-
sages, the overheads of MPI begin to have an impact as the number of processors
increase. On the T3F, the achievable performance using MPI was significantly
higher, supporting 88 MBytes/sec on 32 processors, for large messages. Using

A Structured SADT Approach 657

T3E: MPI‘ o i
T3E: MPI (collective) —--
o e “I
Origin: MPI (collective) 4--
s | Origin: SHMEM - | wl i
g g T3E: SHMEM N=1 -—
2 g 11,000 AE:"
g 64 - 1) 4+ Origin,SHMEw?ﬁgq x 1
< = 1,000 4
2 3 10,000 -
= 16 | - - * 2 4 @ 1 b 4
1 L L L : 0.0625 . L L .
! 2 AProcessorss ® % ! 2 AProcessorss ® %
Fig. 3. (a) Comms AllToAll; (b) Comms Multicast: SHMEM
Adaption Imbalance Repartition Redistrib- Imbalance Solve
ute
PTETRAD (4) 5.87 19 % 0.99 3.26 11 % 1.23
SADT-MPI (4) 5.88 19 % 0.98 3.04 11 % 1.23
SADT-COLL (4) 5.89 19 % 0.98 3.10 11 % 1.23
SADT-SHMEM (4) 5.86 19 % 0.97 2.78 11 % 1.23
PTETRAD (32) 4.40 26 % 0.38 2.12 11% 0.20
SADT-MPI (32) 4.38 26 % 0.38 1.92 11% 0.20
SADT-COLL (32) 4.45 26 % 0.37 1.92 11 % 0.20
SADT-SHMEM (32) 4.44 26 % 0.37 1.96 11% 0.20

Table 1. PTETRAD performance results (SGI/CRAY T3E:times in seconds)

SHMEM, this increases to 103 MBytes/sec, as well as improving the perfor-
mance for smaller messages. Since this benchmark is measuring the time for all
processors to both send and receive data blocks, the bandwidth results can be
approximately doubled in order to derive the available bandwidth per processor.
Figure 3(b) shows the SHMEM results for both machines. PTETRAD typically
communicates messages of size 10K — 100K words, by using data blocking, and
the above results show that this should make effective use of the available com-
munications bandwidth.

4.2 PTETRAD Performance Results

A number of small test runs were performed using the original version of PTE-
TRAD, and the SADT version of the redistribution phase, using pairwise MPI,
collective MPI communication and SHMEM. A more comprehensive description
of the performance of PTETRAD can be found in [3|, [4]. Table [[I shows some
typical results on the T3E, for a gas dynamics problem described in [4], using 4
and 32 processors.

Results for the Origin (not given here) show an 8% reduction in redistribution
times on 4 processors. The use of the SHMEM library doesn’t improve perfor-
mance any further in this case, since the high level of mesh imbalance means that

658 Jonathan Nash, Martin Berzins, and Paul Selwood

local computation is the dominant factor. Thus, the performance improvements
when using the SADT approach originate from the tuning of the serial code. The
other timings are approximately equal, pointing to the fact that the improved re-
distribution times are real, rather than due to any variation in machine loading.
The T3E results in Table 1 show a reduction in times of between 7% and 10%
using MPI, and a reduction of 15% on 4 processors by linking in the SHMEM
communications library. The lower initial mesh imbalance, coupled with the very
high bandwidths available using SHMEM, result in this significant performance
increase. The slight increase in time on 32 processors using SHMEM seems to
be due to a conflict between SHMEM and MPI on the T3E.

5 Conclusions and Future Work

This paper shows how performance can be improved using three complementary
approaches. involving the use of shared abstract data types (SADTs) to struc-
ture parallel applications. The use of SADTs has made it easier to examine an
existing communications library, MPI, to determine if alternative operations can
be used, such as collective communications. Different communications libraries,
such as SHMEM, have been linked in to provide high performance SADT imple-
mentations on the Cray T3E and SGI Origin 2000 platforms. Finally, due to the
clear distinction between the parallel communications and local computation,
the serial code executing on each processor can also be more readily tuned. The
amount of code has also been significantly reduced, since the SADT used to
support mesh consistency can be re-used in many parts of the code. In the case
of PTETRAD, the routines to determine the mesh data to redistribute were up-
dated, to reduce the amount of searching of the local mesh partition. and some of
the local data access methods were optimised. This shows up in the performance
results by an immediate increase in performance when moving to the SADT
version which still uses the MPI pairwise communications. Currently, the mesh
redistribution phase has been completed, with the solver and adaptation stages
due for completion in the near future. The intention is to support the proposed
SOPHIA applications interface [3], which provides an abstract view of a mesh
and its halo data.

References

[1] J. M. Nash, P. M. Dew and M. E. Dyer, A Scalable Concurrent Queue on a
Message Passing Machine, The Computer Journal 39(6), 483-495, 1996.

[2] Jonathan Nash, Scalable and predictable performance for irregular problems using
the WPRAM computational model, Information Proc. Letters 66, 237-246, 1998.

[3] P.M. Selwood, M. Berzins, J. Nash and P.M. Dew, Portable Parallel Adaptation
of Unstructured Tetrahedral Meshes, Proceedings of Irregular’98: The 5th Inter-
national Symposium on Solving Irregularly Structured Problems in Parallel (Ed.
A Ferreira et al.), Springer Lecture Notes in Comp. Sci., 1457, 56-67, 1998.

[4] P.Selwood and M.Berzins, Portable Parallel Adaptation of Unstructured Tetrahe-
dral Meshes. Submitted to Concurrency 1998.

	Introduction
	An SADT for Maintaining Data Partition Consistency
	Case Study: Mesh Redistribution
	Implementation Details and Performance Results
	The SADT Communications Library
	PTETRAD Performance Results

	Conclusions and Future Work

